首页 > 最新文献

Journal of Nano- and Electronic Physics最新文献

英文 中文
Mechanisms of Changing the Conductivity of Porous Silicon in an Ammonia Atmosphere – DFT Modeling 氨环境下多孔硅电导率变化的机理- DFT模型
Pub Date : 2020-01-01 DOI: 10.21272/jnep.12(3).03008
F. Ptashchenko
Based on quantum-chemical calculations by the density functional theory (DFT) method, four possible mechanisms of the influence of ammonia vapors on the conductivity of silicon nanostructures, in particular, porous silicon (PS), were examined. The first mechanism involves the emergence of donor states in the interaction of NH3 molecules with pb-centers (surface Si atoms with dangling bonds). The change in conductivity by the second and third mechanisms can occur in p-type silicon structures. The second mechanism involves the protonation of an ammonia molecule with the subsequent passivation of subsurface impurity boron atoms by NH4 ions. The third mechanism combines the first two. At the first stage, it involves the interaction of NH3 molecules with passivated B-pb-center pairs. After protonation of the NH3 molecule, the boron impurity atom is already passivated by the NH4 ion, and the paramagnetic state of the pb-center is restored. At the second stage, the formation of donor states occurs during the interaction of NH3 molecules with already paramagnetic pb-centers. The processes according to the fourth mechanism can occur in n-type silicon structures. It provides for the restoration of donor properties of surface phosphorus atoms passivated by two hydrogen atoms. Such a restoration occurs after protonation of the NH3 molecule, when the proton (the ion of the surface hydrogen atom) is separated from the phosphorus atom. The last three models involve the protonation of NH3 molecules with the necessary participation of water molecules and surface OHgroups, the important role of which has been demonstrated in most experimental studies.
基于密度泛函理论(DFT)方法的量子化学计算,研究了氨蒸气对硅纳米结构,特别是多孔硅(PS)电导率的四种可能影响机制。第一种机制涉及NH3分子与pb中心(具有悬空键的表面Si原子)相互作用中供体态的出现。第二和第三种机制的电导率变化可以发生在p型硅结构中。第二种机制涉及氨分子的质子化和随后的表面下杂质硼原子被NH4离子钝化。第三种机制结合了前两种机制。在第一阶段,它涉及NH3分子与钝化的b- pb中心对的相互作用。NH3分子质子化后,硼杂质原子已被NH4离子钝化,pb中心恢复顺磁状态。在第二阶段,NH3分子与已经具有顺磁性的pb-中心相互作用时形成给体态。根据第四种机制的过程可以发生在n型硅结构中。它提供了两个氢原子钝化表面磷原子的施主性质的恢复。这种恢复发生在NH3分子质子化之后,当质子(表面氢原子的离子)与磷原子分离时。后三种模式涉及NH3分子的质子化,水分子和表面oh基团的参与是必要的,其重要作用已被大多数实验研究证明。
{"title":"Mechanisms of Changing the Conductivity of Porous Silicon in an Ammonia Atmosphere – DFT Modeling","authors":"F. Ptashchenko","doi":"10.21272/jnep.12(3).03008","DOIUrl":"https://doi.org/10.21272/jnep.12(3).03008","url":null,"abstract":"Based on quantum-chemical calculations by the density functional theory (DFT) method, four possible mechanisms of the influence of ammonia vapors on the conductivity of silicon nanostructures, in particular, porous silicon (PS), were examined. The first mechanism involves the emergence of donor states in the interaction of NH3 molecules with pb-centers (surface Si atoms with dangling bonds). The change in conductivity by the second and third mechanisms can occur in p-type silicon structures. The second mechanism involves the protonation of an ammonia molecule with the subsequent passivation of subsurface impurity boron atoms by NH4 ions. The third mechanism combines the first two. At the first stage, it involves the interaction of NH3 molecules with passivated B-pb-center pairs. After protonation of the NH3 molecule, the boron impurity atom is already passivated by the NH4 ion, and the paramagnetic state of the pb-center is restored. At the second stage, the formation of donor states occurs during the interaction of NH3 molecules with already paramagnetic pb-centers. The processes according to the fourth mechanism can occur in n-type silicon structures. It provides for the restoration of donor properties of surface phosphorus atoms passivated by two hydrogen atoms. Such a restoration occurs after protonation of the NH3 molecule, when the proton (the ion of the surface hydrogen atom) is separated from the phosphorus atom. The last three models involve the protonation of NH3 molecules with the necessary participation of water molecules and surface OHgroups, the important role of which has been demonstrated in most experimental studies.","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"114 1","pages":"03008-1-03008-7"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73296070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Angular Distributions of Scattered Ne and Ar Ions at the Grazing Incidence on the InGaP (001) 110 Surface InGaP(001) 110表面掠入射散射Ne和Ar离子的角分布
Pub Date : 2020-01-01 DOI: 10.21272/jnep.12(5).05032
M. Karimov, U. Kutliev, K. Otabaeva, M. U. Otabaev
{"title":"Angular Distributions of Scattered Ne and Ar Ions at the Grazing Incidence on the InGaP (001) 110 Surface","authors":"M. Karimov, U. Kutliev, K. Otabaeva, M. U. Otabaev","doi":"10.21272/jnep.12(5).05032","DOIUrl":"https://doi.org/10.21272/jnep.12(5).05032","url":null,"abstract":"","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"73 1","pages":"05032-1-05032-4"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73347539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Study of Coherent Properties of an Exciton in Semiconductor Quantum Dots 半导体量子点中激子相干特性的研究
Pub Date : 2020-01-01 DOI: 10.21272/jnep.12(3).03022
R. Kolodka, Akademik Glushkov Prosp. Kyiv Ukraine, I. Pundyk, I. Dmitruk
{"title":"Study of Coherent Properties of an Exciton in Semiconductor Quantum Dots","authors":"R. Kolodka, Akademik Glushkov Prosp. Kyiv Ukraine, I. Pundyk, I. Dmitruk","doi":"10.21272/jnep.12(3).03022","DOIUrl":"https://doi.org/10.21272/jnep.12(3).03022","url":null,"abstract":"","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"45 5 1","pages":"03022-1-03022-6"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77473325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis and Evaluation of Climatic Conditions Effect on Amorphous Silicon PV Module 气候条件对非晶硅光伏组件影响的分析与评价
Pub Date : 2020-01-01 DOI: 10.21272/jnep.12(5).05010
T. Ghaitaoui, A. Benatillah
1 Department of Material Sciences, Institute of Science and Technology, University of Ahmed Draia, Adrar, Algeria 2 Laboratory of Energy, Environment and Systems of Information (LEESI), University of Ahmed Draia, Adrar, Algeria 3 Laboratoire de Développement Durable et d'information (LDDI), Faculté des Science et de la Technologie, Université Ahmed Draia, Adrar, Algéria 4 Unité de Recherche en Energies Renouvelables en Milieu Saharien, URERMS, Centre de Développement des Energies Renouvelables, CDER, 01000 Adrar, Algéria
1 Department of Material Sciences Institute of Science and Technology)、Ahmed Draia大学2、Adrar angoisse Laboratory of Energy, Environment and Systems of Information (Ahmed Draia LEESI)、大学、实验室(Adrar阿尔及利亚3 (LDDI)、可持续发展和信息科学与技术学院、大学、Ahmed Draia Adrar Algéria 4单元研究撒哈拉,URERMS环境中可再生能源、可再生能源发展中心。CDER, 01000阿德拉,阿尔及利亚
{"title":"Analysis and Evaluation of Climatic Conditions Effect on Amorphous Silicon PV Module","authors":"T. Ghaitaoui, A. Benatillah","doi":"10.21272/jnep.12(5).05010","DOIUrl":"https://doi.org/10.21272/jnep.12(5).05010","url":null,"abstract":"1 Department of Material Sciences, Institute of Science and Technology, University of Ahmed Draia, Adrar, Algeria 2 Laboratory of Energy, Environment and Systems of Information (LEESI), University of Ahmed Draia, Adrar, Algeria 3 Laboratoire de Développement Durable et d'information (LDDI), Faculté des Science et de la Technologie, Université Ahmed Draia, Adrar, Algéria 4 Unité de Recherche en Energies Renouvelables en Milieu Saharien, URERMS, Centre de Développement des Energies Renouvelables, CDER, 01000 Adrar, Algéria","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"136 1","pages":"05010-1-05010-5"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77353206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The Vision for Polymer Solar Cells is Power Production at Low Cost 聚合物太阳能电池的前景是低成本发电
Pub Date : 2020-01-01 DOI: 10.21272/jnep.12(5).05008
Ashwini Rayar, Sharanappa Chapi
.
{"title":"The Vision for Polymer Solar Cells is Power Production at Low Cost","authors":"Ashwini Rayar, Sharanappa Chapi","doi":"10.21272/jnep.12(5).05008","DOIUrl":"https://doi.org/10.21272/jnep.12(5).05008","url":null,"abstract":".","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76280876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Optimization of a Tunable Photonic Crystal Filter for Coarse Wavelength Division Multiplexing 用于粗波分复用的可调谐光子晶体滤波器的优化
Pub Date : 2020-01-01 DOI: 10.21272/jnep.12(6).06035
F. Brik, A. Labbani, Constantine Algeria Semiconductors
{"title":"Optimization of a Tunable Photonic Crystal Filter for Coarse Wavelength Division Multiplexing","authors":"F. Brik, A. Labbani, Constantine Algeria Semiconductors","doi":"10.21272/jnep.12(6).06035","DOIUrl":"https://doi.org/10.21272/jnep.12(6).06035","url":null,"abstract":"","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"25 1","pages":"06035-1-06035-4"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82786209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Enhanced Performance of an Integrated Pyroelectric Infrared Detector on a Flexible Substrate: Modeling and Simulation 柔性基板上集成热释电红外探测器的增强性能:建模与仿真
Pub Date : 2020-01-01 DOI: 10.21272/jnep.12(6).06007
A. Bandyopadhyay, K. Arun, A. Batra, M. Aggarwal
The sensitivity and performance of an integrated pyroelectric infrared detector depend not only on the material characteristics of a sensor element, but also on the thermal performance of the complete structure of detector design, including associated electronics. Thus, we have derived the thermal transfer function by solving the one-dimensional thermal diffusion equation for a single element n -layer structure, from which the performance of the detector structure of any number of layers can be obtained, predicted and optimized. Various single sensor configurations on the flexible substrate, polyimide, and pyroelectric and thermal parameters of modified lead strontium titanate (PST) film are utilized to predict the current re-sponsivity of an integrated detector system. The results obtained are compared with silicon as a substrate and found to be attractive for the development of a flexible thin-film based detector system
集成热释电红外探测器的灵敏度和性能不仅取决于传感器元件的材料特性,还取决于探测器设计的整个结构的热性能,包括相关的电子器件。因此,我们通过求解单元素n层结构的一维热扩散方程,推导出了传热函数,由此可以得到、预测和优化任意层数探测器结构的性能。利用柔性衬底、聚酰亚胺和改性钛酸铅锶(PST)薄膜的热释电和热参数上的各种单传感器配置来预测集成探测器系统的电流响应率。所得到的结果与硅作为衬底进行了比较,发现这对于开发柔性薄膜探测器系统是有吸引力的
{"title":"Enhanced Performance of an Integrated Pyroelectric Infrared Detector on a Flexible Substrate: Modeling and Simulation","authors":"A. Bandyopadhyay, K. Arun, A. Batra, M. Aggarwal","doi":"10.21272/jnep.12(6).06007","DOIUrl":"https://doi.org/10.21272/jnep.12(6).06007","url":null,"abstract":"The sensitivity and performance of an integrated pyroelectric infrared detector depend not only on the material characteristics of a sensor element, but also on the thermal performance of the complete structure of detector design, including associated electronics. Thus, we have derived the thermal transfer function by solving the one-dimensional thermal diffusion equation for a single element n -layer structure, from which the performance of the detector structure of any number of layers can be obtained, predicted and optimized. Various single sensor configurations on the flexible substrate, polyimide, and pyroelectric and thermal parameters of modified lead strontium titanate (PST) film are utilized to predict the current re-sponsivity of an integrated detector system. The results obtained are compared with silicon as a substrate and found to be attractive for the development of a flexible thin-film based detector system","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82638703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Fe-incorporation on Structural and Optoelectronic Properties of Spin Coated p/n Type ZnO Thin Films 铁掺入对p/n型ZnO薄膜结构和光电性能的影响
Pub Date : 2020-01-01 DOI: 10.21272/jnep.12(3).03023
C. Zegadi, Bp El-Mnaouer Oran Algeria Laboratoire de Micro et de Nanophysique, M. Adnane, D. Chaumont, A. Haichour, A. Kaddour, Z. Lounis, D. Ghaffor
1 Laboratoire de Micro et de Nanophysique (LaMiN), Ecole Nationale Polytechnique d’Oran Maurice AUDIN (ENPO-MA), BP 1523 El-Mnaouer, 31000 Oran, Algeria 2 Laboratory of Electron Microscopy and Materials Sciences, University of Science and Technology of Oran, P.O. Box 1505, El-Mnaouer, 31000 Oran, Algeria 3 Équipe NanoForm, Laboratoire ICB, Université de Bourgogne, 9, Ave Alain Savary, 21078 Dijon, France 4 Laboratory of LABMAT, National Polytechnic School of Oran, ENP OranMaurice AUDIN, Oran, Algeria
1奥兰莫里斯奥丁国立理工学院(ENPO-MA)显微与纳米物理实验室(LaMiN), BP 1523 El-Mnaouer, 31000 Oran,阿尔及利亚2奥兰科技大学电子显微镜与材料科学实验室,El-Mnaouer, 31000 Oran,阿尔及利亚3 Équipe纳米形式,勃艮第大学ICB实验室,9 Ave Alain Savary, 21078,法国第戎4奥兰国立理工学院LABMAT实验室,ENP奥兰莫里斯奥丁,奥兰阿尔及利亚
{"title":"Effect of Fe-incorporation on Structural and Optoelectronic Properties of Spin Coated p/n Type ZnO Thin Films","authors":"C. Zegadi, Bp El-Mnaouer Oran Algeria Laboratoire de Micro et de Nanophysique, M. Adnane, D. Chaumont, A. Haichour, A. Kaddour, Z. Lounis, D. Ghaffor","doi":"10.21272/jnep.12(3).03023","DOIUrl":"https://doi.org/10.21272/jnep.12(3).03023","url":null,"abstract":"1 Laboratoire de Micro et de Nanophysique (LaMiN), Ecole Nationale Polytechnique d’Oran Maurice AUDIN (ENPO-MA), BP 1523 El-Mnaouer, 31000 Oran, Algeria 2 Laboratory of Electron Microscopy and Materials Sciences, University of Science and Technology of Oran, P.O. Box 1505, El-Mnaouer, 31000 Oran, Algeria 3 Équipe NanoForm, Laboratoire ICB, Université de Bourgogne, 9, Ave Alain Savary, 21078 Dijon, France 4 Laboratory of LABMAT, National Polytechnic School of Oran, ENP OranMaurice AUDIN, Oran, Algeria","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"26 1","pages":"03023-1-03023-6"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81050513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Self-heating of a SiGe HBT Designed for RF Applications According to the Percentage of Germanium 基于锗含量的射频应用SiGe HBT自热分析
Pub Date : 2020-01-01 DOI: 10.21272/jnep.12(6).06001
A. Boulgheb, M. Lakhdara, N. Kherief, S. Latreche
The main purpose of this paper is to determine the impact of germanium percentage within the base of a SiGe heterojunction bipolar transistor (HBT) in order to analyze the effect of the device self-heating. We use the COMSOL Multiphysics commercial software. The model links the semiconductor module to the HTS (Heat Transfer in Solids) module. This allows to simulate the temperature distribution across the SiGe HBT device for germanium levels ranging from x  10 %, 20 % to x  30 %. We first determine the static gain () of the SiGe HBT by varying the percentages of germanium. In addition, we analyze the heat distribution on the component surface for the three considered levels of germanium in order to record the maximum temperature Tmax in the device. Indeed, for x  10 %, the maximum temperature is Tmax  377 K and is close to the base-collector junction. When the germanium fraction in the SiGe alloy is increased (x  20 %), the maximum temperature of self-heating decreases (Tmax  366 K), while for x  30 % the temperature of self-heating decreases more (Tmax  354 K) and it spreads over the entire component. This phenomenon degrades seriously the electrical performances of the HBT.
本文的主要目的是确定锗在SiGe异质结双极晶体管(HBT)基极内的百分比的影响,以分析器件自热的影响。我们使用COMSOL Multiphysics商业软件。该模型将半导体模块连接到HTS(固体传热)模块。这允许模拟锗水平范围从x10%,20%到x30%的SiGe HBT器件的温度分布。我们首先通过改变锗的百分比来确定SiGe HBT的静态增益()。此外,为了记录器件内的最高温度Tmax,我们分析了三种锗水平下元件表面的热分布。事实上,对于x10%,最高温度为Tmax377 K,接近基极-集电极结。当锗含量增加(x20%)时,SiGe合金的最高自热温度降低(Tmax366 K),而当x30%时,自热温度降低更多(Tmax354 K),并扩散到整个部件。这种现象严重降低了HBT的电性能。
{"title":"Analysis of Self-heating of a SiGe HBT Designed for RF Applications According to the Percentage of Germanium","authors":"A. Boulgheb, M. Lakhdara, N. Kherief, S. Latreche","doi":"10.21272/jnep.12(6).06001","DOIUrl":"https://doi.org/10.21272/jnep.12(6).06001","url":null,"abstract":"The main purpose of this paper is to determine the impact of germanium percentage within the base of a SiGe heterojunction bipolar transistor (HBT) in order to analyze the effect of the device self-heating. We use the COMSOL Multiphysics commercial software. The model links the semiconductor module to the HTS (Heat Transfer in Solids) module. This allows to simulate the temperature distribution across the SiGe HBT device for germanium levels ranging from x  10 %, 20 % to x  30 %. We first determine the static gain () of the SiGe HBT by varying the percentages of germanium. In addition, we analyze the heat distribution on the component surface for the three considered levels of germanium in order to record the maximum temperature Tmax in the device. Indeed, for x  10 %, the maximum temperature is Tmax  377 K and is close to the base-collector junction. When the germanium fraction in the SiGe alloy is increased (x  20 %), the maximum temperature of self-heating decreases (Tmax  366 K), while for x  30 % the temperature of self-heating decreases more (Tmax  354 K) and it spreads over the entire component. This phenomenon degrades seriously the electrical performances of the HBT.","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"25 1","pages":"06001-1-06001-5"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88738882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Application of Additional Leveling Drift Process to Improve the Electrophysical Parameters of Large Sized Si (Li) p-i-n Structures 应用附加流平漂移工艺改善大尺寸Si (Li) p-i-n结构的电物理参数
Pub Date : 2020-01-01 DOI: 10.21272/jnep.12(1).01006
R. Muminov, G. Ergashev, A. Saymbetov, Yo. K. Toshmurodov, S. Radzhapov, A. Mansurova, N. Japashov, Ye. A. Svanbayev
This paper describes the use of an additional inspection drift to improve the electro physical dimensions of a large-sized Si (Li) p-i-n structure.
本文介绍了使用额外的检测漂移来改善大尺寸Si (Li) p-i-n结构的电物理尺寸。
{"title":"Application of Additional Leveling Drift Process to Improve the Electrophysical Parameters of Large Sized Si (Li) p-i-n Structures","authors":"R. Muminov, G. Ergashev, A. Saymbetov, Yo. K. Toshmurodov, S. Radzhapov, A. Mansurova, N. Japashov, Ye. A. Svanbayev","doi":"10.21272/jnep.12(1).01006","DOIUrl":"https://doi.org/10.21272/jnep.12(1).01006","url":null,"abstract":"This paper describes the use of an additional inspection drift to improve the electro physical dimensions of a large-sized Si (Li) p-i-n structure.","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"26 1","pages":"01006-1-01006-5"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87116027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Nano- and Electronic Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1