Pub Date : 2022-11-04DOI: 10.1080/08327823.2022.2137748
Biao Yang, Hongbin Huang, Hongtao Ma, Lie-xing Zhou, Q. Du
Abstract In mathematical models of microwave heating with infinite-dimensional characteristics, it is difficult to use traditional numerical methods to improve computational efficiency. In this work, we propose a fast and accurate method to calculate the temperature distribution of materials under microwave heating. First, we analysed the relationship between the choice of model order and the solution accuracy by downscaling the infinite-dimensional heat conduction partial differential equation (PDE) model into a finite-dimensional ordinary differential equation (ODE) model. Additionally, the effect of different boundary conditions on the global temperature distribution was analysed. Second, the equilibrium conversion matrix was calculated using the singular value decomposition (SVD) truncation method under homogeneous boundary conditions. Using this matrix, a lower-dimensional microwave heating ODE model was further obtained. Finally, the numerical simulation results showed that the root mean square error (RMSE) was only 0.07 and the maximum relative error was only −0.85%. The computation time of the equilibrium conversion matrix was 2.12 ∼ 3.00 ms, and the model calculation time was reduced by 97.78%. We compared the calculated temperature rise curves with those obtained using the conventional COMSOL model. The SVD truncation method achieved an efficient and accurate solution for the microwave heating model.
{"title":"Calculation of microwave heating temperature distribution based on SVD truncation","authors":"Biao Yang, Hongbin Huang, Hongtao Ma, Lie-xing Zhou, Q. Du","doi":"10.1080/08327823.2022.2137748","DOIUrl":"https://doi.org/10.1080/08327823.2022.2137748","url":null,"abstract":"Abstract In mathematical models of microwave heating with infinite-dimensional characteristics, it is difficult to use traditional numerical methods to improve computational efficiency. In this work, we propose a fast and accurate method to calculate the temperature distribution of materials under microwave heating. First, we analysed the relationship between the choice of model order and the solution accuracy by downscaling the infinite-dimensional heat conduction partial differential equation (PDE) model into a finite-dimensional ordinary differential equation (ODE) model. Additionally, the effect of different boundary conditions on the global temperature distribution was analysed. Second, the equilibrium conversion matrix was calculated using the singular value decomposition (SVD) truncation method under homogeneous boundary conditions. Using this matrix, a lower-dimensional microwave heating ODE model was further obtained. Finally, the numerical simulation results showed that the root mean square error (RMSE) was only 0.07 and the maximum relative error was only −0.85%. The computation time of the equilibrium conversion matrix was 2.12 ∼ 3.00 ms, and the model calculation time was reduced by 97.78%. We compared the calculated temperature rise curves with those obtained using the conventional COMSOL model. The SVD truncation method achieved an efficient and accurate solution for the microwave heating model.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"6 8","pages":"238 - 258"},"PeriodicalIF":1.5,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72447450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-31DOI: 10.1080/08327823.2022.2141043
S. Turkin, Yuri Dikansky, A. Zakinyan
Abstract Experimental and theoretical studies of the interaction of microwave radiation with a frequency of 8.2 GHz with magnetodielectric emulsions under the influence of an external magnetic field causing deformation of the emulsion dispersed phase droplets have been carried out. The values of the external magnetic field strength are such that no ferromagnetic resonance is observed in the system at a given radiation frequency. The studies were carried out when a rectangular waveguide was partially filled with a sample cell in the form of a thin plate. It is established that the deformation of magnetic droplets of the emulsion significantly affects the absorption of electromagnetic energy. The value of the droplet concentration at which the maximum response of the system is observed is determined. The features of the phenomenon of nonreciprocal phase shift, which have no analogue in solid-state magnetic materials, are found. To interpret the results obtained, a model of an ensemble of non-interacting isotropic superparamagnetic particles was used.
{"title":"Drops deformation influence on the microwaves interaction with a magnetodielectric emulsion","authors":"S. Turkin, Yuri Dikansky, A. Zakinyan","doi":"10.1080/08327823.2022.2141043","DOIUrl":"https://doi.org/10.1080/08327823.2022.2141043","url":null,"abstract":"Abstract Experimental and theoretical studies of the interaction of microwave radiation with a frequency of 8.2 GHz with magnetodielectric emulsions under the influence of an external magnetic field causing deformation of the emulsion dispersed phase droplets have been carried out. The values of the external magnetic field strength are such that no ferromagnetic resonance is observed in the system at a given radiation frequency. The studies were carried out when a rectangular waveguide was partially filled with a sample cell in the form of a thin plate. It is established that the deformation of magnetic droplets of the emulsion significantly affects the absorption of electromagnetic energy. The value of the droplet concentration at which the maximum response of the system is observed is determined. The features of the phenomenon of nonreciprocal phase shift, which have no analogue in solid-state magnetic materials, are found. To interpret the results obtained, a model of an ensemble of non-interacting isotropic superparamagnetic particles was used.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"108 1","pages":"268 - 285"},"PeriodicalIF":1.5,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75675581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-02DOI: 10.1080/08327823.2022.2140748
J. Aguilar-Garib
The claim is that the prescription is issued with these data, overlooking that the symptoms and the treatment might be known from hard data and that often the physician orders clinical tests, which are pondered objectively. Curiosity is defined as a strong desire to know about something (Oxford Dictionary), or an interest leading to inquiry (Merriam-Webster Dictionary). [Extracted from the article]
{"title":"Editor’s message: pondering hard and soft data in research and knowledge generation","authors":"J. Aguilar-Garib","doi":"10.1080/08327823.2022.2140748","DOIUrl":"https://doi.org/10.1080/08327823.2022.2140748","url":null,"abstract":"The claim is that the prescription is issued with these data, overlooking that the symptoms and the treatment might be known from hard data and that often the physician orders clinical tests, which are pondered objectively. Curiosity is defined as a strong desire to know about something (Oxford Dictionary), or an interest leading to inquiry (Merriam-Webster Dictionary). [Extracted from the article]","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"58 1","pages":"217 - 218"},"PeriodicalIF":1.5,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80517929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-10DOI: 10.1080/08327823.2022.2106730
I. Pérez-Conesa, J. Fayos-Fernández, J. A. Aguilar Galea, J. Monzó-Cabrera, R. Pérez-Campos
Abstract The main problems of the traditional foundry dewaxing processes in fine arts workshops are the emission of gases, the loss of 80% of the wax, the high electrical consumption, and the high risks for the operators. The introduction of the microwave technology for dewaxing of ceramic shell molds allows to minimize some of these problems, although the use of electromagnetic susceptors that capture the radiated energy and transform it into heat is required. This article describes different microwave dewaxing tests using TiO2 and graphite as susceptors. The results obtained show that this technique is viable, allowing the casting process to be carried out with a low percentage of breakage problems in the mold and significantly reducing the emitted gases and electricity consumption. The technique allows to recover in the same operation around 90% of the wax used in small and medium format objects. The tests show that the selection of the material used as a susceptor, the area of application and the power regimes, are fundamental to enable a controlled, soft and non-aggressive dewaxing, both for the art molds and for the environment, as opposed to the traditional Flash Dewaxing technique. In this way, it is possible to change the foundry of ceramic shells for artworks to achieve high levels of performance and safety, and to save energy, time and materials.
{"title":"Evaluation of graphite and TiO2 as susceptors for microwave dewaxing in ceramic shell casting processes of artworks","authors":"I. Pérez-Conesa, J. Fayos-Fernández, J. A. Aguilar Galea, J. Monzó-Cabrera, R. Pérez-Campos","doi":"10.1080/08327823.2022.2106730","DOIUrl":"https://doi.org/10.1080/08327823.2022.2106730","url":null,"abstract":"Abstract The main problems of the traditional foundry dewaxing processes in fine arts workshops are the emission of gases, the loss of 80% of the wax, the high electrical consumption, and the high risks for the operators. The introduction of the microwave technology for dewaxing of ceramic shell molds allows to minimize some of these problems, although the use of electromagnetic susceptors that capture the radiated energy and transform it into heat is required. This article describes different microwave dewaxing tests using TiO2 and graphite as susceptors. The results obtained show that this technique is viable, allowing the casting process to be carried out with a low percentage of breakage problems in the mold and significantly reducing the emitted gases and electricity consumption. The technique allows to recover in the same operation around 90% of the wax used in small and medium format objects. The tests show that the selection of the material used as a susceptor, the area of application and the power regimes, are fundamental to enable a controlled, soft and non-aggressive dewaxing, both for the art molds and for the environment, as opposed to the traditional Flash Dewaxing technique. In this way, it is possible to change the foundry of ceramic shells for artworks to achieve high levels of performance and safety, and to save energy, time and materials.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"77 1","pages":"201 - 215"},"PeriodicalIF":1.5,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83922923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-08DOI: 10.1080/08327823.2022.2107869
Prem Pankaj, Prabhdeep Kaur, K. S. Mann
Abstract In present studies, dielectric properties of eggshell powder were determined at microwave frequencies 2.45 and 5.8 GHz by varying temperature and moisture content in the range 15–75 °C and 0.5–8% (wet-basis) respectively, using cavity perturbation technique. Values of dielectric constant (ε′) and loss factor (ε″) increase with temperature and moisture content at both of these frequencies but ε′ is higher at 2.45 GHz than 5.8 GHz whereas ε″ shows opposite trend. The calculated penetration depths of microwaves are more at 2.45 GHz than 5.8 GHz and it decreases with increase in temperature as well as moisture content. The determined data of ε′ and ε″ were used to generate the third order regression equations with high correlation coefficients (R 2 > 0.95). These findings are useful for modelling and designing the microwave applicator for heat treatment to eggshell powder. Additionally, X-ray diffraction spectra was also recorded.
{"title":"Dielectric properties of eggshell powder at 2.45 and 5.8 GHz relevant to dielectric heating","authors":"Prem Pankaj, Prabhdeep Kaur, K. S. Mann","doi":"10.1080/08327823.2022.2107869","DOIUrl":"https://doi.org/10.1080/08327823.2022.2107869","url":null,"abstract":"Abstract In present studies, dielectric properties of eggshell powder were determined at microwave frequencies 2.45 and 5.8 GHz by varying temperature and moisture content in the range 15–75 °C and 0.5–8% (wet-basis) respectively, using cavity perturbation technique. Values of dielectric constant (ε′) and loss factor (ε″) increase with temperature and moisture content at both of these frequencies but ε′ is higher at 2.45 GHz than 5.8 GHz whereas ε″ shows opposite trend. The calculated penetration depths of microwaves are more at 2.45 GHz than 5.8 GHz and it decreases with increase in temperature as well as moisture content. The determined data of ε′ and ε″ were used to generate the third order regression equations with high correlation coefficients (R 2 > 0.95). These findings are useful for modelling and designing the microwave applicator for heat treatment to eggshell powder. Additionally, X-ray diffraction spectra was also recorded.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"3 1","pages":"178 - 191"},"PeriodicalIF":1.5,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87201096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-05DOI: 10.1080/08327823.2022.2107572
V. D. Shivling, Amandeep Singh, Baban K. S. Bansod, Urvashi Nag, D. Meena
Abstract This study aims to analyze the patch antenna for moisture content measurement of made tea. The patch antenna-based system uses an air gap between the ground plane and an electrically conductive patch. The tea sample is contained in the air gap. The patch antenna design has a resonance frequency of 5 GHz. The resonance frequency and S11 parameters are measured for tea samples in the moisture range of 2–10%. The resonance frequency of the patch antenna was observed to decrease with an increase in the moisture content of tea. However, the return loss of patch antenna was observed to increase with an increase in the moisture content of made tea. Linear model parameters were calculated for the prediction of the moisture content of tea leaves.
{"title":"Feasibility study of patch antenna for monitoring moisture content of made tea","authors":"V. D. Shivling, Amandeep Singh, Baban K. S. Bansod, Urvashi Nag, D. Meena","doi":"10.1080/08327823.2022.2107572","DOIUrl":"https://doi.org/10.1080/08327823.2022.2107572","url":null,"abstract":"Abstract This study aims to analyze the patch antenna for moisture content measurement of made tea. The patch antenna-based system uses an air gap between the ground plane and an electrically conductive patch. The tea sample is contained in the air gap. The patch antenna design has a resonance frequency of 5 GHz. The resonance frequency and S11 parameters are measured for tea samples in the moisture range of 2–10%. The resonance frequency of the patch antenna was observed to decrease with an increase in the moisture content of tea. However, the return loss of patch antenna was observed to increase with an increase in the moisture content of made tea. Linear model parameters were calculated for the prediction of the moisture content of tea leaves.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"12 1","pages":"192 - 200"},"PeriodicalIF":1.5,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90202625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-22DOI: 10.1080/08327823.2022.2103630
Prachi Palta, Prabhdeep Kaur, K. S. Mann
Abstract Dielectric behavior of soil has utmost applications in microwave remote sensing and soil treatment. In the present study, the soil's dielectric properties (Ɛ' and Ɛ") were measured using the vector network analyzer and an open-ended coaxial probe (85070E, Agilent Technologies) in the region of 0.2 to 14 GHz. The observed results showed that Ɛ' and Ɛ" strongly depend on frequency, texture, moisture content and temperature. A deep neural network (DNN) based multivariable regression model has been developed to model their behavior, using experimentally observed data to learn its parameters automatically. It shows a five-fold cross-validation root mean square errors (RMSE) of 0.0258 and 0.0336, and R2-scores of 1.0000 and 0.9998, between actual recorded and predicted values of Ɛ' and Ɛ", respectively. The results of the proposed DNN-based model have been compared with the response surface method (RSM) based model; among these, the DNN-based model shows significantly better results. Further, the DNN-based estimates of Ɛ' and Ɛ" for loam texture at a moisture content of 18% (i.e. in between observed experiments of 15% and 20%) are made and plotted with actual observed values at 15% and 20% to verify the predictive ability of the proposed DNN-based model. It shows an acceptable estimate of dielectric properties and the effectiveness of the fast and innovative DNN-based approach for predicting soil's dielectric properties depending upon multiple factors.
{"title":"Dielectric behavior of soil as a function of frequency, temperature, moisture content and soil texture: a deep neural networks based regression model","authors":"Prachi Palta, Prabhdeep Kaur, K. S. Mann","doi":"10.1080/08327823.2022.2103630","DOIUrl":"https://doi.org/10.1080/08327823.2022.2103630","url":null,"abstract":"Abstract Dielectric behavior of soil has utmost applications in microwave remote sensing and soil treatment. In the present study, the soil's dielectric properties (Ɛ' and Ɛ\") were measured using the vector network analyzer and an open-ended coaxial probe (85070E, Agilent Technologies) in the region of 0.2 to 14 GHz. The observed results showed that Ɛ' and Ɛ\" strongly depend on frequency, texture, moisture content and temperature. A deep neural network (DNN) based multivariable regression model has been developed to model their behavior, using experimentally observed data to learn its parameters automatically. It shows a five-fold cross-validation root mean square errors (RMSE) of 0.0258 and 0.0336, and R2-scores of 1.0000 and 0.9998, between actual recorded and predicted values of Ɛ' and Ɛ\", respectively. The results of the proposed DNN-based model have been compared with the response surface method (RSM) based model; among these, the DNN-based model shows significantly better results. Further, the DNN-based estimates of Ɛ' and Ɛ\" for loam texture at a moisture content of 18% (i.e. in between observed experiments of 15% and 20%) are made and plotted with actual observed values at 15% and 20% to verify the predictive ability of the proposed DNN-based model. It shows an acceptable estimate of dielectric properties and the effectiveness of the fast and innovative DNN-based approach for predicting soil's dielectric properties depending upon multiple factors.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"25 1","pages":"145 - 167"},"PeriodicalIF":1.5,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75022366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-22DOI: 10.1080/08327823.2022.2103628
M. Ozturk
Abstract In this study, a self-sensing smart structure was developed with a novel approach. Electromagnetic wave based self-sensing structure designed by sending waves to the reinforced concrete structure through the reinforcement by using a coaxial cable. EM measurements were based on estimating the reflected EM waves through the reinforced concrete. Correlations between reflected EM wave, damage in reinforced concrete and strength development in concrete was estimated. According to test results, it was seen that with increasing crack width of reinforced concrete by applying monotonic load, reflection of EM wave through the reinforced concrete decreased. It was also seen that with strength development of the concrete, reflection of EM through the reinforced concrete increased. In the light of the findings of this study it can be said that, damage assessment and monitoring strength development of the reinforced concrete is possible in real time with applying the proposed novel technique.
{"title":"Self-sensing reinforced concrete for damage assessment and real time strength development in smart structures","authors":"M. Ozturk","doi":"10.1080/08327823.2022.2103628","DOIUrl":"https://doi.org/10.1080/08327823.2022.2103628","url":null,"abstract":"Abstract In this study, a self-sensing smart structure was developed with a novel approach. Electromagnetic wave based self-sensing structure designed by sending waves to the reinforced concrete structure through the reinforcement by using a coaxial cable. EM measurements were based on estimating the reflected EM waves through the reinforced concrete. Correlations between reflected EM wave, damage in reinforced concrete and strength development in concrete was estimated. According to test results, it was seen that with increasing crack width of reinforced concrete by applying monotonic load, reflection of EM wave through the reinforced concrete decreased. It was also seen that with strength development of the concrete, reflection of EM through the reinforced concrete increased. In the light of the findings of this study it can be said that, damage assessment and monitoring strength development of the reinforced concrete is possible in real time with applying the proposed novel technique.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"37 1","pages":"168 - 177"},"PeriodicalIF":1.5,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78610515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-03DOI: 10.1080/08327823.2022.2106070
J. Aguilar-Garib
{"title":"Editor's message: highlighting the importance of transcendent conferences","authors":"J. Aguilar-Garib","doi":"10.1080/08327823.2022.2106070","DOIUrl":"https://doi.org/10.1080/08327823.2022.2106070","url":null,"abstract":"","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"15 1","pages":"143 - 144"},"PeriodicalIF":1.5,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72523703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-03DOI: 10.1080/08327823.2022.2066771
Qianyi Chen, Damla Dag, F. Kong, Ran Yang, Jiajia Chen
Abstract Non-uniform heating is a significant challenge in radiofrequency (RF) heating of low moisture foods. Previous experiments showed that the immersion of fluids (air, deionized water, and soybean oil) changed the RF heating uniformity and rate of cornflour. However, the behind mechanism is not well understood. This study developed a finite-element-based model that incorporated quasi-static electromagnetics and Fourier’s heat transfer to understand the effect of the three immersion fluids on the RF heating performance of cornflour. The model was validated and showed good agreement with experimental thermal images. The simulation results showed that the immersion of soybean oil increased the average heating rate and improved the heating uniformity compared to immersions of air and deionized water. Less distortion of electric potential reduced the fringe effect of edge heating and thus improved the heating uniformity. The higher heating rate was attributed to more dissipated power within the cornflour sample and less surface heat loss from cornflour to the surrounding fluid than the immersion of air or water. The use of soybean oil as immersion fluid could be a promising strategy to be implemented with RF technology to improve heating performance of low moisture food products.
{"title":"Modeling the effect of immersion fluids on the radiofrequency heating performance of cornflour","authors":"Qianyi Chen, Damla Dag, F. Kong, Ran Yang, Jiajia Chen","doi":"10.1080/08327823.2022.2066771","DOIUrl":"https://doi.org/10.1080/08327823.2022.2066771","url":null,"abstract":"Abstract Non-uniform heating is a significant challenge in radiofrequency (RF) heating of low moisture foods. Previous experiments showed that the immersion of fluids (air, deionized water, and soybean oil) changed the RF heating uniformity and rate of cornflour. However, the behind mechanism is not well understood. This study developed a finite-element-based model that incorporated quasi-static electromagnetics and Fourier’s heat transfer to understand the effect of the three immersion fluids on the RF heating performance of cornflour. The model was validated and showed good agreement with experimental thermal images. The simulation results showed that the immersion of soybean oil increased the average heating rate and improved the heating uniformity compared to immersions of air and deionized water. Less distortion of electric potential reduced the fringe effect of edge heating and thus improved the heating uniformity. The higher heating rate was attributed to more dissipated power within the cornflour sample and less surface heat loss from cornflour to the surrounding fluid than the immersion of air or water. The use of soybean oil as immersion fluid could be a promising strategy to be implemented with RF technology to improve heating performance of low moisture food products.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"61 1","pages":"103 - 123"},"PeriodicalIF":1.5,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85639029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}