Sexually dimorphic traits are prevalent throughout the animal kingdom, extending to insects. In addition to sex-biased gene expression networks, these traits often involve variations in hormone levels. Juvenile hormone (JH), which is synthesized by corpora allata (CA), regulates development and reproduction in insects. However, there is limited understanding regarding sex-biased gene expression in CA and the sexually dimorphic functions of JH. We discovered sexual dimorphism in JH levels in cockroaches. To explore the underlying mechanism, we analyzed RNA-sequencing data from CA tissues in the adult females and males of the American cockroach, Periplaneta americana. Our investigation revealed significant variation in sex-biased gene expression, with female-biased genes primarily involved in cytochrome P450, glutathione S-transferase and peroxidase pathways, associating with resistance to environmental stress. Notably, exposure to the insecticide imidacloprid, injection of Escherichia coli and H2O2 led to a higher mortality rate in males, whereas females exhibited resistance. Importantly, the application of the JH analog methoprene following the injection of E. coli and H2O2 rescued survival and the expression of stress response-related genes in males. Furthermore, these stressors resulted in reduced JH biosynthesis in males, while females remained unaffected. In summary, our results reveal that sexually dimorphic JH levels and gene expression modulate stress responses in P. americana. These findings shed light on sex-specific responses to environmental stress, offering tailored strategies for pest control based on gender.
{"title":"Sex-biased juvenile hormone and gene expression underlie sex difference of stress resistance in the American cockroach","authors":"Fangfang Liu, Shudian Zhang, Ping Chen, Wei Tang, Xiaoyi Chen, Yingting Wu, Sishi Xia, Diqi Peng, Zhengyi Shao, Qin Li, Yuqing Liu, Xiaoshuai Zhang, Shiming Zhu","doi":"10.1007/s10340-024-01819-5","DOIUrl":"https://doi.org/10.1007/s10340-024-01819-5","url":null,"abstract":"<p>Sexually dimorphic traits are prevalent throughout the animal kingdom, extending to insects. In addition to sex-biased gene expression networks, these traits often involve variations in hormone levels. Juvenile hormone (JH), which is synthesized by corpora allata (CA), regulates development and reproduction in insects. However, there is limited understanding regarding sex-biased gene expression in CA and the sexually dimorphic functions of JH. We discovered sexual dimorphism in JH levels in cockroaches. To explore the underlying mechanism, we analyzed RNA-sequencing data from CA tissues in the adult females and males of the American cockroach, <i>Periplaneta americana</i>. Our investigation revealed significant variation in sex-biased gene expression, with female-biased genes primarily involved in cytochrome P450, glutathione S-transferase and peroxidase pathways, associating with resistance to environmental stress. Notably, exposure to the insecticide imidacloprid, injection of <i>Escherichia coli</i> and H<sub>2</sub>O<sub>2</sub> led to a higher mortality rate in males, whereas females exhibited resistance. Importantly, the application of the JH analog methoprene following the injection of <i>E. coli</i> and H<sub>2</sub>O<sub>2</sub> rescued survival and the expression of stress response-related genes in males. Furthermore, these stressors resulted in reduced JH biosynthesis in males, while females remained unaffected. In summary, our results reveal that sexually dimorphic JH levels and gene expression modulate stress responses in <i>P. americana</i>. These findings shed light on sex-specific responses to environmental stress, offering tailored strategies for pest control based on gender.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"19 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1007/s10340-024-01805-x
Gelareh Ghaderi, Samad Jamali, Robert A. Haack, Jabbar Valipour
Oak dieback disease caused by the fungus Paecilomyces formosus threatens oak trees in the Zagros forests in western Iran. Various insects, such as wood-infesting beetles (Coleoptera), may play a role in dissemination of P. formosus. We collected larvae and adult insects from branch wood of oak trees with dieback symptoms in the Zagros forests. For larval identification, the mitochondrial gene cytochrome c oxidase I (COXI) was amplified by polymerase chain reaction (PCR). Fungal isolates from wood and insects collected from the sampled oaks were identified by morphology, acid production on creatine sucrose agar (CREA) medium, phylogeny of DNA sequence data for the β-tubulin gene and the internal transcribed spacer (ITS) rDNA. To detect P. formosus in larvae and adult insects, we used a nested PCR assay with the species-specific primer pairs PaMF and PaMR. The insects that most often tested positive for P. formosus were larvae of the buprestids Acmaeodera sp. and Chrysobothris affinis, and larvae of the cerambycid Trichoferus campestris. Adults of C. affinis and Calchaenesthes diversicolis (Cerambycidae), which were collected from within their galleries, also tested positive. Beetle larvae of Anthaxia sp. (Buprestidae), Latipalpis plana (Buprestidae), Monochamus sp. (Cerambycidae) and Crypticus gibbulus (Tenebrionidae) also tested positive. Larvae that tested negative for P. formosus were species of Cossidae (Lepidoptera), Elateridae (Coleoptera), Gasteruptiidae (Hymenoptera) and Syrphidae (Diptera). Future research is needed to determine whether any of these insects can serve as vectors of P. formosus. These results can be used to target-specific insects for monitoring.
在伊朗西部的扎格罗斯森林中,由栎孢菌(Paecilomyces formosus)引起的栎树枯死病威胁着栎树。各种昆虫,如侵木甲虫(鞘翅目),可能在栎树枯萎病的传播中扮演了重要角色。我们从扎格罗斯森林中出现枯死症状的橡树枝干上采集了幼虫和成虫。为了鉴定幼虫,我们通过聚合酶链式反应 (PCR) 扩增了线粒体基因细胞色素 c 氧化酶 I (COXI)。通过形态学、肌酸蔗糖琼脂(CREA)培养基上的产酸量、β-tubulin 基因和内部转录间隔(ITS)rDNA 的 DNA 序列数据的系统进化,对从取样橡树的木材和昆虫中采集的真菌分离物进行了鉴定。为了检测幼虫和成虫中的甲形虫,我们使用了物种特异性引物对 PaMF 和 PaMR 进行巢式 PCR 检测。最常对甲形虫呈阳性检测结果的昆虫是颊蝇科昆虫 Acmaeodera sp.和 Chrysobothris affinis 的幼虫,以及颊蝇科昆虫 Trichoferus campestris 的幼虫。从其虫瘿中采集的 C. affinis 和 Calchaenesthes diversicolis(啮齿目)的成虫检测结果也呈阳性。甲虫幼虫 Anthaxia sp. (Buprestidae)、Latipalpis plana (Buprestidae)、Monochamus sp. (Cerambycidae) 和 Crypticus gibbulus (Tenebrionidae) 的检测结果也呈阳性。对 P. formosus 检测呈阴性的幼虫包括 Cossidae(鳞翅目)、Elateridae(鞘翅目)、Gasteruptiidae(膜翅目)和 Syrphidae(双翅目)。未来需要进行研究,以确定这些昆虫中是否有昆虫可作为甲形虫的传播媒介。这些结果可用于针对特定昆虫进行监测。
{"title":"Detection of Paecilomyces formosus in wood-boring beetles associated with oak dieback and decline in the Zagros forests of Iran","authors":"Gelareh Ghaderi, Samad Jamali, Robert A. Haack, Jabbar Valipour","doi":"10.1007/s10340-024-01805-x","DOIUrl":"https://doi.org/10.1007/s10340-024-01805-x","url":null,"abstract":"<p>Oak dieback disease caused by the fungus <i>Paecilomyces formosus</i> threatens oak trees in the Zagros forests in western Iran. Various insects, such as wood-infesting beetles (Coleoptera), may play a role in dissemination of <i>P. formosus</i>. We collected larvae and adult insects from branch wood of oak trees with dieback symptoms in the Zagros forests. For larval identification, the mitochondrial gene cytochrome c oxidase I (COXI) was amplified by polymerase chain reaction (PCR). Fungal isolates from wood and insects collected from the sampled oaks were identified by morphology, acid production on creatine sucrose agar (CREA) medium, phylogeny of DNA sequence data for the <i>β</i>-tubulin gene and the internal transcribed spacer (ITS) rDNA. To detect <i>P. formosus</i> in larvae and adult insects, we used a nested PCR assay with the species-specific primer pairs PaMF and PaMR. The insects that most often tested positive for <i>P. formosus</i> were larvae of the buprestids <i>Acmaeodera</i> sp. and <i>Chrysobothris affinis</i>, and larvae of the cerambycid <i>Trichoferus campestris</i>. Adults of <i>C. affinis</i> and <i>Calchaenesthes diversicolis</i> (Cerambycidae), which were collected from within their galleries, also tested positive. Beetle larvae of <i>Anthaxia</i> sp. (Buprestidae), <i>Latipalpis plana</i> (Buprestidae), <i>Monochamus</i> sp. (Cerambycidae) and <i>Crypticus gibbulus</i> (Tenebrionidae) also tested positive. Larvae that tested negative for <i>P. formosus</i> were species of Cossidae (Lepidoptera), Elateridae (Coleoptera), Gasteruptiidae (Hymenoptera) and Syrphidae (Diptera). Future research is needed to determine whether any of these insects can serve as vectors of <i>P. formosus</i>. These results can be used to target-specific insects for monitoring.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"58 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1007/s10340-024-01803-z
Ming-hui Wang, Cesar Rodriguez-Saona, Anne-violette Lavoir, Velemir Ninkovic, Kaori Shiojiri, Junji Takabayashi, Peng Han
Plant defense priming involves the release of air-borne volatile organic compounds (VOCs) by plants, serving to prepare defense-related mechanisms against herbivores and pathogens in adjacent receiver plants. While the concept of VOC-mediated plant defense priming for enhancing plant resistance has garnered considerable attention in the last two decades, it has yet to be fully realized and applied in practical crop protection. This review summarizes current research, examining the spectrum of VOC-mediated plant defense priming in terms of anti-herbivore or anti-pathogen properties, the cost–benefit implications for plants, and the influence of abiotic factors on the priming. Additionally, we explore two promising approaches within the framework of Integrated Pest Management (IPM): the implementation of companion sentinel intercropping and the application of synthetic VOCs. In conclusion, we propose future research directions for this promising area, anticipating that this review will stimulate efforts aimed at harnessing the effects of plant defense priming for the development of innovative pest management strategies and optimized IPM programs in crop protection.
{"title":"Leveraging air-borne VOC-mediated plant defense priming to optimize Integrated Pest Management","authors":"Ming-hui Wang, Cesar Rodriguez-Saona, Anne-violette Lavoir, Velemir Ninkovic, Kaori Shiojiri, Junji Takabayashi, Peng Han","doi":"10.1007/s10340-024-01803-z","DOIUrl":"https://doi.org/10.1007/s10340-024-01803-z","url":null,"abstract":"<p>Plant defense priming involves the release of air-borne volatile organic compounds (VOCs) by plants, serving to prepare defense-related mechanisms against herbivores and pathogens in adjacent receiver plants. While the concept of VOC-mediated plant defense priming for enhancing plant resistance has garnered considerable attention in the last two decades, it has yet to be fully realized and applied in practical crop protection. This review summarizes current research, examining the spectrum of VOC-mediated plant defense priming in terms of anti-herbivore or anti-pathogen properties, the cost–benefit implications for plants, and the influence of abiotic factors on the priming. Additionally, we explore two promising approaches within the framework of Integrated Pest Management (IPM): the implementation of companion sentinel intercropping and the application of synthetic VOCs. In conclusion, we propose future research directions for this promising area, anticipating that this review will stimulate efforts aimed at harnessing the effects of plant defense priming for the development of innovative pest management strategies and optimized IPM programs in crop protection.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"19 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1007/s10340-024-01808-8
Luiza Sánchez, Ana E. Cunha, Nuno Rodrigues, José Alberto Pereira, Paula Baptista
The olive fruit fly, Bactrocera oleae (Rossi), is a key pest of the olive crop, whose control relies mostly on the use of insecticides. Plant peptides may represent a more environmentally-friendly tool to manage olive fly, due to their recognized role to activate and/or prime plant defence responses against pests. In this work, behavioural experiments (no-choice and two-choice) and analysis of volatile compounds were carried out to evaluate the impact of the exogenous application of the peptide systemin to olive tree on olive fly infestation, and to elucidate its mode of action to prime plant defence. The treatment of olive branches with 10 nM systemin showed to confer protection against olive fly, by reducing significantly the ovipositions (up to 3.0-fold) and the number of infested fruits (up to 2.9-fold) when compared to non-treated branches. This protective effect was even detected in neighbouring non-treated branches, suggesting the ability of systemin to trigger plant-to-plant communication. The deterrent activity of the primed olives was associated with the emission of the volatiles 2-ethyl-1-hexanol, 4-tert-butylcyclohexyl acetate and 1, 2, 3-trimethyl-benzene, which were negatively correlated with oviposition and fly infestation. Systemin has also showed to trigger the biosynthesis of specific volatiles (esters) in olives in response to fly attacks. Overall, the observed protection conferred by systemin against olive fly is likely due to the emission of specific volatiles that can act as a defence and/or as signalling molecules to upregulate the plant defence response. Thus, systemin represents a novel and useful tool to manage olive fruit fly.
{"title":"Exogenous systemin peptide treatment in olive alters Bactrocera oleae oviposition preference","authors":"Luiza Sánchez, Ana E. Cunha, Nuno Rodrigues, José Alberto Pereira, Paula Baptista","doi":"10.1007/s10340-024-01808-8","DOIUrl":"https://doi.org/10.1007/s10340-024-01808-8","url":null,"abstract":"<p>The olive fruit fly, <i>Bactrocera oleae</i> (Rossi), is a key pest of the olive crop, whose control relies mostly on the use of insecticides. Plant peptides may represent a more environmentally-friendly tool to manage olive fly, due to their recognized role to activate and/or prime plant defence responses against pests. In this work, behavioural experiments (no-choice and two-choice) and analysis of volatile compounds were carried out to evaluate the impact of the exogenous application of the peptide systemin to olive tree on olive fly infestation, and to elucidate its mode of action to prime plant defence. The treatment of olive branches with 10 nM systemin showed to confer protection against olive fly, by reducing significantly the ovipositions (up to 3.0-fold) and the number of infested fruits (up to 2.9-fold) when compared to non-treated branches. This protective effect was even detected in neighbouring non-treated branches, suggesting the ability of systemin to trigger plant-to-plant communication. The deterrent activity of the primed olives was associated with the emission of the volatiles 2-ethyl-1-hexanol, 4-tert-butylcyclohexyl acetate and 1, 2, 3-trimethyl-benzene, which were negatively correlated with oviposition and fly infestation. Systemin has also showed to trigger the biosynthesis of specific volatiles (esters) in olives in response to fly attacks. Overall, the observed protection conferred by systemin against olive fly is likely due to the emission of specific volatiles that can act as a defence and/or as signalling molecules to upregulate the plant defence response. Thus, systemin represents a novel and useful tool to manage olive fruit fly.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"17 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-06DOI: 10.1007/s10340-024-01809-7
André C. Cardoso, Ítalo Marcossi, Morgana M. Fonseca, Milena O. Kalile, Leonardo S. Francesco, Angelo Pallini, Thomas V. M. Groot, Arne Janssen
Several natural enemies are known as predators of the whitefly Bemisia tabaci, which is one of the most invasive pests worldwide and has developed high resistance to pesticides. However, biological control of this pest on tomato is often difficult because the plant’s glandular trichomes release substances that are toxic to arthropods and hinder the foraging of natural enemies. Therefore, adaptation of natural enemies to this crop is one of the selection criteria for potential biocontrol agents. We collected predatory mites from wild and feral tomato plants and found the species Amblyseius herbicolus and A. tamatavensis. Whereas the latter is known to feed on B. tabaci eggs, we investigated the ability of A. herbicolus to develop and reproduce when feeding on this prey stage, and assessed whether both species can feed and develop on B. tabaci crawlers. To verify the adaptation of these predators to tomato, we assessed their ability to disperse on tomato plants and their establishment on clean tomato plants with pollen as an alternative food. Finally, we evaluated whether the predators were effective in controlling B. tabaci on tomato plants with different pollen dosages as alternative food. We show that both predators fed and reproduced on B. tabaci immatures. A. herbicolus established and dispersed better on tomato plants supplemented with cattail pollen than A. tamatavensis and only A. herbicolus was able to control B. tabaci in two population dynamics experiments. Our results suggest that A. herbicolus is better adapted to tomato than A. tamatavensis and may therefore be a promising biocontrol agent on tomato.
烟粉虱是全球最具入侵性的害虫之一,对杀虫剂具有很强的抗药性。然而,由于番茄的腺毛释放出对节肢动物有毒的物质,阻碍了天敌的觅食,因此生物防治番茄上的这种害虫往往很困难。因此,天敌对这种作物的适应性是潜在生物控制剂的选择标准之一。我们从野生番茄植株和野外番茄植株中收集了捕食性螨虫,发现了Amblyseius herbicolus和A. tamatavensis两种。已知后者以 B. tabaci 的卵为食,我们研究了 A. herbicolus 以这种猎物为食的发育和繁殖能力,并评估了这两个物种是否都能以 B. tabaci 的爬虫为食并发育。为了验证这些天敌对番茄的适应性,我们评估了它们在番茄植株上的扩散能力,以及它们在以花粉为替代食物的干净番茄植株上的生存能力。最后,我们评估了捕食者是否能有效控制以不同剂量的花粉作为替代食物的番茄植株上的烟青虫。我们发现这两种天敌都以 B. tabaci 幼虫为食并繁殖。在两次种群动态实验中,只有 A. herbicolus 能够控制 B. tabaci。我们的结果表明,A. herbicolus 比 A. tamatavensis 更能适应番茄,因此可能是一种很有前途的番茄生物控制剂。
{"title":"A predatory mite as potential biological control agent of Bemisia tabaci on tomato plants","authors":"André C. Cardoso, Ítalo Marcossi, Morgana M. Fonseca, Milena O. Kalile, Leonardo S. Francesco, Angelo Pallini, Thomas V. M. Groot, Arne Janssen","doi":"10.1007/s10340-024-01809-7","DOIUrl":"https://doi.org/10.1007/s10340-024-01809-7","url":null,"abstract":"<p>Several natural enemies are known as predators of the whitefly <i>Bemisia tabaci</i>, which is one of the most invasive pests worldwide and has developed high resistance to pesticides. However, biological control of this pest on tomato is often difficult because the plant’s glandular trichomes release substances that are toxic to arthropods and hinder the foraging of natural enemies. Therefore, adaptation of natural enemies to this crop is one of the selection criteria for potential biocontrol agents. We collected predatory mites from wild and feral tomato plants and found the species <i>Amblyseius herbicolus</i> and <i>A. tamatavensis</i>. Whereas the latter is known to feed on <i>B. tabaci</i> eggs, we investigated the ability of <i>A. herbicolus</i> to develop and reproduce when feeding on this prey stage, and assessed whether both species can feed and develop on <i>B. tabaci</i> crawlers. To verify the adaptation of these predators to tomato, we assessed their ability to disperse on tomato plants and their establishment on clean tomato plants with pollen as an alternative food. Finally, we evaluated whether the predators were effective in controlling <i>B. tabaci</i> on tomato plants with different pollen dosages as alternative food. We show that both predators fed and reproduced on <i>B. tabaci</i> immatures. <i>A. herbicolus</i> established and dispersed better on tomato plants supplemented with cattail pollen than <i>A. tamatavensis</i> and only <i>A. herbicolus</i> was able to control <i>B. tabaci</i> in two population dynamics experiments. Our results suggest that <i>A. herbicolus</i> is better adapted to tomato than <i>A. tamatavensis</i> and may therefore be a promising biocontrol agent on tomato.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"25 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.1007/s10340-024-01807-9
Rebecca Gough, Kar Mun Chooi, Manoharie Sandanayaka, Vicky Davis, Duncan Hedderley, Tara Taylor, Daniel Cohen, Cecilia A. Prator, Rodrigo P. P. Almeida, Vaughn A. Bell, Robin M. MacDiarmid
Grapevine leafroll disease (GLD) affects grapevines worldwide. The primary causal agent of GLD is grapevine leafroll-associated virus 3 (GLRaV-3), which spreads to uninfected grapevines via mealybugs and soft-scale insects. Pseudococcus calceolariae (Hemiptera: Pseudococcidae) is a mealybug vector of GLRaV-3 in New Zealand. P. calceolariae also colonizes clovers (Trifolium spp.) growing naturally as vineyard ground cover. Separating mealybug from GLRaV-3 grapevine host could be enhanced by a trap plant: an alternative host attractive to and retentive of the target pest. We evaluated the association between P. calceolariae and ‘Grasslands Huia’ white clover (GHWC). GHWC seed was sown under grapevines in a commercial vineyard (14 × 0.4 ha plots); the control was under-vine herbicide use (7 × 0.4 ha plots, where only few Trifolium spp. plants grew). After 2 years, GHWC cover peaked at 40% mealybug infestation in 2019. From 2018 to 2021, P. calceolariae detection and abundance on GHWC was significantly higher than plants from the control plots. There was no treatment effect for mealybug infestation of grapevine leaves nor of GLRaV-3 incidence, independent of vintage. A glasshouse trial found no transmission of GLRaV-3 by P. calceolariae to any of 256 plants among five clover cultivars tested (Trifolium spp.), including GHWC; mealybug transmitted GLRaV-3 to 35 of 107 Nicotiana benthamiana plants. The results showed that in the 5-year period, added GHWC did not decouple P. calceolariae from the grapevine to reduce GLRaV-3 incidence, but rapid colonization of GHWC by mealybug and the lack of GLRaV-3 transmission to GHWC are encouraging. Further evaluation is needed to assess whether plant biodiversity can benefit a GLRaV-3 ecological management objective.
{"title":"Clover in vineyards, a potential trap plant for the mealybug Pseudococcus calceolariae—a vector of GLRaV-3 to grapevines but not clover species","authors":"Rebecca Gough, Kar Mun Chooi, Manoharie Sandanayaka, Vicky Davis, Duncan Hedderley, Tara Taylor, Daniel Cohen, Cecilia A. Prator, Rodrigo P. P. Almeida, Vaughn A. Bell, Robin M. MacDiarmid","doi":"10.1007/s10340-024-01807-9","DOIUrl":"https://doi.org/10.1007/s10340-024-01807-9","url":null,"abstract":"<p>Grapevine leafroll disease (GLD) affects grapevines worldwide. The primary causal agent of GLD is grapevine leafroll-associated virus 3 (GLRaV-3), which spreads to uninfected grapevines via mealybugs and soft-scale insects. <i>Pseudococcus calceolariae</i> (Hemiptera: Pseudococcidae) is a mealybug vector of GLRaV-3 in New Zealand. <i>P. calceolariae</i> also colonizes clovers (<i>Trifolium</i> spp.) growing naturally as vineyard ground cover. Separating mealybug from GLRaV-3 grapevine host could be enhanced by a trap plant: an alternative host attractive to and retentive of the target pest. We evaluated the association between <i>P. calceolariae</i> and ‘Grasslands Huia’ white clover (GHWC). GHWC seed was sown under grapevines in a commercial vineyard (14 × 0.4 ha plots); the control was under-vine herbicide use (7 × 0.4 ha plots, where only few <i>Trifolium</i> spp. plants grew). After 2 years, GHWC cover peaked at 40% mealybug infestation in 2019. From 2018 to 2021, <i>P. calceolariae</i> detection and abundance on GHWC was significantly higher than plants from the control plots. There was no treatment effect for mealybug infestation of grapevine leaves nor of GLRaV-3 incidence, independent of vintage. A glasshouse trial found no transmission of GLRaV-3 by <i>P. calceolariae</i> to any of 256 plants among five clover cultivars tested (<i>Trifolium</i> spp.), including GHWC; mealybug transmitted GLRaV-3 to 35 of 107 <i>Nicotiana benthamiana</i> plants. The results showed that in the 5-year period, added GHWC did not decouple <i>P. calceolariae</i> from the grapevine to reduce GLRaV-3 incidence, but rapid colonization of GHWC by mealybug and the lack of GLRaV-3 transmission to GHWC are encouraging. Further evaluation is needed to assess whether plant biodiversity can benefit a GLRaV-3 ecological management objective.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"67 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1007/s10340-024-01802-0
Ítalo Marcossi, Leonardo S. Francesco, Morgana M. Fonseca, Angelo Pallini, Thomas Groot, Raf De Vis, Arne Janssen
Tomato plants are attacked by numerous pests and diseases, including the tomato russet mite Aculops lycopersici and powdery mildew, Oidium neolycopersici. Natural enemies of tomato pests are often hindered by the tomato trichomes, while russet mites live under and among these leaf hairs and are therefore protected from these enemies. To find natural enemies that are adapted to tomato and its trichomes, we collected a predatory mite, Amblyseius herbicolus, and an iolinid mite, cf. Homeopronematus anconai sp. nov., from tomato plants in the field. We investigated their potential as biological control agents for pests in this crop. We show that both predators were able to feed and reproduce on russet mites. Subsequently, we show that the iolinid effectively controlled tomato russet mites and powdery mildew on isolated tomato plants, whereas A. herbicolus disappeared from the plants. Altogether, our results show that cf. H. anconai sp. nov. is an efficient biocontrol agent of two key pests on tomato plants. Our results thus contribute to the recent trend of using predators that are effective in controlling both a pest and a pathogen, a promising new strategy for biological crop protection.
{"title":"Predatory mites as potential biological control agents for tomato russet mite and powdery mildew on tomato","authors":"Ítalo Marcossi, Leonardo S. Francesco, Morgana M. Fonseca, Angelo Pallini, Thomas Groot, Raf De Vis, Arne Janssen","doi":"10.1007/s10340-024-01802-0","DOIUrl":"https://doi.org/10.1007/s10340-024-01802-0","url":null,"abstract":"<p>Tomato plants are attacked by numerous pests and diseases, including the tomato russet mite <i>Aculops lycopersici</i> and powdery mildew, <i>Oidium neolycopersici</i>. Natural enemies of tomato pests are often hindered by the tomato trichomes, while russet mites live under and among these leaf hairs and are therefore protected from these enemies. To find natural enemies that are adapted to tomato and its trichomes, we collected a predatory mite, <i>Amblyseius herbicolus</i>, and an iolinid mite, cf. <i>Homeopronematus anconai</i> sp. nov., from tomato plants in the field. We investigated their potential as biological control agents for pests in this crop. We show that both predators were able to feed and reproduce on russet mites. Subsequently, we show that the iolinid effectively controlled tomato russet mites and powdery mildew on isolated tomato plants, whereas <i>A. herbicolus</i> disappeared from the plants. Altogether, our results show that cf. <i>H. anconai</i> sp. nov. is an efficient biocontrol agent of two key pests on tomato plants. Our results thus contribute to the recent trend of using predators that are effective in controlling both a pest and a pathogen, a promising new strategy for biological crop protection.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"88 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1007/s10340-024-01801-1
Séverin Hatt, Thomas F. Döring
Different diversification practices have the potential to reduce pests and therefore pesticide use. Yet, their integration at the agroecosystem level and the evaluation of their multifunctional effects remain limited. Through a two-year field experiment conducted in Germany, we tested whether associating intercropping (faba bean-wheat, followed by breadseed poppy-barley) with pluriannual wildflower strips strengthens the biological regulation of aphid pests and weeds, and enhances cropping system productivity. The contribution of flowering weeds to conservation biological control was also analysed. Aphid but also predator colonization and predation rates on bean and poppy were consistently lower in intercropping compared to sole cropping. Wildflower strips enhanced aphid predation in bean-wheat intercropping, and further reduced aphid colonization at 10 m distance but not at 20 m in poppy-barley intercropping. Weed biomass was consistently reduced in intercropping compared to sole cropping bean and poppy, and did not significantly affect bean and poppy yields in intercropping. The cover of one flowering weed species, Matricaria recutita, was negatively correlated to aphid colonization and positively correlated to predation rate. Matricaria recutita flowers were also visited more often by predatory hoverflies in plots adjacent to wildflower strips. Finally, land equivalent ratio was consistently higher than 1, and the highest in bean-wheat intercropping associated to wildflower strips. The study demonstrates the benefits of associating wildflower strips to intercropping to strengthen biological control and cropping system productivity. Flowering weeds, maintained at an acceptable level through intercropping, turn out to be relevant functional biodiversity in interacting with wildflower strips for conservation biological control.
{"title":"The interplay of intercropping, wildflower strips and weeds in conservation biological control and productivity","authors":"Séverin Hatt, Thomas F. Döring","doi":"10.1007/s10340-024-01801-1","DOIUrl":"https://doi.org/10.1007/s10340-024-01801-1","url":null,"abstract":"<p>Different diversification practices have the potential to reduce pests and therefore pesticide use. Yet, their integration at the agroecosystem level and the evaluation of their multifunctional effects remain limited. Through a two-year field experiment conducted in Germany, we tested whether associating intercropping (faba bean-wheat, followed by breadseed poppy-barley) with pluriannual wildflower strips strengthens the biological regulation of aphid pests and weeds, and enhances cropping system productivity. The contribution of flowering weeds to conservation biological control was also analysed. Aphid but also predator colonization and predation rates on bean and poppy were consistently lower in intercropping compared to sole cropping. Wildflower strips enhanced aphid predation in bean-wheat intercropping, and further reduced aphid colonization at 10 m distance but not at 20 m in poppy-barley intercropping. Weed biomass was consistently reduced in intercropping compared to sole cropping bean and poppy, and did not significantly affect bean and poppy yields in intercropping. The cover of one flowering weed species, <i>Matricaria recutita</i>, was negatively correlated to aphid colonization and positively correlated to predation rate. <i>Matricaria recutita</i> flowers were also visited more often by predatory hoverflies in plots adjacent to wildflower strips. Finally, land equivalent ratio was consistently higher than 1, and the highest in bean-wheat intercropping associated to wildflower strips. The study demonstrates the benefits of associating wildflower strips to intercropping to strengthen biological control and cropping system productivity. Flowering weeds, maintained at an acceptable level through intercropping, turn out to be relevant functional biodiversity in interacting with wildflower strips for conservation biological control.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"43 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1007/s10340-024-01798-7
Andrzej Kurenda, Domenica Jenni, Sandro Lecci, Anke Buchholz
This study investigated the infestation of tomato plants by the plant-parasitic nematode, M. incognita, and its accurate detection by plant electrophysiology (PE). Dedicated tests were done on whole plants to record electrophysiological signals from nematode infested and uninfested plants and to establish a trained model indicating nematode-induced stress. Monitoring nematode-induced stress by PE confirmed the results obtained by assessing root galls and quantifying xylem sap 3 to 4 weeks after infestation. The machine learning model captured the stress intensities and the time course of plant damage caused by nematodes. Stress caused by second-stage juveniles (J2) infestation appeared 3 to 5 days after infestation (DAI), whereas stress caused by egg infestation was detected 5 to 7 days later (10–13 DAI). For the first time, the real-time effectiveness of nematicides was recorded in further tests. Nematode infested plants treated preventatively with cyclobutrifluram (TYMIRIUM® technology) showed a delayed and short (about 3 days) period of low stress intensity, whereas infested but untreated plants showed a period of maximum stress for about 12 days. In addition, depending on the type of application (preventative or curative), different modes of biological activity of IRAC group N-2 and N-3 nematicides (fluopyram, abamectin) could be captured by PE signalling. PE offers a new way of monitoring plant health in real time, which is particularly valuable for accessing ‘invisible’ pests, such as plant-parasitic nematodes in the soil.
{"title":"Bringing light into the dark—plant electrophysiological monitoring of root knot nematode infestation and real-time nematicide efficacy","authors":"Andrzej Kurenda, Domenica Jenni, Sandro Lecci, Anke Buchholz","doi":"10.1007/s10340-024-01798-7","DOIUrl":"https://doi.org/10.1007/s10340-024-01798-7","url":null,"abstract":"<p>This study investigated the infestation of tomato plants by the plant-parasitic nematode, <i>M. incognita</i>, and its accurate detection by plant electrophysiology (PE). Dedicated tests were done on whole plants to record electrophysiological signals from nematode infested and uninfested plants and to establish a trained model indicating nematode-induced stress. Monitoring nematode-induced stress by PE confirmed the results obtained by assessing root galls and quantifying xylem sap 3 to 4 weeks after infestation. The machine learning model captured the stress intensities and the time course of plant damage caused by nematodes. Stress caused by second-stage juveniles (J2) infestation appeared 3 to 5 days after infestation (DAI), whereas stress caused by egg infestation was detected 5 to 7 days later (10–13 DAI). For the first time, the real-time effectiveness of nematicides was recorded in further tests. Nematode infested plants treated preventatively with cyclobutrifluram (TYMIRIUM® technology) showed a delayed and short (about 3 days) period of low stress intensity, whereas infested but untreated plants showed a period of maximum stress for about 12 days. In addition, depending on the type of application (preventative or curative), different modes of biological activity of IRAC group N-2 and N-3 nematicides (fluopyram, abamectin) could be captured by PE signalling. PE offers a new way of monitoring plant health in real time, which is particularly valuable for accessing ‘invisible’ pests, such as plant-parasitic nematodes in the soil.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"44 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1007/s10340-024-01799-6
Shahinoor Rahman, Michael Rostás, Ilka Vosteen
Climate change leads to more frequent droughts that may alter multitrophic networks in agroecosystems by changing bottom-up and top-down effects on herbivorous insects. Yet, how bottom-up effects of drought alter tritrophic interactions remains poorly understood. This study investigated two intensities of drought stress in the tritrophic system consisting of sugar beet (Beta vulgaris), an aphid (Aphis fabae), and its parasitoid (Aphidius colemani). We thoroughly investigated each trophic level, examining the performance of plants, pest insects, and parasitoids, as well as the attraction of parasitoids to herbivore-induced plant volatiles (HIPVs). Drought stress negatively affected plant growth but benefited A. fabae, leading to faster development and a higher reproduction rate. Drought-stressed plants also emitted less plant volatiles, which resulted in reduced attraction of A. colemani to aphid-infested plants. Drought indirectly affected parasitoid performance, as evidenced by lower emergence rates and production of fewer females, although mummification rates were higher on drought-stressed plants. Reduced parasitoid attraction and performance on drought-stressed plants may exert lower top-down pressure on aphid populations. Combined with increased aphid performance, this may facilitate aphid outbreaks, which could further weaken drought-stressed plants. Our findings highlight the need to study multiple trophic levels and emphasize the importance of incorporating HIPVs and parasitoid attraction when assessing combined abiotic and biotic stresses in crops.
气候变化导致干旱更加频繁,这可能会通过改变对食草昆虫自下而上和自上而下的影响来改变农业生态系统中的多营养网络。然而,人们对干旱自下而上的影响如何改变三营养昆虫的相互作用仍然知之甚少。本研究调查了由甜菜(Beta vulgaris)、蚜虫(Aphis fabae)及其寄生虫(Aphidius colemani)组成的三营养系统中两种强度的干旱胁迫。我们对每个营养级进行了深入研究,考察了植物、害虫和寄生虫的表现,以及寄生虫对食草动物诱导的植物挥发物(HIPVs)的吸引力。干旱胁迫对植物的生长产生了负面影响,但却有利于A. fabae,使其发育更快、繁殖率更高。干旱胁迫植物也释放出较少的植物挥发物,从而降低了 A. colemani 对蚜虫侵染植物的吸引力。干旱间接影响了寄生虫的表现,表现为蚜虫出现率降低,雌虫数量减少,但干旱胁迫植物上的木乃伊化率较高。寄生虫在干旱植株上的吸引力和表现下降,可能会降低对蚜虫种群的自上而下的压力。再加上蚜虫性能的提高,这可能会促进蚜虫的爆发,从而进一步削弱干旱胁迫植物的抗旱能力。我们的研究结果突显了研究多营养级的必要性,并强调了在评估农作物的非生物和生物综合胁迫时结合 HIPVs 和寄生虫吸引力的重要性。
{"title":"Drought aggravates plant stress by favouring aphids and weakening indirect defense in a sugar beet tritrophic system","authors":"Shahinoor Rahman, Michael Rostás, Ilka Vosteen","doi":"10.1007/s10340-024-01799-6","DOIUrl":"https://doi.org/10.1007/s10340-024-01799-6","url":null,"abstract":"<p>Climate change leads to more frequent droughts that may alter multitrophic networks in agroecosystems by changing bottom-up and top-down effects on herbivorous insects. Yet, how bottom-up effects of drought alter tritrophic interactions remains poorly understood. This study investigated two intensities of drought stress in the tritrophic system consisting of sugar beet (<i>Beta vulgaris</i>), an aphid (<i>Aphis fabae</i>), and its parasitoid (<i>Aphidius colemani</i>). We thoroughly investigated each trophic level, examining the performance of plants, pest insects, and parasitoids, as well as the attraction of parasitoids to herbivore-induced plant volatiles (HIPVs). Drought stress negatively affected plant growth but benefited <i>A. fabae,</i> leading to faster development and a higher reproduction rate. Drought-stressed plants also emitted less plant volatiles, which resulted in reduced attraction of <i>A. colemani</i> to aphid-infested plants. Drought indirectly affected parasitoid performance, as evidenced by lower emergence rates and production of fewer females, although mummification rates were higher on drought-stressed plants. Reduced parasitoid attraction and performance on drought-stressed plants may exert lower top-down pressure on aphid populations. Combined with increased aphid performance, this may facilitate aphid outbreaks, which could further weaken drought-stressed plants. Our findings highlight the need to study multiple trophic levels and emphasize the importance of incorporating HIPVs and parasitoid attraction when assessing combined abiotic and biotic stresses in crops.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"88 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}