Composite materials is increasingly experiencing an increa- sing trend, the manufacture of composites currently uses a lot of natural fiber reinforcement, Oil Palm Empty Fruit Bunches (OPEFB) fiber is a fiber that comes from oil palm empty fruit bunches waste that grows a lot in Indonesia and has the potential to be used as reinforcement in the manufacture of composites. With natural fiber reinforcement. The manufacture of composites in this study varied the fiber volume fraction by 5%, 15%, and 25%. Many previous studies on composite materials have focused on studying the physical and mechanical properties of composites. Even though damage to a structure or material is not only caused by static loads but also by dynamic loads. Vibration is a dynamic load experienced by material or structure, so it is necessary to determine the dynamic character of composite materials, one of the dynamic characteristics of materials is their natural frequency, the determination of the natural frequency in this study was carried out by using the finite element method in the ANSYS software. The results of the analysis in the form of tensile strength values and modulus of elasticity were obtained from tensile testing and dynamic characters in the form of natural frequencies and vibration modes were obtained from the analysis modal simulation process. From the results of the tensile test, it was found that the composite with a variation of 15% OPEFB fiber volume had the highest tensile strength and modulus of elasticity, as well as the results of the analysis modal simulation, a composite with 15% OPPEFB fiber, had the highest natural frequency value among the other two variations.
{"title":"Investigation of mechanical properties and dynamic characteristics of OPEFB Fiber Composite","authors":"Misran Misran, Zuhaimi Zuhaimi, Nurlaili Nurlaili, Darmein Darmein, Zaini Zaini, Amir D, Hanif Hanif","doi":"10.30811/jpl.v21i4.4247","DOIUrl":"https://doi.org/10.30811/jpl.v21i4.4247","url":null,"abstract":"Composite materials is increasingly experiencing an increa- sing trend, the manufacture of composites currently uses a lot of natural fiber reinforcement, Oil Palm Empty Fruit Bunches (OPEFB) fiber is a fiber that comes from oil palm empty fruit bunches waste that grows a lot in Indonesia and has the potential to be used as reinforcement in the manufacture of composites. With natural fiber reinforcement. The manufacture of composites in this study varied the fiber volume fraction by 5%, 15%, and 25%. Many previous studies on composite materials have focused on studying the physical and mechanical properties of composites. Even though damage to a structure or material is not only caused by static loads but also by dynamic loads. Vibration is a dynamic load experienced by material or structure, so it is necessary to determine the dynamic character of composite materials, one of the dynamic characteristics of materials is their natural frequency, the determination of the natural frequency in this study was carried out by using the finite element method in the ANSYS software. The results of the analysis in the form of tensile strength values and modulus of elasticity were obtained from tensile testing and dynamic characters in the form of natural frequencies and vibration modes were obtained from the analysis modal simulation process. From the results of the tensile test, it was found that the composite with a variation of 15% OPEFB fiber volume had the highest tensile strength and modulus of elasticity, as well as the results of the analysis modal simulation, a composite with 15% OPPEFB fiber, had the highest natural frequency value among the other two variations.","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134930904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Utilization of renewable energy in Aceh is still limited mainly to small-scale electricity through micro-hydro and solar power plants, accounting for less than 1% of the energy composition. Sabang stands out as a region with significant wind energy potential, boasting a speed of 8 m/s and an average power density of 537 W/m2 for the windiest 10% of the region. Therefore, to explore the viability of harnessing wind energy, a pre-feasibility study is needed. This study aimed to assess the techno-economic feasibility of constructing a wind power plant for electricity generation in Sabang by evaluating the region's wind energy. The statistical method of the Weibull Distribution probability density function was employed to evaluate Wind Power Density (WPD), Wind Turbine Capacity Factor, and Energy Output. Additionally, economic feasibility analysis involved calculating Net Present Value (NPV), Benefit Cost Ratio (BCR), Internal Rate of Return (IRR), Discounted Payback Period (DPP), and Levelized Cost of Energy (LCOE). The results showed that Sabang exhibited favorable[UMN1] wind characteristics with a shape parameter (k) of 1.6, average wind speed (Vm) of 7.9 m/s, and scale parameter (c) of 9 m/s. These features classified Sabang as wind power class 6 with a WPD of 735 watts/m2 at a height of 50 m, and the results were categorized as excellent. The study concluded that constructing a wind power plant in Sabang using the Enercon E-70 turbine at a hub height of 100m was technically feasible. The shape parameter (k) was 1.6, the average wind speed (Vm) was 9.3 m/s, scale parameter (c) was 11 m, and the WPD reached 1213 W/m2, leading to a turbine capacity factor of 0.53 and an annual energy production (AEP) of 64,876,560 kW. The economic analysis yielded promising results for wind power projects. The DPP value was estimated at 5.6 years, the BCR at 1.96, the NPV amounted to USD 14,434,994, the IRR reached 17.9%, and the LCOE was assessed at USD 32.50/MWh. Considering all these economic indicators, it was evident that constructing a wind power plant in Sabang was highly feasible and financially viable
亚齐省对可再生能源的利用仍然主要局限于通过微型水力发电厂和太阳能发电厂提供的小规模电力,占能源构成的比例不到1%。沙邦作为一个拥有巨大风能潜力的地区脱颖而出,拥有8米/秒的速度和537瓦/平方米的平均功率密度,为该地区风力最大的10%。因此,为了探索利用风能的可行性,需要进行预可行性研究。本研究旨在通过评估沙邦地区的风能,评估在沙邦建造风力发电厂发电的技术经济可行性。采用威布尔分布概率密度函数的统计方法,对风电功率密度(WPD)、风电机组容量系数(WPD)和发电量进行评估。此外,经济可行性分析包括计算净现值(NPV)、效益成本比(BCR)、内部收益率(IRR)、贴现回收期(DPP)和平准化能源成本(LCOE)。结果表明,沙邦具有良好的[UMN1]风特征,形状参数(k)为1.6,平均风速(Vm)为7.9 m/s,尺度参数(c)为9 m/s。这些特征将沙邦划分为6级风力发电,在50米高度的WPD为735瓦/平方米,结果被归类为优秀。该研究得出的结论是,在沙邦建造一座风力发电厂,使用Enercon E-70涡轮机,轮毂高度为100米,在技术上是可行的。形状参数(k)为1.6,平均风速(Vm)为9.3 m/s,尺度参数(c)为11 m, WPD达到1213 W/m2,风机容量系数为0.53,年发电量(AEP)为64,876,560 kW。经济分析为风力发电项目带来了令人鼓舞的结果。DPP值为5.6年,BCR为1.96,净现值为14,434,994美元,内部收益率为17.9%,LCOE为32.50美元/兆瓦时。考虑到所有这些经济指标,很明显,在沙邦建造一个风力发电厂是非常可行的,在财政上也是可行的
{"title":"Techno-economic assessment of wind power generation feasibility in Sabang","authors":"Zulfaini Zulfaini, Adi Setiawan, Muhammad Daud","doi":"10.30811/jpl.v21i4.3664","DOIUrl":"https://doi.org/10.30811/jpl.v21i4.3664","url":null,"abstract":"Utilization of renewable energy in Aceh is still limited mainly to small-scale electricity through micro-hydro and solar power plants, accounting for less than 1% of the energy composition. Sabang stands out as a region with significant wind energy potential, boasting a speed of 8 m/s and an average power density of 537 W/m2 for the windiest 10% of the region. Therefore, to explore the viability of harnessing wind energy, a pre-feasibility study is needed. This study aimed to assess the techno-economic feasibility of constructing a wind power plant for electricity generation in Sabang by evaluating the region's wind energy. The statistical method of the Weibull Distribution probability density function was employed to evaluate Wind Power Density (WPD), Wind Turbine Capacity Factor, and Energy Output. Additionally, economic feasibility analysis involved calculating Net Present Value (NPV), Benefit Cost Ratio (BCR), Internal Rate of Return (IRR), Discounted Payback Period (DPP), and Levelized Cost of Energy (LCOE). The results showed that Sabang exhibited favorable[UMN1] wind characteristics with a shape parameter (k) of 1.6, average wind speed (Vm) of 7.9 m/s, and scale parameter (c) of 9 m/s. These features classified Sabang as wind power class 6 with a WPD of 735 watts/m2 at a height of 50 m, and the results were categorized as excellent. The study concluded that constructing a wind power plant in Sabang using the Enercon E-70 turbine at a hub height of 100m was technically feasible. The shape parameter (k) was 1.6, the average wind speed (Vm) was 9.3 m/s, scale parameter (c) was 11 m, and the WPD reached 1213 W/m2, leading to a turbine capacity factor of 0.53 and an annual energy production (AEP) of 64,876,560 kW. The economic analysis yielded promising results for wind power projects. The DPP value was estimated at 5.6 years, the BCR at 1.96, the NPV amounted to USD 14,434,994, the IRR reached 17.9%, and the LCOE was assessed at USD 32.50/MWh. Considering all these economic indicators, it was evident that constructing a wind power plant in Sabang was highly feasible and financially viable","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"151 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134931224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Friction Stir Welding (FSW) is an efficient and effective welding method with good-quality welds. Aluminum Alloy (AA) has been widely used for various automotive needs, including in vehicle manufacturing. AA series 5XXX is a type of material used for vehicle manufacturing because it has good strength properties even after the joining process. A similar butt joint using the FSW method was carried out on material AA 5052 and AA 5083. The results of the welding were then given radiographic testing to determine the general condition of the welds. The impact test was carried out according to the procedures standard of ASTM on the welding results to analyze the energy absorption and toughness properties of welds by getting the impact value of the welded joint, and then looking for the quantity ratio to the impact value of the base material. After that, the results and discussion were obtained that the welded areas showed different impact strength and absorbed energy value, which is compared to the base material the range is below with a decrease in value of between 34% and 68% of the initial toughness strength of the parent material. The reduction in toughness strength can be attributed to the influence of mechanical properties during the welding process. Nevertheless, the welds demonstrated good quality and integrity, highlighting FSW's efficacy in joining aluminum alloys. This research significantly contributes to comprehending the energy absorption and toughness analysis of FSW butt joints in aluminum alloys, crucial for vehicle body technology applications.
{"title":"Energy absorption and toughness analysis on FSW butt joint of AA 5052 and AA 5083","authors":"Rahadian Nopriantoko","doi":"10.30811/jpl.v21i4.4107","DOIUrl":"https://doi.org/10.30811/jpl.v21i4.4107","url":null,"abstract":"Friction Stir Welding (FSW) is an efficient and effective welding method with good-quality welds. Aluminum Alloy (AA) has been widely used for various automotive needs, including in vehicle manufacturing. AA series 5XXX is a type of material used for vehicle manufacturing because it has good strength properties even after the joining process. A similar butt joint using the FSW method was carried out on material AA 5052 and AA 5083. The results of the welding were then given radiographic testing to determine the general condition of the welds. The impact test was carried out according to the procedures standard of ASTM on the welding results to analyze the energy absorption and toughness properties of welds by getting the impact value of the welded joint, and then looking for the quantity ratio to the impact value of the base material. After that, the results and discussion were obtained that the welded areas showed different impact strength and absorbed energy value, which is compared to the base material the range is below with a decrease in value of between 34% and 68% of the initial toughness strength of the parent material. The reduction in toughness strength can be attributed to the influence of mechanical properties during the welding process. Nevertheless, the welds demonstrated good quality and integrity, highlighting FSW's efficacy in joining aluminum alloys. This research significantly contributes to comprehending the energy absorption and toughness analysis of FSW butt joints in aluminum alloys, crucial for vehicle body technology applications.","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134931593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper discusses the process of optimizing the truss structure step by step from 2D to 3D space using finite element analysis. This step-by-step optimization process is carried out to simplify the analysis of truss structures from simple to more complex cases. Optimization aims to obtain the minimum cross-sectional area and weight for each truss member. The stages of the optimization process carried out in this study are starting from a 2-dimensional (2D) truss structure with several two and five members to a 3-dimensional (3D) one-level tower with a total of 18 members. The optimum criterion as the constraint used is the full stress design method and the value of the cross-sectional area and weight of the structure as a result of optimization, leading to convergence during the iteration process. The tool used to run the iteration process is performed using Fortran software. The results of this optimization process are the total cross-sectional area (A) and a minimum of weight (W), that is, for a two-member truss A = 1 in2 and W = 4 lb, for a five-member truss A = 3.48 in2 and W = 14 lb. Furthermore, for a one-level of tower-space truss with a total of 18 elements, A = 57.91 in2 is obtained and the optimum weight of the truss structure is W = 134.02 lb. From these results, it can be seen that the optimization process that starts from simple to complex cases can be carried out easily and still takes into account the existing constraints
{"title":"Optimization process of the truss structure using Finite Element Analysis: Step by step from 2D to 3D space","authors":"Arhami Arhami, Iskandar Hasanuddin, Masri Masri","doi":"10.30811/jpl.v21i4.3933","DOIUrl":"https://doi.org/10.30811/jpl.v21i4.3933","url":null,"abstract":"This paper discusses the process of optimizing the truss structure step by step from 2D to 3D space using finite element analysis. This step-by-step optimization process is carried out to simplify the analysis of truss structures from simple to more complex cases. Optimization aims to obtain the minimum cross-sectional area and weight for each truss member. The stages of the optimization process carried out in this study are starting from a 2-dimensional (2D) truss structure with several two and five members to a 3-dimensional (3D) one-level tower with a total of 18 members. The optimum criterion as the constraint used is the full stress design method and the value of the cross-sectional area and weight of the structure as a result of optimization, leading to convergence during the iteration process. The tool used to run the iteration process is performed using Fortran software. The results of this optimization process are the total cross-sectional area (A) and a minimum of weight (W), that is, for a two-member truss A = 1 in2 and W = 4 lb, for a five-member truss A = 3.48 in2 and W = 14 lb. Furthermore, for a one-level of tower-space truss with a total of 18 elements, A = 57.91 in2 is obtained and the optimum weight of the truss structure is W = 134.02 lb. From these results, it can be seen that the optimization process that starts from simple to complex cases can be carried out easily and still takes into account the existing constraints","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134931594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alternative products for water ice cubes have long been sought due to the spread of waterborne diseases and microplastic contamination, as they are often made from unhygienic water sources. Recently, stainless-steel ice cubes have been considered as one of the best alternatives, and they have been very popular in marketplaces, although very few studies found in the literature that have investigated their potential in replacing water ice cubes. In this study, the thermal performance of stainless-steel ice cubes will be explored experimentally using a combination of an Arduino microcontroller equipped with DS18B20 thermocouple sensors and a HIKMICRO B20 thermal camera with the aim to find out how good stainless steel ice cubes for cooling food and beverages. The time evolution of water temperature in glasses filled with stainless-steel cubes of various brands is compared with that of water ice cubes. The temperature field obtained from thermal images is used to further observe the overall temperature of water in the glass. Leeseph stainless-steel ice cubes are found to have thermal performance comparable to water ice cubes, while SSGP ice cubes can retain lower temperatures for a longer time compared with other ice cubes. The effect of the number of ice cubes (N), the volume of water (V), and the average diameter of the glass used (D) are also investigated. At 1 ≤ N ≤ 4, the larger number of ice cubes used are found to lower the minimum temperature, and to decrease the minimum time, while at 150 ml ≤ V ≤ 300 ml, the larger amount of water used are observed to increase the minimum temperature and to increase the minimum time, . At 53 mm ≤ D ≤ 66 mm, larger glass diameter used are found to increase both the minimum temperature, and the minimum time
{"title":"Thermal analysis and thermography observation of stainless-steel ice cubes","authors":"Luthfi Luthfi, Azhar Azhar, Zuhaimi Zuhaimi, Syamsuar Syamsuar, Sumardi Sumardi","doi":"10.30811/jpl.v21i4.3985","DOIUrl":"https://doi.org/10.30811/jpl.v21i4.3985","url":null,"abstract":"Alternative products for water ice cubes have long been sought due to the spread of waterborne diseases and microplastic contamination, as they are often made from unhygienic water sources. Recently, stainless-steel ice cubes have been considered as one of the best alternatives, and they have been very popular in marketplaces, although very few studies found in the literature that have investigated their potential in replacing water ice cubes. In this study, the thermal performance of stainless-steel ice cubes will be explored experimentally using a combination of an Arduino microcontroller equipped with DS18B20 thermocouple sensors and a HIKMICRO B20 thermal camera with the aim to find out how good stainless steel ice cubes for cooling food and beverages. The time evolution of water temperature in glasses filled with stainless-steel cubes of various brands is compared with that of water ice cubes. The temperature field obtained from thermal images is used to further observe the overall temperature of water in the glass. Leeseph stainless-steel ice cubes are found to have thermal performance comparable to water ice cubes, while SSGP ice cubes can retain lower temperatures for a longer time compared with other ice cubes. The effect of the number of ice cubes (N), the volume of water (V), and the average diameter of the glass used (D) are also investigated. At 1 ≤ N ≤ 4, the larger number of ice cubes used are found to lower the minimum temperature, and to decrease the minimum time, while at 150 ml ≤ V ≤ 300 ml, the larger amount of water used are observed to increase the minimum temperature and to increase the minimum time, . At 53 mm ≤ D ≤ 66 mm, larger glass diameter used are found to increase both the minimum temperature, and the minimum time","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"151 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134931048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface quality is an important variable of a milling machining process. Therefore, choosing the best machining parameters is very important to arrange so that the best surface quality can be obtained. The purpose of this research is to optimize machining parameters by using surface roughness as a performance indicator variable. This research was carried out by making 9 surface roughness test specimens through a facing process on a TU-3A CNC milling machine. Each test specimen is made with a different level of machining parameters. Machining parameters used in this research are spindle speed, feed rate, and depth of cut. Surface roughness values obtained from 9 test specimens were analyzed using the Taguchi method, signal-to- noise ratio, and ANOVA. The Taguchi approach is also used to predict the best machining parameter configurations. The results of the signal-to-noise ratio analysis show that the surface quality is affected by spindle speed, depth of cut and feed rate, respectively. The results of measurements on 9 test specimens showed the best roughness values were 0.275µm. While the results of the Taguchi analysis show that the optimal surface roughness value can be obtained at 0.267µm for machining conditions with the parameters spindle speed 1100 rpm, feed rate 85 mm/min and depth of cut 0.25 mm. Furthermore, analysis of variance (ANOVA) yielded contribution values from spindle speed, feed rate and depth of cut to the surface roughness values of 51.80%, 36.88% and 10.72%, respectively
{"title":"Optimization of CNC machining parameters to improve surface roughness quality of the AL6061 material using the Taguchi method","authors":"Bukhari Kasim, Azwar Yunus, Ilyas Yusuf, Mawardi Mawardi, Darmein Darmein","doi":"10.30811/jpl.v21i4.4039","DOIUrl":"https://doi.org/10.30811/jpl.v21i4.4039","url":null,"abstract":"Surface quality is an important variable of a milling machining process. Therefore, choosing the best machining parameters is very important to arrange so that the best surface quality can be obtained. The purpose of this research is to optimize machining parameters by using surface roughness as a performance indicator variable. This research was carried out by making 9 surface roughness test specimens through a facing process on a TU-3A CNC milling machine. Each test specimen is made with a different level of machining parameters. Machining parameters used in this research are spindle speed, feed rate, and depth of cut. Surface roughness values obtained from 9 test specimens were analyzed using the Taguchi method, signal-to- noise ratio, and ANOVA. The Taguchi approach is also used to predict the best machining parameter configurations. The results of the signal-to-noise ratio analysis show that the surface quality is affected by spindle speed, depth of cut and feed rate, respectively. The results of measurements on 9 test specimens showed the best roughness values were 0.275µm. While the results of the Taguchi analysis show that the optimal surface roughness value can be obtained at 0.267µm for machining conditions with the parameters spindle speed 1100 rpm, feed rate 85 mm/min and depth of cut 0.25 mm. Furthermore, analysis of variance (ANOVA) yielded contribution values from spindle speed, feed rate and depth of cut to the surface roughness values of 51.80%, 36.88% and 10.72%, respectively","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134931053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In industry, an inverter is a tool/component for adjusting the speed of an electric motor. By using an inverter for electric motor purposes, it becomes a variable speed, whereas the speed can be changed or adjusted as needed. The method used in this study is an experimental research method, namely designing and measuring the system under study. Measurements are made for non-electrical quantities, namely the inverter of the solar module which is generated by the intensity of sunlight hitting the surface of the solar cell. Measurements are also made for electrical parameters such as current, voltage, power factor, and power. Based on the data obtained from all the tests that have been carried out, the system output voltage cannot reach the expected 220 Volts. Because changes in load affect the output voltage of the system were occurred, as the load of 60 W/220V is added, the output voltage drops to 740.5 Volts. As the load is reduced by 60W/220 V, the output voltage increases by 786.9 Volts, within the average inverter efficiency of 77%.
{"title":"Implementation of 3000-watt inverter as a source of electrical energy in solar power plants","authors":"Partaonan Harahap, Noorly Evalina, Faisal Irsan Pasaribu, Rimbawati Rimbawati, Benny Oktrialdi, Rahmatullah Rahmatullah, Munawar Alfansury Siregar","doi":"10.30811/jpl.v21i4.3626","DOIUrl":"https://doi.org/10.30811/jpl.v21i4.3626","url":null,"abstract":"In industry, an inverter is a tool/component for adjusting the speed of an electric motor. By using an inverter for electric motor purposes, it becomes a variable speed, whereas the speed can be changed or adjusted as needed. The method used in this study is an experimental research method, namely designing and measuring the system under study. Measurements are made for non-electrical quantities, namely the inverter of the solar module which is generated by the intensity of sunlight hitting the surface of the solar cell. Measurements are also made for electrical parameters such as current, voltage, power factor, and power. Based on the data obtained from all the tests that have been carried out, the system output voltage cannot reach the expected 220 Volts. Because changes in load affect the output voltage of the system were occurred, as the load of 60 W/220V is added, the output voltage drops to 740.5 Volts. As the load is reduced by 60W/220 V, the output voltage increases by 786.9 Volts, within the average inverter efficiency of 77%.","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134931601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annisa Bhikuning Bhikuning, Budi Setiawan, Muhammad Hafnan
For numerous decades, diesel fuel has served as the primary source of energy for diesel engines. For optimal performance, these engines are designed to withstand a high flammability threshold. Diesel fuel is therefore the preferable option for refueling military combat vehicles, particularly battle tanks. Concerns have been expressed regarding the use of diesel fuel due to its potential contribution to environmental pollution; emissions from combustion include NO2, NO, CO, SO2, and particulate matter. To reduce these emissions, diesel fuel must be blended with another substance. To reduce emissions, ethanol incorporation is a potential solution. A previous study demonstrated that combining fuels with high and low boiling points can enhance performance. Mixing ethanol, which has a low boiling point, with biodiesel/diesel fuel and fuel with a high boiling point can produce a superior fuel. Analyzing the characteristics of the fuels produced by merging ethanol with diesel fuel and biodiesel is crucial. This analysis aids in the comprehension of the fuel's physical properties prior to its use in a diesel engine. In this investigation, Indonesian diesel fuel and biodiesel standards are blended with ethanol at 10%, 25%, and 35% (volume) blending ratios. In addition to utilizing FTIR (Fourier Transform Infrared Spectroscopy) for analysis, the objective of this study is to determine the combustion properties of a blend of biodiesel, diesel fuel, and ethanol. Using the American Society of Testing Materials (ASTM) D method, fuel properties such as density, viscosity, cetane index, and distillations are analyzed. The results indicate that increasing the proportion of ethanol in diesel fuel and biodiesel reduces viscosity and density. By integrating ethanol, which has a lower density and viscosity than diesel fuel and biodiesel alone, the fuel properties can be improved. A perfect blend of ethanol, diesel fuel, and biodiesel can increase the quality of fuel, thereby enhancing diesel engine combustion.
{"title":"Study of Properties and Structural Functional Group of Blending Low and High Boiling Point Fuel: The Case of Ethanol with Fuel","authors":"Annisa Bhikuning Bhikuning, Budi Setiawan, Muhammad Hafnan","doi":"10.30811/jpl.v21i3.2982","DOIUrl":"https://doi.org/10.30811/jpl.v21i3.2982","url":null,"abstract":"For numerous decades, diesel fuel has served as the primary source of energy for diesel engines. For optimal performance, these engines are designed to withstand a high flammability threshold. Diesel fuel is therefore the preferable option for refueling military combat vehicles, particularly battle tanks. Concerns have been expressed regarding the use of diesel fuel due to its potential contribution to environmental pollution; emissions from combustion include NO2, NO, CO, SO2, and particulate matter. To reduce these emissions, diesel fuel must be blended with another substance. To reduce emissions, ethanol incorporation is a potential solution. A previous study demonstrated that combining fuels with high and low boiling points can enhance performance. Mixing ethanol, which has a low boiling point, with biodiesel/diesel fuel and fuel with a high boiling point can produce a superior fuel. Analyzing the characteristics of the fuels produced by merging ethanol with diesel fuel and biodiesel is crucial. This analysis aids in the comprehension of the fuel's physical properties prior to its use in a diesel engine. In this investigation, Indonesian diesel fuel and biodiesel standards are blended with ethanol at 10%, 25%, and 35% (volume) blending ratios. In addition to utilizing FTIR (Fourier Transform Infrared Spectroscopy) for analysis, the objective of this study is to determine the combustion properties of a blend of biodiesel, diesel fuel, and ethanol. Using the American Society of Testing Materials (ASTM) D method, fuel properties such as density, viscosity, cetane index, and distillations are analyzed. The results indicate that increasing the proportion of ethanol in diesel fuel and biodiesel reduces viscosity and density. By integrating ethanol, which has a lower density and viscosity than diesel fuel and biodiesel alone, the fuel properties can be improved. A perfect blend of ethanol, diesel fuel, and biodiesel can increase the quality of fuel, thereby enhancing diesel engine combustion.","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136370542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhamad Jafri, Ben Vasco Tarigan, Hairman Sahrudin Lanae
The increasing demand for clean water and the diminishing supply of clean water sources can result in a clean water crisis. Air is a ubiquitous, inexpensive, and clean water source. Using Atmospheric Water Generators (AWG), the water contained in the air can be extracted. This study's objective was to determine the effect of inlet air temperature and air heater power variations on tool performance and PAWG condensate water production at a condenser angle of 75 degrees. The procedure utilized is experimental on three PAWG boxes. Each box has a distinct temperature at its entrance. The variation of inlet air temperature is accomplished by heating the air before it enters the box with an air heater; the applied power variations are 0.484 Watt, 0.964 Watt, and 1.702 Watt. The results demonstrated that variations in air heater power and inlet air temperature affected system performance and condensate water production. Maximum water discharge and PAWG performance were achieved when the air heating power was 0.48 watts and the water discharge was 1.166 milli liters per hour. At 0.0084 ml/h/W, the PSys system performance had the highest value. The variable air heating power of 0.946 Watt represents the utmost COP value of PAWG. This power variable has a high temperature difference and influences the COP value at high levels.
{"title":"Analysis of intake air temperature effect on performance of portable atmospheric water generation (PAWG) systems with heat sink angle orientation of 75o","authors":"Muhamad Jafri, Ben Vasco Tarigan, Hairman Sahrudin Lanae","doi":"10.30811/jpl.v21i3.3364","DOIUrl":"https://doi.org/10.30811/jpl.v21i3.3364","url":null,"abstract":"The increasing demand for clean water and the diminishing supply of clean water sources can result in a clean water crisis. Air is a ubiquitous, inexpensive, and clean water source. Using Atmospheric Water Generators (AWG), the water contained in the air can be extracted. This study's objective was to determine the effect of inlet air temperature and air heater power variations on tool performance and PAWG condensate water production at a condenser angle of 75 degrees. The procedure utilized is experimental on three PAWG boxes. Each box has a distinct temperature at its entrance. The variation of inlet air temperature is accomplished by heating the air before it enters the box with an air heater; the applied power variations are 0.484 Watt, 0.964 Watt, and 1.702 Watt. The results demonstrated that variations in air heater power and inlet air temperature affected system performance and condensate water production. Maximum water discharge and PAWG performance were achieved when the air heating power was 0.48 watts and the water discharge was 1.166 milli liters per hour. At 0.0084 ml/h/W, the PSys system performance had the highest value. The variable air heating power of 0.946 Watt represents the utmost COP value of PAWG. This power variable has a high temperature difference and influences the COP value at high levels.","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136369474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polyurethane is a polymer compound whose main chain constituent is urethane group (-NHCOO-). Polyurethanes can be mixed with other polymers or other fillers in an effort to enhance and improve the properties of the single polymer. Metal coating materials are needed for metal materials that have properties resistant to heat thermal condition and corrosion that can damage the structure,. The priority and novelty of this research is to utilize the natural bentonite which is very potential in the local area to fill polyurethane-based coating paint in order to improve its properties. This research looked at the effect of mixing Polyurethane with Bentonite filler obtained from Nisam, North Aceh which has been modified with CTAB and AgNO3 surfactants. The sample formulation used is polyurethane and polyurethane with North Aceh Bentonite variations of 1.5, 2.5, and 3.5%. Characterization with the addition of Bentonite produces polymers that have good thermal stability capabilities. The addition of Bentonite filler into polyurethane polymer can affect the mechanical properties of the material. The Polyurethane/Bentonite composite sample has better thermal resistance, where in pure Polyurethane, the initial weight reduction of the pure Polyurethane sample is 50-150 ℃, the decomposition of pure Polyurethane is at 385 ℃. For Polyurethane/Bentonite 98.5:1.5% w/w nanocomposite, the initial weight reduction is 150-300 ℃, decomposition at 416 ℃. For Polyurethane/Bentonite 97.5:2.5 w/w, the initial weight reduction is 150-250 ℃ and decomposition at 430 ℃. Polyurethane/Bentonite 96.5:3.5 w/w initial weight reduction is also at 200-300 ℃ and decomposition at 458 ℃.
{"title":"Addition of aceh bentonite in an effort to improve the heat resistance properties of polyurethane-based paint coatings","authors":"Ilyas Yusuf, M. Yunus, Teuku Rihayat","doi":"10.30811/jpl.v21i3.3871","DOIUrl":"https://doi.org/10.30811/jpl.v21i3.3871","url":null,"abstract":"Polyurethane is a polymer compound whose main chain constituent is urethane group (-NHCOO-). Polyurethanes can be mixed with other polymers or other fillers in an effort to enhance and improve the properties of the single polymer. Metal coating materials are needed for metal materials that have properties resistant to heat thermal condition and corrosion that can damage the structure,. The priority and novelty of this research is to utilize the natural bentonite which is very potential in the local area to fill polyurethane-based coating paint in order to improve its properties. This research looked at the effect of mixing Polyurethane with Bentonite filler obtained from Nisam, North Aceh which has been modified with CTAB and AgNO3 surfactants. The sample formulation used is polyurethane and polyurethane with North Aceh Bentonite variations of 1.5, 2.5, and 3.5%. Characterization with the addition of Bentonite produces polymers that have good thermal stability capabilities. The addition of Bentonite filler into polyurethane polymer can affect the mechanical properties of the material. The Polyurethane/Bentonite composite sample has better thermal resistance, where in pure Polyurethane, the initial weight reduction of the pure Polyurethane sample is 50-150 ℃, the decomposition of pure Polyurethane is at 385 ℃. For Polyurethane/Bentonite 98.5:1.5% w/w nanocomposite, the initial weight reduction is 150-300 ℃, decomposition at 416 ℃. For Polyurethane/Bentonite 97.5:2.5 w/w, the initial weight reduction is 150-250 ℃ and decomposition at 430 ℃. Polyurethane/Bentonite 96.5:3.5 w/w initial weight reduction is also at 200-300 ℃ and decomposition at 458 ℃.","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136370298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}