Pub Date : 2024-11-11DOI: 10.1088/1361-648X/ad882d
Angus Heafield, Mark Wilson
Amorphous boron nitride (a-BN) is modelled over a wide range of densities using a relatively simple potential model augmented with site charges. The local topology (defined, for example, through the total nearest-neighbour coordination number), appears near-constant across a wide range of densities and site charges. Furthermore,totalscattering andtotalpair distribution functions also show few changes as a function of either density or site charge. Variation of the site charges directly controls the level of site (rather than topological) disorder meaning that although total pair functions may be near-constant, the underlying partial contributions may be very different. Direct contact is made with both experiment and (more recent) density-functional theory-based modelling work.
{"title":"Topological and site disorder in boron nitride networks.","authors":"Angus Heafield, Mark Wilson","doi":"10.1088/1361-648X/ad882d","DOIUrl":"10.1088/1361-648X/ad882d","url":null,"abstract":"<p><p>Amorphous boron nitride (a-BN) is modelled over a wide range of densities using a relatively simple potential model augmented with site charges. The local topology (defined, for example, through the total nearest-neighbour coordination number), appears near-constant across a wide range of densities and site charges. Furthermore,<i>total</i>scattering and<i>total</i>pair distribution functions also show few changes as a function of either density or site charge. Variation of the site charges directly controls the level of site (rather than topological) disorder meaning that although total pair functions may be near-constant, the underlying partial contributions may be very different. Direct contact is made with both experiment and (more recent) density-functional theory-based modelling work.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1088/1361-648X/ad912d
Haim Diamant, Erdal C Oguz
We revisit the equilibrium statistical mechanics of a classical fluid of point-like particles with repulsive power-law pair interactions, focusing on density and energy fluctuations at finite temperature. Such long-range interactions, decaying with inter-particle distance $r$ as $1/r^s$ in $d$ dimensions, are known to fall into two qualitatively different categories. For $sd$ (``weakly" long-range interactions) screening and hyperuniformity do not occur. Using scaling arguments, variational analysis, and Monte Carlo simulations, we find another qualitative distinction. For $sgeq d/2$ the strong repulsion at short distances leads to enhanced small-wavelength density fluctuations, decorrelating particle positions. This prevents indefinitely negative entropy and large energy fluctuations. The distinct behaviors for $sgeq d/2$ and $s
{"title":"Fluids with power-law repulsion: Hyperuniformity and energy fluctuations.","authors":"Haim Diamant, Erdal C Oguz","doi":"10.1088/1361-648X/ad912d","DOIUrl":"https://doi.org/10.1088/1361-648X/ad912d","url":null,"abstract":"<p><p>We revisit the equilibrium statistical mechanics of a classical fluid of point-like particles with repulsive power-law pair interactions, focusing on density and energy fluctuations at finite temperature. Such long-range interactions, decaying with inter-particle distance $r$ as $1/r^s$ in $d$ dimensions, are known to fall into two qualitatively different categories. For $s<d$ (``strongly\" long-range interactions) there are screening of correlations and suppression of large-wavelength density fluctuations (hyperuniformity). These effects eliminate density modes with arbitrarily large energy. For $s>d$ (``weakly\" long-range interactions) screening and hyperuniformity do not occur. Using scaling arguments, variational analysis, and Monte Carlo simulations, we find another qualitative distinction. For $sgeq d/2$ the strong repulsion at short distances leads to enhanced small-wavelength density fluctuations, decorrelating particle positions. This prevents indefinitely negative entropy and large energy fluctuations. The distinct behaviors for $sgeq d/2$ and $s<d/2$ give rise to qualitatively different dependencies of the entropy, heat capacity, and energy fluctuations on temperature and density. We investigate the effect of introducing an upper cutoff distance in the pair-potential. The effect of the cutoff on energy fluctuations is strong for $s<d/2$ and negligible for $s geq d/2$.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1088/1361-648X/ad899c
Héctor M Iga-Buitrón, Tom G Mackay, Akhlesh Lakhtakia
Closed-form expressions were established for depolarization dyadics for a truncated sphere and a truncated spheroid, both electrically small, immersed in a uniaxial dielectric ambient medium. These depolarization dyadics were used to develop the Bruggeman homogenization formalism to predict the relative permittivity dyadic of a homogenized composite material (HCM) arising from a randomly distributed mixture of oriented particles shaped as truncated spheres and spheroids. Unlike other homogenization formalisms, most notably the Maxwell Garnett formalism, the Bruggeman formalism is not restricted to composites containing dilute volume fractions of constituent particles. Numerical investigations highlighted the anisotropy of the HCM and its relation to the shapes of the constituent particles and their volume fractions. Specifically, greater degrees of HCM anisotropy arise from constituent particles whose shapes deviate more from spherical, especially for mid-range volume fractions.
{"title":"Bruggeman homogenization of a particulate composite material comprising truncated spheres and spheroids.","authors":"Héctor M Iga-Buitrón, Tom G Mackay, Akhlesh Lakhtakia","doi":"10.1088/1361-648X/ad899c","DOIUrl":"10.1088/1361-648X/ad899c","url":null,"abstract":"<p><p>Closed-form expressions were established for depolarization dyadics for a truncated sphere and a truncated spheroid, both electrically small, immersed in a uniaxial dielectric ambient medium. These depolarization dyadics were used to develop the Bruggeman homogenization formalism to predict the relative permittivity dyadic of a homogenized composite material (HCM) arising from a randomly distributed mixture of oriented particles shaped as truncated spheres and spheroids. Unlike other homogenization formalisms, most notably the Maxwell Garnett formalism, the Bruggeman formalism is not restricted to composites containing dilute volume fractions of constituent particles. Numerical investigations highlighted the anisotropy of the HCM and its relation to the shapes of the constituent particles and their volume fractions. Specifically, greater degrees of HCM anisotropy arise from constituent particles whose shapes deviate more from spherical, especially for mid-range volume fractions.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1088/1361-648X/ad7dc6
George Edwin Cragg
Transport through grain boundaries in polycrystals is described from first principles using quantum scattering theory, explicitly including Feshbach resonances to account for intermittently trapped electronic surface states. An effectiveT-matrix is derived then used to calculate the electrical conductivity which exhibits breakdown, a sharp increase at a critical intergrain bias. Under typical conditions where the electron thermal energy,kBT, is much less than the intergrain barrier height,φb, the electrical conductivity has the formσ∼T-1/2e-φb/kBT. Temperature dependence of the conductivity is also considered for thermal energies much larger than the applied bias, as may be realized in tightly-compressed grains.
{"title":"Intergrain scattering in polycrystals.","authors":"George Edwin Cragg","doi":"10.1088/1361-648X/ad7dc6","DOIUrl":"10.1088/1361-648X/ad7dc6","url":null,"abstract":"<p><p>Transport through grain boundaries in polycrystals is described from first principles using quantum scattering theory, explicitly including Feshbach resonances to account for intermittently trapped electronic surface states. An effective<i>T</i>-matrix is derived then used to calculate the electrical conductivity which exhibits breakdown, a sharp increase at a critical intergrain bias. Under typical conditions where the electron thermal energy,kBT, is much less than the intergrain barrier height,φb, the electrical conductivity has the formσ∼T-1/2e-φb/kBT. Temperature dependence of the conductivity is also considered for thermal energies much larger than the applied bias, as may be realized in tightly-compressed grains.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1088/1361-648X/ad88c5
O V Kibis, M V Boev, I V Iorsh, V M Kovalev
In the framework of the Floquet theory of periodically driven quantum systems, it is demonstrated that irradiation of graphene by a circularly polarized electromagnetic field induces an attractive area in the core of repulsive potentials. Consequently, the quasi-stationary electron states bound by the repulsive potentials appear. The difference between such field-induced states in graphene and usual systems with the parabolic dispersion of electrons is discussed and possible manifestations of these states in electronic transport and optical spectra of graphene are considered.
{"title":"Electronic states bound by repulsive potentials in graphene irradiated by a circularly polarized electromagnetic field.","authors":"O V Kibis, M V Boev, I V Iorsh, V M Kovalev","doi":"10.1088/1361-648X/ad88c5","DOIUrl":"10.1088/1361-648X/ad88c5","url":null,"abstract":"<p><p>In the framework of the Floquet theory of periodically driven quantum systems, it is demonstrated that irradiation of graphene by a circularly polarized electromagnetic field induces an attractive area in the core of repulsive potentials. Consequently, the quasi-stationary electron states bound by the repulsive potentials appear. The difference between such field-induced states in graphene and usual systems with the parabolic dispersion of electrons is discussed and possible manifestations of these states in electronic transport and optical spectra of graphene are considered.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1088/1361-648X/ad882b
Xiyu Chen, Shuai Dong, Zhi-Cheng Wang
Over the past five years, significant progress has been made in understanding the magnetism and electronic properties of CaAl2Si2-type EuM2X2(M= Zn, Cd;X= P, As) compounds. Prior theoretical work and experimental studies suggested that EuCd2As2had the potential to host rich topological phases, particularly an ideal magnetic Weyl semimetal state when the spins are polarized along thecaxis. However, this perspective is challenged by recent experiments utilizing samples featuring ultra-low carrier densities, as well as meticulous calculations employing various approaches. Nonetheless, the EuM2X2family still exhibit numerous novel properties that remain to be satisfactorily explained, such as the giant nonlinear anomalous Hall effect and the colossal magnetoresistance effect. Moreover, EuM2X2compounds can be transformed from semiconducting antiferromagnets to metallic ferromagnets by introducing a small number of carriers or applying external pressure, and a further increase in the ferromagnetic transition temperature can be achieved by reducing the unit cell volume. These features make the EuM2X2family a fertile platform for studying the interplay between magnetism and charge transport, and an excellent candidate for applications in spintronics. This paper presents a comprehensive review of the magnetic and transport behaviors of EuM2X2compounds with varying carrier densities, as well as the current insights into these characteristics. An outlook for future research opportunities is also provided.
{"title":"Recent advances in understanding and manipulating magnetic and electronic properties of Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>(<i>M</i>= Zn, Cd;<i>X</i>= P, As).","authors":"Xiyu Chen, Shuai Dong, Zhi-Cheng Wang","doi":"10.1088/1361-648X/ad882b","DOIUrl":"10.1088/1361-648X/ad882b","url":null,"abstract":"<p><p>Over the past five years, significant progress has been made in understanding the magnetism and electronic properties of CaAl<sub>2</sub>Si<sub>2</sub>-type Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>(<i>M</i>= Zn, Cd;<i>X</i>= P, As) compounds. Prior theoretical work and experimental studies suggested that EuCd<sub>2</sub>As<sub>2</sub>had the potential to host rich topological phases, particularly an ideal magnetic Weyl semimetal state when the spins are polarized along the<i>c</i>axis. However, this perspective is challenged by recent experiments utilizing samples featuring ultra-low carrier densities, as well as meticulous calculations employing various approaches. Nonetheless, the Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>family still exhibit numerous novel properties that remain to be satisfactorily explained, such as the giant nonlinear anomalous Hall effect and the colossal magnetoresistance effect. Moreover, Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>compounds can be transformed from semiconducting antiferromagnets to metallic ferromagnets by introducing a small number of carriers or applying external pressure, and a further increase in the ferromagnetic transition temperature can be achieved by reducing the unit cell volume. These features make the Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>family a fertile platform for studying the interplay between magnetism and charge transport, and an excellent candidate for applications in spintronics. This paper presents a comprehensive review of the magnetic and transport behaviors of Eu<i>M</i><sub>2</sub><i>X</i><sub>2</sub>compounds with varying carrier densities, as well as the current insights into these characteristics. An outlook for future research opportunities is also provided.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1088/1361-648X/ad899b
Mohammed Hadbi, Kamel Demmouche, Djallal Eddine Mellah, Jose Coutinho
This study presents a theoretical investigation into the phase stability, electronic, and optical properties of off-stoichiometricZrxTi1-xIrSb(x= 0, 0.0625, 0.1875, 0.25, 0.50, 0.75, 1) compounds. Using first-principles calculations, we explore how varying Zr and Ti concentrations can tune the electronic and optical properties of these half-Heusler alloys. The Structural, optical, and electronic properties were meticulously analyzed with both the GGA-PBE and Meta-GGA-SCAN approximations, as implemented in the ViennaAb initioSimulation Package (VASP). The dynamical stability of these compounds was assessed using the Phonopy package. Our findings reveal that these alloys exhibit semiconductor behavior with tunable band gaps, and their optical properties show significant variation across different compositions, particularly in the visible light range. The compounds also demonstrate robust dynamical stability, indicating their potential for practical applications in electronic and optoelectronic devices. These results underscore the versatility ofZrxTi1-xIrSballoys and highlight their promise for next-generation technology.
本研究从理论上探讨了非计量 Zr_{x}Ti_{1-x}IrSb(x = 0, 0.0625, 0.1875, 0.25, 0.50, 0.75, 1)化合物的相稳定性、电子和光学特性。通过第一原理计算,我们探索了不同的 Zr 和 Ti 浓度如何调整这些半赫斯勒合金的电子和光学特性。我们使用维也纳 Ab initio 仿真软件包 (VASP) 中的 GGA-PBE 和 Meta-GGA-SCAN 近似方法对结构、光学和电子特性进行了细致的分析。我们还使用 Phonopy 软件包评估了这些化合物的动态稳定性。我们的研究结果表明,这些合金表现出具有可调带隙的半导体行为,而且它们的光学特性在不同成分中表现出显著的差异,尤其是在可见光范围内。这些化合物还表现出强大的动态稳定性,表明它们具有在电子和光电设备中实际应用的潜力。这些结果突出了 Zr_{x}Ti_{1-x}IrSb 合金的多功能性,并彰显了它们在下一代技术中的应用前景。
{"title":"Theoretical insights into off-stoichiometric Zr<sub>(x)</sub>Ti<sub>(1-x)</sub>IrSb half-Heusler alloys: a first principle calculations.","authors":"Mohammed Hadbi, Kamel Demmouche, Djallal Eddine Mellah, Jose Coutinho","doi":"10.1088/1361-648X/ad899b","DOIUrl":"10.1088/1361-648X/ad899b","url":null,"abstract":"<p><p>This study presents a theoretical investigation into the phase stability, electronic, and optical properties of off-stoichiometricZrxTi1-xIrSb(<i>x</i>= 0, 0.0625, 0.1875, 0.25, 0.50, 0.75, 1) compounds. Using first-principles calculations, we explore how varying Zr and Ti concentrations can tune the electronic and optical properties of these half-Heusler alloys. The Structural, optical, and electronic properties were meticulously analyzed with both the GGA-PBE and Meta-GGA-SCAN approximations, as implemented in the Vienna<i>Ab initio</i>Simulation Package (VASP). The dynamical stability of these compounds was assessed using the Phonopy package. Our findings reveal that these alloys exhibit semiconductor behavior with tunable band gaps, and their optical properties show significant variation across different compositions, particularly in the visible light range. The compounds also demonstrate robust dynamical stability, indicating their potential for practical applications in electronic and optoelectronic devices. These results underscore the versatility ofZrxTi1-xIrSballoys and highlight their promise for next-generation technology.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the past few decades, two-dimensional materials gained huge deliberation due to their outstanding electronic and heat transport properties. These materials have effective applications in many areas such as photodetectors, battery electrodes, thermoelectrics, etc. In this work, we have calculated structural, electronic, optical, and thermoelectric (TE) properties of KCuX (X = S, Se, Te) monolayers (MLs) with the help of first-principles-based calculations and semi-classical Boltzmann transport equation. The phonon dispersion calculations demonstrate the dynamical stability of the KCuX (X = S, Se, Te) MLs. Our results show that the MLs of KCuX (X = S, Se, Te) are semiconductors with band gaps of 0.193 eV, 0.26 eV, and 1.001 eV respectively, and therefore they are suitable for photovoltaic applications. The optical analysis illustrates that the maximum absorption peaks of the KCuX (X = S, Se, Te) MLs are located in the visible and ultraviolet regions, which may serve as a promising candidate for designing advanced optoelectronic devices. Furthermore, thermoelectric properties of the KCuS and KCuSe MLs, including Seebeck coefficient, electrical conductivity, electronic thermal conductivity, power factor and figure of merit are calculated at different temperatures of 300 K, 600 K, and 800 K. Additionally, we also focus on the analysis of Grüneisen parameter and various scattering rates to further explain their ultra-low thermal conductivity. Our results show that KCuS and KCuSe possess ultra-low lattice thermal conductivity value of 0.15Wm-1K-1and 0.06Wm-1K-1respectively, which is lower than those of recently reported KAgSe (0.26Wm-1K-1at 300 K) and TlCuSe (0.44Wm-1K-1at 300 K), indicating towards the large value of ZT. These materials are found to possess desirable thermoelectric and optical properties, making them suitable candidates for efficient thermoelectric and optoelectronic device applications.
在过去几十年里,二维(2-D)材料因其出色的电子和热传输特性而受到广泛关注。这些材料在光电探测器、电池电极、热电等许多领域都有有效的应用。在这项工作中,我们借助基于第一原理的计算和半经典的波尔兹-曼输运方程(BTE),计算了 KCuX(X = S、Se、Te)单层材料(MLs)的结构、电子、光学和热电特性。声子色散计算证明了 KCuX(X = S、Se、Te)单层膜的动态稳定性。结果表明,KCuX(X = S、Se、Te)单层是带隙分别为 0.193 eV、0.26 eV 和 1.001 eV 的半导体,因此适合光伏应用。光学分析表明,KCuX(X = S、Se、Te)MLs 的最大吸收峰位于可见光和紫外线(UV)区域,可作为设计先进光电器件的候选材料。此外,我们还计算了 KCuS 和 KCuSe ML 在 300 K、600 K 和 800 K 不同温度下的热电性能,包括 See- beck 系数、电导率、电子热导率、功率因数和优点系数。我们的研究结果表明,KCuS 和 KCuSe 的超低晶格热导率值分别为 0.15 Wm-1K-1 和 0.06 Wm-1K-1,低于最近报道的 KAgSe(300 K 时为 0.26 Wm-1K-1)和 TlCuSe(300 K 时为 0.44 Wm-1K-1),这表明它们的 ZT 值很大。这些材料具有理想的热电和光学特性,因此适合应用于高效热电和光电设备。
{"title":"Electronic, optical and thermoelectric behavior of KCuX (X = S, Se, Te) monolayers.","authors":"Neelam Gupta, Shubham Kumar, Shivani Rani, Puja Kumari, Subhasmita Kar, Rajeev Ahuja, Soumya Jyoti Ray","doi":"10.1088/1361-648X/ad84a8","DOIUrl":"10.1088/1361-648X/ad84a8","url":null,"abstract":"<p><p>In the past few decades, two-dimensional materials gained huge deliberation due to their outstanding electronic and heat transport properties. These materials have effective applications in many areas such as photodetectors, battery electrodes, thermoelectrics, etc. In this work, we have calculated structural, electronic, optical, and thermoelectric (TE) properties of KCuX (X = S, Se, Te) monolayers (MLs) with the help of first-principles-based calculations and semi-classical Boltzmann transport equation. The phonon dispersion calculations demonstrate the dynamical stability of the KCuX (X = S, Se, Te) MLs. Our results show that the MLs of KCuX (X = S, Se, Te) are semiconductors with band gaps of 0.193 eV, 0.26 eV, and 1.001 eV respectively, and therefore they are suitable for photovoltaic applications. The optical analysis illustrates that the maximum absorption peaks of the KCuX (X = S, Se, Te) MLs are located in the visible and ultraviolet regions, which may serve as a promising candidate for designing advanced optoelectronic devices. Furthermore, thermoelectric properties of the KCuS and KCuSe MLs, including Seebeck coefficient, electrical conductivity, electronic thermal conductivity, power factor and figure of merit are calculated at different temperatures of 300 K, 600 K, and 800 K. Additionally, we also focus on the analysis of Grüneisen parameter and various scattering rates to further explain their ultra-low thermal conductivity. Our results show that KCuS and KCuSe possess ultra-low lattice thermal conductivity value of 0.15Wm-1K-1and 0.06Wm-1K-1respectively, which is lower than those of recently reported KAgSe (0.26Wm-1K-1at 300 K) and TlCuSe (0.44Wm-1K-1at 300 K), indicating towards the large value of ZT. These materials are found to possess desirable thermoelectric and optical properties, making them suitable candidates for efficient thermoelectric and optoelectronic device applications.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1088/1361-648X/ad8b91
Jade Barreto, Paul S Bagus, Fernando Stavale
In this work, we performed a detailed analysis of the x-ray photoemission spectroscopy (XPS) of the Mn 2ppeak for Mn3O4(001) thin films. This is a challenging task since Mn3O4is composed of two different cations, Mn2+at tetrahedral and Mn3+at octahedral sites, which both contribute to the XPS spectra. The oxide spectra consist of many multiplets arising from the angular momentum coupling of the open Mn 2pand 3dshells, thus increasing the spectrums' complexity. Moreover, the energy spacing and intensities of the different multiplets also reflect the covalent mixing between Mn 3dand O 2pshells. However, we show that a detailed analysis, which provides relevant information about the cations in the oxide structure, is possible. We prepared experimentally different Mn3O4films on Au(111), and their structure was monitored with the diffraction pattern obtained with low-energy electron diffraction. The Mn 2pspectra were fit, guided by cluster model theoretical predictions, and checked for films prepared at different oxygen partial pressures. Therefore, we could observe the Mn2+and Mn3+cations' relative concentration in the Mn 2pmains peaks.
{"title":"Multiplet XPS analysis of the Mn 2<i>p</i>for Mn<sub>3</sub>O<sub>4</sub>thin films.","authors":"Jade Barreto, Paul S Bagus, Fernando Stavale","doi":"10.1088/1361-648X/ad8b91","DOIUrl":"10.1088/1361-648X/ad8b91","url":null,"abstract":"<p><p>In this work, we performed a detailed analysis of the x-ray photoemission spectroscopy (XPS) of the Mn 2<i>p</i>peak for Mn<sub>3</sub>O<sub>4</sub>(001) thin films. This is a challenging task since Mn<sub>3</sub>O<sub>4</sub>is composed of two different cations, Mn<sup>2+</sup>at tetrahedral and Mn<sup>3+</sup>at octahedral sites, which both contribute to the XPS spectra. The oxide spectra consist of many multiplets arising from the angular momentum coupling of the open Mn 2<i>p</i>and 3<i>d</i>shells, thus increasing the spectrums' complexity. Moreover, the energy spacing and intensities of the different multiplets also reflect the covalent mixing between Mn 3<i>d</i>and O 2<i>p</i>shells. However, we show that a detailed analysis, which provides relevant information about the cations in the oxide structure, is possible. We prepared experimentally different Mn<sub>3</sub>O<sub>4</sub>films on Au(111), and their structure was monitored with the diffraction pattern obtained with low-energy electron diffraction. The Mn 2<i>p</i>spectra were fit, guided by cluster model theoretical predictions, and checked for films prepared at different oxygen partial pressures. Therefore, we could observe the Mn<sup>2+</sup>and Mn<sup>3+</sup>cations' relative concentration in the Mn 2<i>p</i>mains peaks.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Designing and manufacturing multi-component alloy samples with ultralow magnetic susceptibilityχ(<10-6cm3mol-1) is crucial for producing high-quality test masses to successfully detect gravitational wave in the LISA and TianQin projects. Previous research has idenfified AuPt alloys as a potential candidate for test masses, capable of achieving ultralow magnetic susceptibility that meets the requirements from both theoretical and experimental perspectives. In this study, we discover that the structural strain regulation (i.e. tensile and stress) can effectively optimize and further reduce the ultralow magnetic susceptibility of AuPt allpys, while fully understanding their underlying physical mechanisms. More importantly, even when doped with trace elements such as Fe or Bi impurity, strain regulation can still effectively reduce the magnetic susceptibility of the doped AuPt alloy to the desired range. Our theoretical calculations also reveal that, when the strain ratioηis controlled within in a relatively small range (<2.0%), the regulaton effect on the ultralow magnetic susceptibilities of pure or doped-AuPt alloys remains significant. This property is beneficial for achieving ultralow or even near-zero magnetic susceptibility in real AuPt alloy samples.
设计和制造具有超低磁感应强度 χ (
{"title":"Ultralow magnetic susceptibility in pure and Fe(Bi)-doped Au-Pt alloys improved by structural strain regulation.","authors":"Jun-Tao Ma, Ye-Lei Xiao, Butian Zhang, Shun Wang, Ze-Bing Zhou, Hua-Hua Fu","doi":"10.1088/1361-648X/ad8ab8","DOIUrl":"10.1088/1361-648X/ad8ab8","url":null,"abstract":"<p><p>Designing and manufacturing multi-component alloy samples with ultralow magnetic susceptibility<i>χ</i>(<10<sup>-6</sup>cm<sup>3</sup>mol<sup>-1</sup>) is crucial for producing high-quality test masses to successfully detect gravitational wave in the LISA and TianQin projects. Previous research has idenfified AuPt alloys as a potential candidate for test masses, capable of achieving ultralow magnetic susceptibility that meets the requirements from both theoretical and experimental perspectives. In this study, we discover that the structural strain regulation (i.e. tensile and stress) can effectively optimize and further reduce the ultralow magnetic susceptibility of AuPt allpys, while fully understanding their underlying physical mechanisms. More importantly, even when doped with trace elements such as Fe or Bi impurity, strain regulation can still effectively reduce the magnetic susceptibility of the doped AuPt alloy to the desired range. Our theoretical calculations also reveal that, when the strain ratio<i>η</i>is controlled within in a relatively small range (<2.0%), the regulaton effect on the ultralow magnetic susceptibilities of pure or doped-AuPt alloys remains significant. This property is beneficial for achieving ultralow or even near-zero magnetic susceptibility in real AuPt alloy samples.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}