Pub Date : 2024-09-27DOI: 10.1007/s10340-024-01827-5
Greissi Tente Giraldi, Wanderlei do Amaral, Rubens Candido Zimmermann, Edson José Mazarotto, Ana Marta Schafaschek, Alisson Esser Gerber, Beatriz Helena L. N. Sales Maia, Elaine Fernanda dos Santos, Mario Antônio Navarro da Silva, Luis Amilton Foester
Spodoptera frugiperda is a major pest in corn crops, causing significant productivity losses and exhibiting high resistance to synthetic insecticides. Essential oils (EOs) are natural substances known for their insecticidal activity against various agricultural pests. This study describes the chemical composition and bioactivity of Drimys brasiliensis EO against S. frugiperda larvae. The EO was extracted using the steam distillation method in a vat, and its chemical composition was determined using gas chromatography coupled with mass spectrometry (GC–MS). The insecticidal activity of this EO was assessed by the contact method to estimate the lethal concentration (LC50 and LC90) and to evaluate the effects on biochemical markers, including glutathione S-transferase (GST), esterase-α (EST-α), esterase-β (EST-β), superoxide dismutase (SOD), acetylcholinesterase (AChE) and lipid peroxidation (LPO), in 3rd instar larvae of S. frugiperda. Twenty-nine compounds were identified by GC–MS, accounting for 81.32% of the total chemical composition D. brasiliensis EO resulted in 100% mortality of S. frugiperda larvae at a concentration of 2.5%, with LC50 and LC90 values of 0.90 and 1.40%, respectively. Both lethal concentrations increased AChE and LPO activity, while only LC90 affected the EST-α and EST-β enzymes. Drimys brasiliensis EO exhibits insecticidal activity against S. frugiperda with neurotoxic effects, as well as cellular damage, demonstrating its potential as a control method in managing this pest in conventional and organic production methods.
{"title":"Insecticidal activity, toxicity and biochemical alterations of Drimys brasiliensis essential oil against Spodoptera frugiperda","authors":"Greissi Tente Giraldi, Wanderlei do Amaral, Rubens Candido Zimmermann, Edson José Mazarotto, Ana Marta Schafaschek, Alisson Esser Gerber, Beatriz Helena L. N. Sales Maia, Elaine Fernanda dos Santos, Mario Antônio Navarro da Silva, Luis Amilton Foester","doi":"10.1007/s10340-024-01827-5","DOIUrl":"https://doi.org/10.1007/s10340-024-01827-5","url":null,"abstract":"<p><i>Spodoptera frugiperda</i> is a major pest in corn crops, causing significant productivity losses and exhibiting high resistance to synthetic insecticides. Essential oils (EOs) are natural substances known for their insecticidal activity against various agricultural pests. This study describes the chemical composition and bioactivity of <i>Drimys brasiliensis</i> EO against <i>S. frugiperda</i> larvae. The EO was extracted using the steam distillation method in a vat, and its chemical composition was determined using gas chromatography coupled with mass spectrometry (GC–MS). The insecticidal activity of this EO was assessed by the contact method to estimate the lethal concentration (LC<sub>50</sub> and LC<sub>90</sub>) and to evaluate the effects on biochemical markers, including glutathione S-transferase (GST), esterase-α (EST-α), esterase-β (EST-β), superoxide dismutase (SOD), acetylcholinesterase (AChE) and lipid peroxidation (LPO), in 3rd instar larvae of <i>S. frugiperda</i>. Twenty-nine compounds were identified by GC–MS, accounting for 81.32% of the total chemical composition <i>D. brasiliensis</i> EO resulted in 100% mortality of <i>S. frugiperda</i> larvae at a concentration of 2.5%, with LC<sub>50</sub> and LC<sub>90</sub> values of 0.90 and 1.40%, respectively. Both lethal concentrations increased AChE and LPO activity, while only LC<sub>90</sub> affected the EST-α and EST-β enzymes. <i>Drimys brasilien</i>sis EO exhibits insecticidal activity against <i>S. frugiperda</i> with neurotoxic effects, as well as cellular damage, demonstrating its potential as a control method in managing this pest in conventional and organic production methods.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"22 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1007/s10340-024-01835-5
Himali U. Ratnayake, Ross Darnell, Brent Henderson, Rieks D. van Klinken
Cold treatment with rigorous regulatory oversight is often mandated to manage horticultural trade-related biosecurity threats, such as invasive, cold-sensitive fruit flies (Diptera: Tephritidae). Cold treatment schedules, developed through rigorous laboratory experiments, require a set temperature and duration to ensure at least a probit 8.7 (99.99%) mortality rate, regardless of infestation likelihood. This threshold is costly to demonstrate for each pest and commodity combination and the resultant treatment may be harmful to fruit quality. Moreover, these stringent schedules do not account for cold-induced mortality already occurring in commercial supply chains. We developed a predictive temperature-dependent mortality function using 28 published cold treatment studies of pest fly species to support more flexible and proportionate use of cold treatment. The daily mortality rate was unaffected by the duration of cold exposure (0–20 days). The mortality rate varied primarily by pest species (10 species) and developmental stage (eggs and larval stages), and to a lesser extent by temperature (0–7 °C) and host (13 fruit types). Our model mostly predicted fewer days to meet probit 9.0 mortality compared to empirical results from large-scale studies, suggesting these studies can be overly conservative. By leveraging previous empirical studies, our model enables estimation of temperature-dependent daily mortality for unstudied pest developmental stage host–temperature combinations, which can then be empirically validated through targeted studies. It is hoped these results will shift cold treatment usage from highly regulated, fixed temperature treatments with a target mortality rate requirement to a more flexible approach that accounts for existing commercial supply chain practices and infestation likelihood in produce.
{"title":"Modelling time-temperature-dependent mortality of pest flies in cold storage to support the management of trade-related biosecurity risks","authors":"Himali U. Ratnayake, Ross Darnell, Brent Henderson, Rieks D. van Klinken","doi":"10.1007/s10340-024-01835-5","DOIUrl":"https://doi.org/10.1007/s10340-024-01835-5","url":null,"abstract":"<p>Cold treatment with rigorous regulatory oversight is often mandated to manage horticultural trade-related biosecurity threats, such as invasive, cold-sensitive fruit flies (Diptera: Tephritidae). Cold treatment schedules, developed through rigorous laboratory experiments, require a set temperature and duration to ensure at least a probit 8.7 (99.99%) mortality rate, regardless of infestation likelihood. This threshold is costly to demonstrate for each pest and commodity combination and the resultant treatment may be harmful to fruit quality. Moreover, these stringent schedules do not account for cold-induced mortality already occurring in commercial supply chains. We developed a predictive temperature-dependent mortality function using 28 published cold treatment studies of pest fly species to support more flexible and proportionate use of cold treatment. The daily mortality rate was unaffected by the duration of cold exposure (0–20 days). The mortality rate varied primarily by pest species (10 species) and developmental stage (eggs and larval stages), and to a lesser extent by temperature (0–7 °C) and host (13 fruit types). Our model mostly predicted fewer days to meet probit 9.0 mortality compared to empirical results from large-scale studies, suggesting these studies can be overly conservative. By leveraging previous empirical studies, our model enables estimation of temperature-dependent daily mortality for unstudied pest developmental stage host–temperature combinations, which can then be empirically validated through targeted studies. It is hoped these results will shift cold treatment usage from highly regulated, fixed temperature treatments with a target mortality rate requirement to a more flexible approach that accounts for existing commercial supply chain practices and infestation likelihood in produce.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"63 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1007/s10340-024-01828-4
Surjeet Kumar Arya, Douglas A. Harrison, Subba Reddy Palli
Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for studying complex cellular composition and gene expression dynamics of biological systems. In this study, we analyzed the midgut of the fall armyworm (FAW), Spodoptera frugiperda, utilizing scRNA-seq technology. scRNA-seq analysis yielded high-quality sequencing data from two replicates, showcasing robust sequencing integrity, mapping efficiency, and reproducibility. We identified twelve clusters of midgut cells, including enterocytes, enteroblasts, enteroendocrine cells, goblet cells, and stem cells, each with unique marker gene expression indicative of their specialized functions. Further analysis revealed intricate gene expression profiles and enriched biological pathways associated with each cell type, shedding light on the molecular mechanisms underlying midgut function. Additionally, lineage trajectory analysis identified the differentiation pathways of midgut cell populations, confirming canonical relationships among stem cells, enteroblasts, enterocytes, and goblet cells. Furthermore, we also studied the expression of genes coding for insecticide target sites and metabolizing enzymes in different midgut cell types. Overall, our studies provide a comprehensive understanding of midgut cellular diversity and gene expression dynamics in the FAW, offering valuable information that could be used to develop methods for managing this and other pests.
{"title":"Cellular and functional heterogeneity of fall armyworm (Spodoptera frugiperda) midgut: a single-cell RNA sequencing analysis","authors":"Surjeet Kumar Arya, Douglas A. Harrison, Subba Reddy Palli","doi":"10.1007/s10340-024-01828-4","DOIUrl":"https://doi.org/10.1007/s10340-024-01828-4","url":null,"abstract":"<p>Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for studying complex cellular composition and gene expression dynamics of biological systems. In this study, we analyzed the midgut of the fall armyworm (FAW), <i>Spodoptera frugiperda</i>, utilizing scRNA-seq technology. scRNA-seq analysis yielded high-quality sequencing data from two replicates, showcasing robust sequencing integrity, mapping efficiency, and reproducibility. We identified twelve clusters of midgut cells, including enterocytes, enteroblasts, enteroendocrine cells, goblet cells, and stem cells, each with unique marker gene expression indicative of their specialized functions. Further analysis revealed intricate gene expression profiles and enriched biological pathways associated with each cell type, shedding light on the molecular mechanisms underlying midgut function. Additionally, lineage trajectory analysis identified the differentiation pathways of midgut cell populations, confirming canonical relationships among stem cells, enteroblasts, enterocytes, and goblet cells. Furthermore, we also studied the expression of genes coding for insecticide target sites and metabolizing enzymes in different midgut cell types. Overall, our studies provide a comprehensive understanding of midgut cellular diversity and gene expression dynamics in the FAW, offering valuable information that could be used to develop methods for managing this and other pests.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"19 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant secondary metabolites are crucial in affecting the interactions between insect herbivores and entomoviruses. However, there is limited knowledge regarding the impact of such metabolites on the susceptibility of insect herbivores to entomoviruses. In this study, we adopted the allicin, caterpillars (Spodoptera exigua) and nucleopolyhedrovirus (SeMNPV) as a system, and found that allicin significantly increased the mortality of S. exigua larvae infected with SeMNPV by 36.03–59.45% when infected with the virus at a concentration of 2.12 × 103 OB·mL−1. Furthermore, NPV-infected larvae together treated with allicin inhibited the growth and development of larvae, comparing to individual NPV-infected larvae. Notably, we observed a significant enrichment of differentially expressed genes involved in the cytochrome P450-mediated metabolism pathway between the NPV-infected and allicin combined with NPV-treated groups. The silencing of CYP340AA1 through RNA interference significantly increased the mortality of larvae infected with SeMNPV. This investigation indicates that allicin might be a potential candidate for improving the performance of the NPV against insect herbivores and identifies that CYP340AA1 gene is important in this process.
{"title":"Allicin impacts the susceptibility of Spodoptera exigua to nucleopolyhedrovirus","authors":"Jin-Yan Wang, Jie-Xian Jiang, Neng-Neng Fan, Hua-Wu Wu, Xiang-Yun Ji, Nian-Feng Wan, You-Ming Hou","doi":"10.1007/s10340-024-01830-w","DOIUrl":"https://doi.org/10.1007/s10340-024-01830-w","url":null,"abstract":"<p>Plant secondary metabolites are crucial in affecting the interactions between insect herbivores and entomoviruses. However, there is limited knowledge regarding the impact of such metabolites on the susceptibility of insect herbivores to entomoviruses. In this study, we adopted the allicin, caterpillars (<i>Spodoptera exigua</i>) and nucleopolyhedrovirus (SeMNPV) as a system, and found that allicin significantly increased the mortality of <i>S. exigua</i> larvae infected with SeMNPV by 36.03–59.45% when infected with the virus at a concentration of 2.12 × 10<sup>3</sup> OB·mL<sup>−1</sup>. Furthermore, NPV-infected larvae together treated with allicin inhibited the growth and development of larvae, comparing to individual NPV-infected larvae. Notably, we observed a significant enrichment of differentially expressed genes involved in the cytochrome P450-mediated metabolism pathway between the NPV-infected and allicin combined with NPV-treated groups. The silencing of CYP340AA1 through RNA interference significantly increased the mortality of larvae infected with SeMNPV. This investigation indicates that allicin might be a potential candidate for improving the performance of the NPV against insect herbivores and identifies that CYP340AA1 gene is important in this process.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"5 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1007/s10340-024-01834-6
Fengnian Wu, Zehan Dai, Min Shi, Jianjian Huang, Hui Zhu, Yuzhong Zheng, Zikai Chen, Xiuhong Li, Xiaoling Deng, Eduardo G. P. Fox
Diaphorina citri is the vector of “Candidatus Liberibacter asiaticus” (CLas), a bacterium associated with the citrus disease known as Huanglongbing (HLB). Previous mitochondrial genome (i.e. mitogenome) population analyses revealed the prevalence of two major mitochondrial groups (MGs) of D. citri in China, separated by elevation gradients. We assessed the population diversity of D. citri from 54 major citrus-producing areas within 11 provinces/regions of China. Additionally, endosymbiont genomes were assembled for “Ca. Carsonella ruddii” (CaCr) and “Ca. Profftella armatura” (CaPa) from next-generation sequencing of 31 new Chinese samples. Most of the D. citri diversity came from single nucleotide polymorphisms (SNPs) within five mitochondrial genes: nad3, cox2, rrnL, cob, and atp6. Nine SNPs clustered the analyzed D. citri mitogenomes into three major MGs comprising seven subgroups. Independent phylogenetic trees were generated for the endosymbionts CaCr and CaPa, and a CaPa plasmid, supporting the patterns obtained for D. citri mitogenomes while adding complexity layers. Genomic data from CaCr, CaPa, along with the plasmids from CaPa contribute to the genetic diversity—consisting of 68 SNPs and two genomic gaps—reproducing phylogenetic structures outlined by previous mitochondrial genomic studies. Additionally, both the mitogenomes and the endosymbiont genomes revealed subgroups within the original MG clusters, based on further 154 SNPs and 17 gaps. Thus, the combined genomic approach reveals further aspects about population diversity and natural history of this invasive species. Further understanding of D. citri and its endosymbionts can, therefore, aid D. citri HLB management protocols and help forecast territorial expansion events.
{"title":"Tracking the geographical distribution of the Asian citrus psyllid Diaphorina citri throughout China using mitogenomes and endosymbionts","authors":"Fengnian Wu, Zehan Dai, Min Shi, Jianjian Huang, Hui Zhu, Yuzhong Zheng, Zikai Chen, Xiuhong Li, Xiaoling Deng, Eduardo G. P. Fox","doi":"10.1007/s10340-024-01834-6","DOIUrl":"https://doi.org/10.1007/s10340-024-01834-6","url":null,"abstract":"<p><i>Diaphorina citri</i> is the vector of “<i>Candidatus</i> Liberibacter asiaticus” (CLas), a bacterium associated with the citrus disease known as Huanglongbing (HLB). Previous mitochondrial genome (i.e. mitogenome) population analyses revealed the prevalence of two major mitochondrial groups (MGs) of <i>D. citri</i> in China, separated by elevation gradients. We assessed the population diversity of <i>D. citri</i> from 54 major citrus-producing areas within 11 provinces/regions of China. Additionally, endosymbiont genomes were assembled for “<i>Ca.</i> Carsonella ruddii” (<i>Ca</i>Cr) and “<i>Ca.</i> Profftella armatura” (<i>Ca</i>Pa) from next-generation sequencing of 31 new Chinese samples. Most of the <i>D. citri</i> diversity came from single nucleotide polymorphisms (SNPs) within five mitochondrial genes: <i>nad3</i>, <i>cox2</i>, <i>rrnL</i>, <i>cob</i>, and <i>atp6</i>. Nine SNPs clustered the analyzed <i>D. citri</i> mitogenomes into three major MGs comprising seven subgroups. Independent phylogenetic trees were generated for the endosymbionts <i>Ca</i>Cr and <i>Ca</i>Pa, and a <i>Ca</i>Pa plasmid, supporting the patterns obtained for <i>D. citri</i> mitogenomes while adding complexity layers. Genomic data from <i>Ca</i>Cr, <i>Ca</i>Pa, along with the plasmids from <i>Ca</i>Pa contribute to the genetic diversity—consisting of 68 SNPs and two genomic gaps—reproducing phylogenetic structures outlined by previous mitochondrial genomic studies. Additionally, both the mitogenomes and the endosymbiont genomes revealed subgroups within the original MG clusters, based on further 154 SNPs and 17 gaps. Thus, the combined genomic approach reveals further aspects about population diversity and natural history of this invasive species. Further understanding of <i>D. citri</i> and its endosymbionts can, therefore, aid <i>D. citri</i> HLB management protocols and help forecast territorial expansion events.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"5 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1007/s10340-024-01833-7
Yifei Song, Haowen Zhang, Kongming Wu
Since 2018, increased infestation by the fall armyworm Spodoptera frugiperda (FAW), an invasive pest worldwide, has negatively affected Asian crop production. Seasonal migratory activities drive regional outbreaks of this pest, but it remains unclear whether there is direct transboundary movement between East Asian and South Asian regions. From 2019 to 2023, FAW moth movements were monitored in Ruili of Yunnan Province, a city at the border area of China and Myanmar which is located in the insect migratory route between China and South Asian countries such as India and Bangladesh. The results showed that there was regular seasonal migratory activity of the pest, which could be divided into spring–summer (April–June) and autumn (October) peak migration periods. Further analysis using trajectory simulation model indicated that the FAW moths in spring–summer migration mostly come from Myanmar, the northeastern states of India and Bangladesh, and returns to the three countries in autumn from Southwest China. Our study clarifies the regional migration pattern of the FAW moth in China and South-Southeast Asia, providing a theoretical basis for constructing a regional early warning and management systems of this pest.
{"title":"Transboundary migration of Spodoptera frugiperda between China and the South-Southeast Asian region","authors":"Yifei Song, Haowen Zhang, Kongming Wu","doi":"10.1007/s10340-024-01833-7","DOIUrl":"https://doi.org/10.1007/s10340-024-01833-7","url":null,"abstract":"<p>Since 2018, increased infestation by the fall armyworm <i>Spodoptera frugiperda</i> (FAW), an invasive pest worldwide, has negatively affected Asian crop production. Seasonal migratory activities drive regional outbreaks of this pest, but it remains unclear whether there is direct transboundary movement between East Asian and South Asian regions. From 2019 to 2023, FAW moth movements were monitored in Ruili of Yunnan Province, a city at the border area of China and Myanmar which is located in the insect migratory route between China and South Asian countries such as India and Bangladesh. The results showed that there was regular seasonal migratory activity of the pest, which could be divided into spring–summer (April–June) and autumn (October) peak migration periods. Further analysis using trajectory simulation model indicated that the FAW moths in spring–summer migration mostly come from Myanmar, the northeastern states of India and Bangladesh, and returns to the three countries in autumn from Southwest China. Our study clarifies the regional migration pattern of the FAW moth in China and South-Southeast Asia, providing a theoretical basis for constructing a regional early warning and management systems of this pest.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"42 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1007/s10340-024-01831-9
Andrea Belén Dulbecco, Débora Elizabeth Moriconi, Fernanda Cingolani, Eliana Nieves, Luis Diambra, Nicolás Pedrini
The stink bugs Edessa meditabunda, Piezodorus guildinii, and Diceraeus furcatus (Hemiptera: Pentatomidae) are major pests in the Argentinean core area of soybean production. A detailed molecular genetics comprehension of how these insects perceive odorants and respond to semiochemicals and how they detoxify chemical pesticides and plant compounds are essential to improve their management strategies. We first assembled and compared the transcriptomes from E. meditabunda, P. guildinii, and D. furcatus. Regarding sequence similarity, P. guildinii and D. furcatus are closer to each other than E. meditabunda. Then, we characterized the multigene families of odorant binding proteins (OBPs) and cytochrome P450 monooxygenases (CYP). A total of 29, 38, and 39 unigenes encoding for OBP were obtained in E. meditabunda, P. guildinii, and D. furcatus, respectively, divided into classical OBPs and plus-C OBPs. A total of 72, 63, and 76 unigenes encoding for CYP were found in E. meditabunda, P. guildinii, and D. furcatus, respectively, which were further classified into 24 families and 47 subfamilies. On the other hand, we performed for the first time RNA interference in vivo by dsRNA injection in E. meditabunda, suggesting that this molecular tool can be exploited in future physiological and functional studies in this species.
蝽象 Edessa meditabunda、Piezodorus guildinii 和 Diceraeus furcatus(半翅目:五蠹科)是阿根廷大豆生产核心区的主要害虫。详细了解这些昆虫如何感知气味和对半化学物质做出反应,以及它们如何对化学农药和植物化合物进行解毒,对于改进其管理策略至关重要。我们首先组装并比较了 E. meditabunda、P. guildinii 和 D. furcatus 的转录组。就序列相似性而言,P. guildinii 和 D. furcatus 比 E. meditabunda 更为接近。然后,我们对气味结合蛋白(OBPs)和细胞色素 P450 单加氧酶(CYP)的多基因家族进行了鉴定。在 E. meditabunda、P. guildinii 和 D. furcatus 中分别获得了 29、38 和 39 个编码 OBP 的单基因,分为经典 OBP 和 plus-C OBP。在 E. meditabunda、P. guildinii 和 D. furcatus 中分别发现了 72、63 和 76 个编码 CYP 的单基因,并进一步将其分为 24 个科和 47 个亚科。另一方面,我们首次在 E. meditabunda 中通过注射 dsRNA 进行了体内 RNA 干扰,这表明这一分子工具可用于该物种未来的生理和功能研究。
{"title":"Exploring multigene families of odorant binding proteins and cytochrome P450 monooxygenases in the stink bug pest complex through comparative transcriptomics","authors":"Andrea Belén Dulbecco, Débora Elizabeth Moriconi, Fernanda Cingolani, Eliana Nieves, Luis Diambra, Nicolás Pedrini","doi":"10.1007/s10340-024-01831-9","DOIUrl":"https://doi.org/10.1007/s10340-024-01831-9","url":null,"abstract":"<p>The stink bugs <i>Edessa meditabunda</i>, <i>Piezodorus guildinii</i>, and <i>Diceraeus furcatus</i> (Hemiptera: Pentatomidae) are major pests in the Argentinean core area of soybean production. A detailed molecular genetics comprehension of how these insects perceive odorants and respond to semiochemicals and how they detoxify chemical pesticides and plant compounds are essential to improve their management strategies. We first assembled and compared the transcriptomes from <i>E. meditabunda</i>, <i>P. guildinii</i>, and <i>D. furcatus</i>. Regarding sequence similarity, <i>P. guildinii</i> and <i>D. furcatus</i> are closer to each other than <i>E. meditabunda.</i> Then, we characterized the multigene families of odorant binding proteins (OBPs) and cytochrome P450 monooxygenases (CYP). A total of 29, 38, and 39 unigenes encoding for OBP were obtained in <i>E. meditabunda</i>, <i>P. guildinii</i>, and <i>D. furcatus</i>, respectively, divided into classical OBPs and plus-C OBPs. A total of 72, 63, and 76 unigenes encoding for CYP were found in <i>E. meditabunda</i>, <i>P. guildinii</i>, and <i>D. furcatus</i>, respectively, which were further classified into 24 families and 47 subfamilies. On the other hand, we performed for the first time RNA interference in vivo by dsRNA injection in <i>E. meditabunda</i>, suggesting that this molecular tool can be exploited in future physiological and functional studies in this species.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"10 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1007/s10340-024-01832-8
Annet Namuddu, Osnat Malka, Susan Seal, Sharon van Brunschot, Richard Kabaalu, Christopher Omongo, Shai Morin, John Colvin
Since the 1990s, the cryptic whitefly (Bemisia tabaci) has been linked to severe viral disease pandemics affecting cassava, a crucial staple crop in eastern Africa. This surge in whitefly populations has also been observed in other crops and uncultivated plants. While previous surveys have connected the increase on cassava to two specific populations, SSA1 and SSA2, the dynamics behind the population growth on other plants remain unclear. Additionally, other B. tabaci species, including EA1, IO, MED, SSA9, and SSA10, have been found on cassava in smaller numbers. This study aimed to identify the host plants that support the growth and development of different B. tabaci in Uganda by collecting fourth-instar nymphs from cassava and 20 other common host plants. Host transfer experiments were conducted to test the ability of seven species (EA1, MEAM1, MED-Africa Silver Leafing (ASL), SSA1-subgroup1, SSA1-Hoslundia, SSA6, and SSA12) to develop on cassava. The identities of the nymphs were determined using partial mitochondrial cytochrome oxidase 1 sequences. Twelve B. tabaci species were identified, including two novel species, based on the 3.5% nucleotide sequence divergence. Cassava was colonised by SSA1-SG1, SSA1-SG2, and SSA2. The most prevalent species were SSA1-SG1, MED-ASL, and SSA13, which were also the most polyphagous, colonising multiple plant species. Several whitefly species colonised specific weeds, such as Aspilia africana and Commelina benghalensis. The polyphagous nature of these species supports continuous habitats and virus reservoirs. Effective management of whitefly populations in eastern Africa requires an integrated approach that considers their polyphagy and the environmental factors sustaining host plants.
{"title":"Is polyphagy of a specific cryptic Bemisia tabaci species driving the high whitefly populations on cassava in eastern Africa?","authors":"Annet Namuddu, Osnat Malka, Susan Seal, Sharon van Brunschot, Richard Kabaalu, Christopher Omongo, Shai Morin, John Colvin","doi":"10.1007/s10340-024-01832-8","DOIUrl":"https://doi.org/10.1007/s10340-024-01832-8","url":null,"abstract":"<p>Since the 1990s, the cryptic whitefly (<i>Bemisia tabaci</i>) has been linked to severe viral disease pandemics affecting cassava, a crucial staple crop in eastern Africa. This surge in whitefly populations has also been observed in other crops and uncultivated plants. While previous surveys have connected the increase on cassava to two specific populations, SSA1 and SSA2, the dynamics behind the population growth on other plants remain unclear. Additionally, other <i>B</i>. <i>tabaci</i> species, including EA1, IO, MED, SSA9, and SSA10, have been found on cassava in smaller numbers. This study aimed to identify the host plants that support the growth and development of different <i>B</i>. <i>tabaci</i> in Uganda by collecting fourth-instar nymphs from cassava and 20 other common host plants. Host transfer experiments were conducted to test the ability of seven species (EA1, MEAM1, MED-Africa Silver Leafing (ASL), SSA1-subgroup1, SSA1-Hoslundia, SSA6, and SSA12) to develop on cassava. The identities of the nymphs were determined using partial <i>mitochondrial cytochrome oxidase 1</i> sequences. Twelve <i>B</i>. <i>tabaci</i> species were identified, including two novel species, based on the 3.5% nucleotide sequence divergence. Cassava was colonised by SSA1-SG1, SSA1-SG2, and SSA2. The most prevalent species were SSA1-SG1, MED-ASL, and SSA13, which were also the most polyphagous, colonising multiple plant species. Several whitefly species colonised specific weeds, such as <i>Aspilia africana</i> and <i>Commelina benghalensis</i>. The polyphagous nature of these species supports continuous habitats and virus reservoirs. Effective management of whitefly populations in eastern Africa requires an integrated approach that considers their polyphagy and the environmental factors sustaining host plants.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"62 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1007/s10340-024-01829-3
June Gorrochategui-Ortega, Marta Muñoz-Colmenero, Egoitz Galartza, Andone Estonba, Iratxe Zarraonaindia
The Varroa destructor mite causes severe losses of Apis mellifera colonies, requiring recurring treatments. One such treatment is oxalic acid (OA), considered ecological. However, it is unclear whether OA affects the honey bee gut microbiota or other hive-associated microbiotas. Herein, we studied the effect of three OA treatments (trickling at 2.1% or 4.2%, and sublimation through Varrox®) upon microbial communities associated with workers’ gut, hive bee bread and pupae, sampled from conventionally or ecologically managed colonies under different anthropization levels (located in urban, rural or mountainous landscapes). We hypothesized that treatment with OA would impact the diversity and composition of bacteria and/or eukaryotic communities, and that the effect would be dose-dependent and specific to the beehive niche. Results showed that the microbiomes of apiaries under different anthropization levels and management strategies differed prior to OA application. Neither the bacterial nor the fungal communities of bee bread and pupae shifted due to OA treatment. Independent of the dosage and the application method (trickling or sublimation), OA induced slight compositional changes in the bacterial profiles of honeybee guts. Those changes were stronger the higher the anthropization (in colonies from urban areas under conventional management). OA treatment reduced the relative abundance of several pathogens, such as Nosema ceranae, and decreased the overall bacterial diversity down to values found in less anthropized colonies. Thus, our results suggest that, aside from managing Varroa infestations, OA could have beneficial effects for stressed colonies while not impairing honey bee resilience from a microbial point of view.
Varroa 破坏螨会导致蜂群遭受严重损失,需要反复治疗。草酸(OA)被认为是一种生态疗法。然而,目前还不清楚草酸是否会影响蜜蜂肠道微生物群或其他与蜂巢相关的微生物群。在此,我们研究了三种 OA 处理方法(2.1% 或 4.2% 的滴滤法,以及通过 Varrox® 升华法)对工蜂肠道、蜂巢蜜蜂面包和蛹相关微生物群落的影响,这些微生物群落取自不同人类化水平下(位于城市、农村或山区)的传统或生态管理蜂群。我们假设,用 OA 处理会影响细菌和/或真核生物群落的多样性和组成,而且这种影响将与剂量有关,并对蜂巢生态位具有特异性。结果表明,在施用 OA 之前,不同人类化水平和管理策略下的蜂场的微生物组存在差异。蜂粮和蜂蛹中的细菌和真菌群落均未因OA处理而发生变化。与用量和施用方法(滴注或升华)无关,OA会引起蜜蜂内脏细菌组成的轻微变化。人类化程度越高(常规管理下来自城市地区的蜂群),这些变化就越大。OA处理降低了几种病原体(如蜂毒)的相对丰度,并使整体细菌多样性降至人类化程度较低的蜂群中的数值。因此,我们的研究结果表明,OA除了能控制瓦罗虫的侵扰外,还能对受到压力的蜂群产生有益的影响,同时从微生物的角度来看,也不会损害蜜蜂的恢复能力。
{"title":"Colonies under dysbiosis benefit from oxalic acid application: the role of landscape and beekeeping practices in microbiota response to treatment","authors":"June Gorrochategui-Ortega, Marta Muñoz-Colmenero, Egoitz Galartza, Andone Estonba, Iratxe Zarraonaindia","doi":"10.1007/s10340-024-01829-3","DOIUrl":"https://doi.org/10.1007/s10340-024-01829-3","url":null,"abstract":"<p>The <i>Varroa destructor</i> mite causes severe losses of <i>Apis mellifera</i> colonies<i>,</i> requiring recurring treatments. One such treatment is oxalic acid (OA), considered ecological. However, it is unclear whether OA affects the honey bee gut microbiota or other hive-associated microbiotas. Herein, we studied the effect of three OA treatments (trickling at 2.1% or 4.2%, and sublimation through Varrox®) upon microbial communities associated with workers’ gut, hive bee bread and pupae, sampled from conventionally or ecologically managed colonies under different anthropization levels (located in urban, rural or mountainous landscapes). We hypothesized that treatment with OA would impact the diversity and composition of bacteria and/or eukaryotic communities, and that the effect would be dose-dependent and specific to the beehive niche. Results showed that the microbiomes of apiaries under different anthropization levels and management strategies differed prior to OA application. Neither the bacterial nor the fungal communities of bee bread and pupae shifted due to OA treatment. Independent of the dosage and the application method (trickling or sublimation), OA induced slight compositional changes in the bacterial profiles of honeybee guts. Those changes were stronger the higher the anthropization (in colonies from urban areas under conventional management). OA treatment reduced the relative abundance of several pathogens, such as <i>Nosema ceranae,</i> and decreased the overall bacterial diversity down to values found in less anthropized colonies. Thus, our results suggest that, aside from managing Varroa infestations, OA could have beneficial effects for stressed colonies while not impairing honey bee resilience from a microbial point of view.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"18 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1007/s10340-024-01816-8
T. D’Addabbo, S. Laquale, P. Veronico, P. Avato, M. P. Argentieri
The activity of Cinnamomum cassia essential oil (EO) and (E)-cinnamaldehyde was investigated on the phytoparasitic species Meloidogyne incognita, Globodera rostochiensis, and Xiphinema index. Juveniles (J2) or eggs of M. incognita and G. rostochiensis and mixed-age specimens of X. index were exposed to 12.5–100 µg mL−1 concentrations of the two products. The suppressiveness of soil treatments with 100–800 mg kg−1 soil rates of the C. cassia EO and (E)-cinnamaldehyde to M. incognita and G. rostochiensis was assessed on potted tomato and potato, respectively. A 24-h exposure to a 12.5 µg mL−1 solution of (E)-cinnamaldehyde resulted in more than 68% mortality of M. incognita J2, while a poor mortality occurred at the same concentration of the whole EO. The mortality of G. rostochiensis J2 ranged 39 and 42%, respectively, since after a 4-h exposure to a 12.5 µg mL−1 solution of both products. All the X. index specimens died after a 48- and 8-h exposure to a 100 µg mL−1 solution of the EO and (E)-cinnamaldehyde, respectively. Egg hatch was reduced by more than 90% after exposing the M incognita egg masses or the G. rostochiensis cysts to 800 µg mL−1 concentration of both EO and (E)-cinnamaldehyde for 24 and 96 h, respectively. The infestation of M. incognita and G. rostochiensis on tomato and potato, respectively, was significantly reduced by all soil treatments with both products, though (E)-cinnamaldehyde generally resulted more suppressive than the whole EO to both nematode species. According to these results, C. cassia EO and (E)-cinnamaldehyde could be suggested as a potential source of new environment-friendly nematicides.
研究了肉桂精油(EO)和(E)-肉桂醛对植物寄生虫 Meloidogyne incognita、Globodera rostochiensis 和 Xiphinema index 的活性。将 M. incognita 和 G. rostochiensis 的幼虫(J2)或卵以及 X. index 的混合年龄标本暴露于 12.5-100 µg mL-1 浓度的这两种产品中。在盆栽番茄和马铃薯上分别评估了土壤处理中 100-800 mg kg-1 决明子环氧乙烷和(E)-肉桂醛对 M. incognita 和 G. rostochiensis 的抑制作用。暴露于 12.5 µg mL-1 的(E)-肉桂醛溶液 24 小时后,M. incognita J2 的死亡率超过 68%,而相同浓度的全环氧乙烷的死亡率较低。G. rostochiensis J2 与这两种产品的 12.5 µg mL-1 溶液接触 4 小时后,死亡率分别为 39% 和 42%。所有 X. index 标本分别在接触 100 µg mL-1 的环氧乙烷和(E)-肉桂醛溶液 48 小时和 8 小时后死亡。将 M. incognita 卵块或 G. rostochiensis 囊蚴分别暴露于 800 µg mL-1 浓度的环氧乙烷和(E)-肉桂醛溶液中 24 小时和 96 小时后,卵孵化率降低了 90% 以上。番茄和马铃薯上的 M. incognita 和 G. rostochiensis 的侵染在使用这两种产品的所有土壤处理中均显著减少,但(E)-肉桂醛对这两种线虫的抑制作用通常比全部环氧乙烷更强。根据这些结果,决明子环氧乙烷和(E)-肉桂醛可作为新型环境友好型杀线虫剂的潜在来源。
{"title":"Nematicidal activity of the essential oil from Cinnamomum cassia and (E)-cinnamaldehyde against phytoparasitic nematodes","authors":"T. D’Addabbo, S. Laquale, P. Veronico, P. Avato, M. P. Argentieri","doi":"10.1007/s10340-024-01816-8","DOIUrl":"https://doi.org/10.1007/s10340-024-01816-8","url":null,"abstract":"<p>The activity of <i>Cinnamomum cassia</i> essential oil (EO) and <i>(E)-</i>cinnamaldehyde was investigated on the phytoparasitic species <i>Meloidogyne incognita</i>, <i>Globodera rostochiensis</i>, and <i>Xiphinema index</i>. Juveniles (J2) or eggs of <i>M</i>. <i>incognita</i> and <i>G</i>. <i>rostochiensis</i> and mixed-age specimens of <i>X</i>. <i>index</i> were exposed to 12.5–100 µg mL<sup>−1</sup> concentrations of the two products. The suppressiveness of soil treatments with 100–800 mg kg<sup>−1</sup> soil rates of the <i>C. cassia</i> EO and <i>(E)-</i>cinnamaldehyde to <i>M. incognita</i> and <i>G. rostochiensis</i> was assessed on potted tomato and potato, respectively. A 24-h exposure to a 12.5 µg mL<sup>−1</sup> solution of <i>(E)</i>-cinnamaldehyde resulted in more than 68% mortality of <i>M. incognita</i> J2, while a poor mortality occurred at the same concentration of the whole EO. The mortality of <i>G. rostochiensis</i> J2 ranged 39 and 42%, respectively, since after a 4-h exposure to a 12.5 µg mL<sup>−1</sup> solution of both products. All the <i>X. index</i> specimens died after a 48- and 8-h exposure to a 100 µg mL<sup>−1</sup> solution of the EO and <i>(E)</i>-cinnamaldehyde, respectively. Egg hatch was reduced by more than 90% after exposing the <i>M incognita</i> egg masses or the <i>G. rostochiensis</i> cysts to 800 µg mL<sup>−1</sup> concentration of both EO and <i>(E)</i>-cinnamaldehyde for 24 and 96 h, respectively. The infestation of <i>M. incognita</i> and <i>G. rostochiensis</i> on tomato and potato, respectively, was significantly reduced by all soil treatments with both products, though <i>(E)-</i>cinnamaldehyde generally resulted more suppressive than the whole EO to both nematode species. According to these results, <i>C. cassia</i> EO and <i>(E)</i>-cinnamaldehyde could be suggested as a potential source of new environment-friendly nematicides.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"54 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}