首页 > 最新文献

Journal of Photopolymer Science and Technology最新文献

英文 中文
Removal of Novolac Photoresist with Various Concentrations of Photo-active Compound Using H2/O2 Mixtures Activated on a Tungsten Hot-wire Catalyst 钨热丝催化剂活化H2/O2混合物去除不同浓度光活性化合物Novolac光刻胶
IF 0.8 4区 化学 Q3 Materials Science Pub Date : 2021-06-11 DOI: 10.2494/photopolymer.34.499
Koki Akita, Shota Sogo, Ryusei Sogame, Masashi Yamamoto, S. Nagaoka, H. Umemoto, H. Horibe
{"title":"Removal of Novolac Photoresist with Various Concentrations of Photo-active Compound Using H2/O2 Mixtures Activated on a Tungsten Hot-wire Catalyst","authors":"Koki Akita, Shota Sogo, Ryusei Sogame, Masashi Yamamoto, S. Nagaoka, H. Umemoto, H. Horibe","doi":"10.2494/photopolymer.34.499","DOIUrl":"https://doi.org/10.2494/photopolymer.34.499","url":null,"abstract":"","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73181321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glass Microchannel Formation by Mycelium 菌丝体形成玻璃微通道
IF 0.8 4区 化学 Q3 Materials Science Pub Date : 2021-06-11 DOI: 10.2494/photopolymer.34.381
D. Sato, F. Tsumori
We propose a new method to fabricate complicated 3-dimensional glass microchannels. We employed mycelium for this purpose. Mycelium possesses a complicated, fine and three-dimensional network structure. We cultivated mycelium in silica compounds, and subsequently silica compounds were heated to be sintered. During this heating process, all the mycelium was burned off and remained a fine network channel structure in a transparent glass chip. We also tried to control of the growth of this mycelium. The growth could be changed by growth conditions. In this work, we used cyclic mechanical stimuli for this purpose. We set cyclic tensile strain to the sample under growing mycelium. This cyclic strain caused anisotropic growth of the mycelium in some condition.
提出了一种制备复杂三维玻璃微通道的新方法。我们利用菌丝体来达到这个目的。菌丝体具有复杂精细的三维网状结构。我们在二氧化硅化合物中培养菌丝体,然后将二氧化硅化合物加热烧结。在加热过程中,所有菌丝体都被烧毁,在透明的玻璃芯片中保留了精细的网状通道结构。我们也试图控制这种菌丝体的生长。生长条件可以改变其生长。在这项工作中,我们为此目的使用了循环机械刺激。我们对生长菌丝下的样品设置循环拉伸应变。这种循环应变在一定条件下引起菌丝的各向异性生长。
{"title":"Glass Microchannel Formation by Mycelium","authors":"D. Sato, F. Tsumori","doi":"10.2494/photopolymer.34.381","DOIUrl":"https://doi.org/10.2494/photopolymer.34.381","url":null,"abstract":"We propose a new method to fabricate complicated 3-dimensional glass microchannels. We employed mycelium for this purpose. Mycelium possesses a complicated, fine and three-dimensional network structure. We cultivated mycelium in silica compounds, and subsequently silica compounds were heated to be sintered. During this heating process, all the mycelium was burned off and remained a fine network channel structure in a transparent glass chip. We also tried to control of the growth of this mycelium. The growth could be changed by growth conditions. In this work, we used cyclic mechanical stimuli for this purpose. We set cyclic tensile strain to the sample under growing mycelium. This cyclic strain caused anisotropic growth of the mycelium in some condition.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76239773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoluminescence Properties of Copolyimides Containing Naphthalene Core and Analysis of Excitation Energy Transfer between the Dianhydride Moieties 含萘核共聚亚胺的光致发光性质及二氢基间激发能转移分析
IF 0.8 4区 化学 Q3 Materials Science Pub Date : 2021-06-11 DOI: 10.2494/photopolymer.34.423
Marina Doi, Koichiro Muto, Mayuko Nara, Naiqiang Liang, K. Sano, Hiroaki Mori, R. Ishige, S. Ando
The photoluminescence (PL) properties of semi-aromatic polyimide (PI) films and their model compounds (MCs) prepared from dianhydrides having a rigid naphthalene core were analyzed. The PMMA-dispersed MC and copolymerized PI (CoPI) films derived from 2,3,6,7-naphthalenetetracarboxylic dianhydride (NTDA) exhibited long-lived phosphorescence owing to the suppression of molecular motion by the rigidity of a naphthalene core. Additionally, the PMMA-dispersed MC and the CoPI films derived from 1,5-dibromo derivative of NTDA (DBrNT) exhibited room-temperature phosphorescence due to the enhancement of spin-orbit coupling by bromine atoms. The photophysical processes of the CoPI films prepared from NTDA/DBrNT and 4,4'-oxydiphtalic dianhydride (ODPA) in which the latter absorption band is located at a shorter wavelength than the former were analyzed. After UV irradiation, efficient excitation energy transfer occurs from the ODPA to NTDA/DBrNT moieties, and only the emission from the latter moieties was observed. These results demonstrate that the CoPI films derived from two dianhydrides absorbing different UV wavelengths can be used as spectral conversion films that convert a wide range of UV-light into longer wavelength visible
研究了以刚性萘为核心的二酐为原料制备的半芳香族聚酰亚胺(PI)薄膜及其模型化合物的光致发光性能。由2,3,6,7-萘四羧酸二酐(NTDA)制备的聚甲基丙烯酸甲酯(pmma)分散MC和共聚PI (CoPI)薄膜由于萘核的刚性抑制了分子的运动而表现出长寿命的磷光。此外,pmma分散的MC和由NTDA的1,5-二溴衍生物(DBrNT)衍生的CoPI薄膜由于溴原子增强了自旋-轨道耦合而表现出室温磷光。分析了NTDA/DBrNT与4,4′-氧化二苯二酐(ODPA)制备的CoPI膜的光物理过程,后者的吸收波段位于较短的波长。紫外辐照后,ODPA向NTDA/DBrNT发生了有效的激发能转移,仅观察到后一部分的发射。这些结果表明,由两种二酐吸收不同紫外波长的CoPI膜可以作为光谱转换膜,将大范围的紫外转换成波长较长的可见光
{"title":"Photoluminescence Properties of Copolyimides Containing Naphthalene Core and Analysis of Excitation Energy Transfer between the Dianhydride Moieties","authors":"Marina Doi, Koichiro Muto, Mayuko Nara, Naiqiang Liang, K. Sano, Hiroaki Mori, R. Ishige, S. Ando","doi":"10.2494/photopolymer.34.423","DOIUrl":"https://doi.org/10.2494/photopolymer.34.423","url":null,"abstract":"The photoluminescence (PL) properties of semi-aromatic polyimide (PI) films and their model compounds (MCs) prepared from dianhydrides having a rigid naphthalene core were analyzed. The PMMA-dispersed MC and copolymerized PI (CoPI) films derived from 2,3,6,7-naphthalenetetracarboxylic dianhydride (NTDA) exhibited long-lived phosphorescence owing to the suppression of molecular motion by the rigidity of a naphthalene core. Additionally, the PMMA-dispersed MC and the CoPI films derived from 1,5-dibromo derivative of NTDA (DBrNT) exhibited room-temperature phosphorescence due to the enhancement of spin-orbit coupling by bromine atoms. The photophysical processes of the CoPI films prepared from NTDA/DBrNT and 4,4'-oxydiphtalic dianhydride (ODPA) in which the latter absorption band is located at a shorter wavelength than the former were analyzed. After UV irradiation, efficient excitation energy transfer occurs from the ODPA to NTDA/DBrNT moieties, and only the emission from the latter moieties was observed. These results demonstrate that the CoPI films derived from two dianhydrides absorbing different UV wavelengths can be used as spectral conversion films that convert a wide range of UV-light into longer wavelength visible","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87514520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Investigating High Opacity and Increased Activation Energy in the Multi-Trigger Resist 多触发抗蚀剂中高不透明度和增加活化能的研究
IF 0.8 4区 化学 Q3 Materials Science Pub Date : 2021-06-11 DOI: 10.2494/photopolymer.34.75
C. Popescu, G. O'Callaghan, A. McClelland, J. Roth, T. Lada, T. Kudo, R. Dammel, M. Moinpour, Y. Cao, A.P.G. Robinson
by NMP; yet current resist formulations purposely add tertiary amines to prevent dark losses. Recent research has demonstrated that amides can accelerate deprotonation of radical cations [14] that form along the polymer backbone upon exposure to EUV. This feature helps to prevent recombination with other radicals and increases acid generation, thereby enhancing sensitivity [15]. Our goal in these studies was to design peptoids that incorporate chemical moieties adapted to functions such as adhesion to the underlying substrate, etch resistance, and solubility switching. As the peptoids examined are 10-mers, the structure of the side chains is also carefully chosen to avoid crystallization and tune the glass transition temperature. Protecting groups serving as solubility switches were selected with the goal of groups that possessed a high radical cation acidity, a property previously shown to correlate closely with the sensitivity of EUV resists. While these initial results show the potential of peptoids as photoresist materials, the ongoing research is still at an initial stage.
NMP;然而,目前的抗蚀剂配方故意添加叔胺以防止暗损。最近的研究表明,在暴露于EUV时,酰胺可以加速沿聚合物主链形成的自由基阳离子的去质子化[14]。这一特性有助于防止与其他自由基的重组,增加酸的生成,从而提高敏感性[15]。我们在这些研究中的目标是设计包含适应功能的化学成分的类肽,如与底层底物的粘附性,耐蚀刻性和溶解度转换。由于检测的类肽是10米,侧链的结构也被仔细选择,以避免结晶和调整玻璃化转变温度。作为溶解度开关的保护基团被选择为具有高自由基阳离子酸度的基团,这一特性先前被证明与EUV电阻的敏感性密切相关。虽然这些初步结果显示了类肽作为光刻胶材料的潜力,但正在进行的研究仍处于初级阶段。
{"title":"Investigating High Opacity and Increased Activation Energy in the Multi-Trigger Resist","authors":"C. Popescu, G. O'Callaghan, A. McClelland, J. Roth, T. Lada, T. Kudo, R. Dammel, M. Moinpour, Y. Cao, A.P.G. Robinson","doi":"10.2494/photopolymer.34.75","DOIUrl":"https://doi.org/10.2494/photopolymer.34.75","url":null,"abstract":"by NMP; yet current resist formulations purposely add tertiary amines to prevent dark losses. Recent research has demonstrated that amides can accelerate deprotonation of radical cations [14] that form along the polymer backbone upon exposure to EUV. This feature helps to prevent recombination with other radicals and increases acid generation, thereby enhancing sensitivity [15]. Our goal in these studies was to design peptoids that incorporate chemical moieties adapted to functions such as adhesion to the underlying substrate, etch resistance, and solubility switching. As the peptoids examined are 10-mers, the structure of the side chains is also carefully chosen to avoid crystallization and tune the glass transition temperature. Protecting groups serving as solubility switches were selected with the goal of groups that possessed a high radical cation acidity, a property previously shown to correlate closely with the sensitivity of EUV resists. While these initial results show the potential of peptoids as photoresist materials, the ongoing research is still at an initial stage.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86154672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, Properties, and Photovoltaic Characteristics of Arch- and S-shaped Naphthobisthiadiazole-based Acceptors 拱形和s型萘双噻二唑基受体的合成、性质和光伏特性
IF 0.8 4区 化学 Q3 Materials Science Pub Date : 2021-06-11 DOI: 10.2494/photopolymer.34.285
Seihou Jinnai, Y. Ie
Fine-tuning physical properties by structural modification is important for developing organic semiconducting materials. In this work, we designed and synthesized new electron-accepting compounds containing or naphtho[1,2- c :5,6- c' ]bis[1,2,5]thiadiazole (NTz) groups as electron-accepting units; these units are structural isomers. The vNTz-based compounds have an arch-shaped molecular backbone with C 2v symmetry, whereas the NTz-based compound forms an S-shaped molecular backbone with C 2h symmetry. Property measurements showed unique behavior originating from the vNTz core. An organic solar cell comprising the vNTz-based compound and poly(3-hexylthiopehene) showed a power conversion efficiency of 2.06%. This result demonstrates the potential of vNTz as an electron-accepting unit in organic semiconducting materials.
通过结构修饰来微调物理性质是开发有机半导体材料的重要手段。本文设计并合成了以萘[1,2- c:5,6- c']二[1,2,5]噻二唑(NTz)为电子接受单位的新型电子接受化合物;这些单位是结构异构体。vntz基化合物具有c2v对称的拱形分子骨架,而ntz基化合物具有c2h对称的s形分子骨架。性能测量显示了vNTz核的独特行为。由vntz基化合物和聚(3-己基噻吩)组成的有机太阳能电池的功率转换效率为2.06%。这一结果证明了vNTz在有机半导体材料中作为电子接受单元的潜力。
{"title":"Synthesis, Properties, and Photovoltaic Characteristics of Arch- and S-shaped Naphthobisthiadiazole-based Acceptors","authors":"Seihou Jinnai, Y. Ie","doi":"10.2494/photopolymer.34.285","DOIUrl":"https://doi.org/10.2494/photopolymer.34.285","url":null,"abstract":"Fine-tuning physical properties by structural modification is important for developing organic semiconducting materials. In this work, we designed and synthesized new electron-accepting compounds containing or naphtho[1,2- c :5,6- c' ]bis[1,2,5]thiadiazole (NTz) groups as electron-accepting units; these units are structural isomers. The vNTz-based compounds have an arch-shaped molecular backbone with C 2v symmetry, whereas the NTz-based compound forms an S-shaped molecular backbone with C 2h symmetry. Property measurements showed unique behavior originating from the vNTz core. An organic solar cell comprising the vNTz-based compound and poly(3-hexylthiopehene) showed a power conversion efficiency of 2.06%. This result demonstrates the potential of vNTz as an electron-accepting unit in organic semiconducting materials.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89286889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Investigations of Matrix-Exposure Lithography Using Stacked Linear Arrays of Squared Optical Fibers 方形光纤堆叠线性阵列的矩阵曝光光刻技术研究
IF 0.8 4区 化学 Q3 Materials Science Pub Date : 2021-06-11 DOI: 10.2494/photopolymer.34.27
T. Horiuchi, Jun Watanabe, J. Iwasaki, Hiroshi Kobayashi
Plastic optical fiber matrices with squared ends were investigated. Such fiber matrices are particularly required for printing two dimensional code marks by using them as new lithography tools combining with light emitting diodes. A large number of fibers with a diameter of 500 µm were packed in an oblong slit of a jig, and fiber ends were simultaneously transformed into square shapes by heating the jig on a hotplate. Next, three linear arrays, each composed of 10 fibers, were simply stacked and bound without coating any adhesives and/or opaque films. It was anticipated that light leaks from neighbored bright fibers degraded the printed pattern qualities. However, checker patterns were normally printed without influenced by neighbored bright fibers when the fiber ends were projected on a wafer through a 1/10 projection lens. Considering the advantages, a regularly arranged 10×10 fiber matrix was fabricated on trial for demonstrating the availability of the matrix required for developing a matrix-exposure lithography system.
研究了端部为正方形的塑料光纤矩阵。这种光纤矩阵作为新型光刻工具与发光二极管相结合,特别需要用于打印二维代码标记。在跳汰器的长方形狭缝中填充大量直径为500µm的纤维,并在加热板上加热,同时将纤维端变形为方形。接下来,三个线性阵列,每个由10根纤维组成,简单地堆叠和结合,不涂任何粘合剂和/或不透明薄膜。预计从邻近的明亮纤维中漏出的光会降低印刷图案的质量。然而,当纤维末端通过1/10投影透镜投射到晶圆上时,通常不受相邻明亮纤维的影响而打印出格子图案。考虑到这些优点,我们在试验中制造了一个规则排列的10×10纤维基质,以证明开发基质曝光光刻系统所需基质的可用性。
{"title":"Investigations of Matrix-Exposure Lithography Using Stacked Linear Arrays of Squared Optical Fibers","authors":"T. Horiuchi, Jun Watanabe, J. Iwasaki, Hiroshi Kobayashi","doi":"10.2494/photopolymer.34.27","DOIUrl":"https://doi.org/10.2494/photopolymer.34.27","url":null,"abstract":"Plastic optical fiber matrices with squared ends were investigated. Such fiber matrices are particularly required for printing two dimensional code marks by using them as new lithography tools combining with light emitting diodes. A large number of fibers with a diameter of 500 µm were packed in an oblong slit of a jig, and fiber ends were simultaneously transformed into square shapes by heating the jig on a hotplate. Next, three linear arrays, each composed of 10 fibers, were simply stacked and bound without coating any adhesives and/or opaque films. It was anticipated that light leaks from neighbored bright fibers degraded the printed pattern qualities. However, checker patterns were normally printed without influenced by neighbored bright fibers when the fiber ends were projected on a wafer through a 1/10 projection lens. Considering the advantages, a regularly arranged 10×10 fiber matrix was fabricated on trial for demonstrating the availability of the matrix required for developing a matrix-exposure lithography system.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80625316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of Diffractive Waveplates by Scanning Wave Photopolymerization with Digital Light Processor 用数字光处理器扫描波光聚合法制备衍射波片
IF 0.8 4区 化学 Q3 Materials Science Pub Date : 2021-06-11 DOI: 10.2494/photopolymer.34.225
H. Nakamura, Y. Kobayashi, Me Ota, M. Aizawa, S. Kubo, A. Shishido
16. S. Yamaguchi, S. Tabuchi, S. Kawahara, and H. Murakami, Chem. Lett., 45 (2016) 463. 17. S. Yamaguchi, R. Nakanishi, M. Nanchi, S. Kawahara, and H. Murakami, Chem. Lett., 47 (2018) 344. 18. Y. Wang, F. Weng, J. Li, L. Lai, W. Yu, S. J. Severtson, and W.-J. Wang, ACS Omega, 3 (2018) 6945. 19. C. Fang and Z. Lin, Int. J. Adhes. Adhes., 61 (2015) 1. 20. C. Fang, Y. Jing, Y. Zong, and Z. Lin, J. Adhes. Sci. Technol., 31 (2017) 858. 21. Y. Wang, K. Jia, C. Xiang, J. Yang, X. Yao, and Z. Suo, ACS Appl. Mater. Interfaces, 11 (2019) 40749. 22. E. S. Kim, D. B. Song, K. H. Choi, J. H. Lee, D. H. Suh, and W. J. Choi, J. Polym. Sci., 58 (2020) 3358. 23. R. Vendamme, N. Schüwer, and W. Eevers, J. Appl. Polym. Sci., 131 (2014) 40669. 24. Q. Chen, Q. Yang, P. Gao, B. Chi, J. Nie, and Y. He, Ind. Eng. Chem. Res., 58 (2019) 2970. 25. P. Hao, T. Zhao, L. Wang, S. Liu, E. Tang, and X. Xu, Prog. Org. Coat., 137 (2019) 105281. 26. M. Koike, M. Aizawa, N. Akamatsu, A. Shishido, Y. Matsuzawa, and T. Yamamoto, Bull. Chem. Soc. Jpn., 93 (2020) 1588. 27. G.-S. Shim, J.-S. Kim, J.-H. Back, S.-W. Jang, J.-W. Park, H.-J. Kim, J.-S. Choi, and J.-S. Yeom, Int. J. Adhes. Adhes., 96 (2020) 102445. 28. P. Bednarczyk, K. Mozelewska, and Z. Czech, Int. J. Adhes. Adhes., 102 (2020) 102652. 29. K. Suyama and H. Tachi, J. Photopolym. Sci. Technol., 28 (2015) 45. Fabrication of Diffractive Waveplates by Scanning Wave Photopolymerization with Digital Light Processor
{"title":"Fabrication of Diffractive Waveplates by Scanning Wave Photopolymerization with Digital Light Processor","authors":"H. Nakamura, Y. Kobayashi, Me Ota, M. Aizawa, S. Kubo, A. Shishido","doi":"10.2494/photopolymer.34.225","DOIUrl":"https://doi.org/10.2494/photopolymer.34.225","url":null,"abstract":"16. S. Yamaguchi, S. Tabuchi, S. Kawahara, and H. Murakami, Chem. Lett., 45 (2016) 463. 17. S. Yamaguchi, R. Nakanishi, M. Nanchi, S. Kawahara, and H. Murakami, Chem. Lett., 47 (2018) 344. 18. Y. Wang, F. Weng, J. Li, L. Lai, W. Yu, S. J. Severtson, and W.-J. Wang, ACS Omega, 3 (2018) 6945. 19. C. Fang and Z. Lin, Int. J. Adhes. Adhes., 61 (2015) 1. 20. C. Fang, Y. Jing, Y. Zong, and Z. Lin, J. Adhes. Sci. Technol., 31 (2017) 858. 21. Y. Wang, K. Jia, C. Xiang, J. Yang, X. Yao, and Z. Suo, ACS Appl. Mater. Interfaces, 11 (2019) 40749. 22. E. S. Kim, D. B. Song, K. H. Choi, J. H. Lee, D. H. Suh, and W. J. Choi, J. Polym. Sci., 58 (2020) 3358. 23. R. Vendamme, N. Schüwer, and W. Eevers, J. Appl. Polym. Sci., 131 (2014) 40669. 24. Q. Chen, Q. Yang, P. Gao, B. Chi, J. Nie, and Y. He, Ind. Eng. Chem. Res., 58 (2019) 2970. 25. P. Hao, T. Zhao, L. Wang, S. Liu, E. Tang, and X. Xu, Prog. Org. Coat., 137 (2019) 105281. 26. M. Koike, M. Aizawa, N. Akamatsu, A. Shishido, Y. Matsuzawa, and T. Yamamoto, Bull. Chem. Soc. Jpn., 93 (2020) 1588. 27. G.-S. Shim, J.-S. Kim, J.-H. Back, S.-W. Jang, J.-W. Park, H.-J. Kim, J.-S. Choi, and J.-S. Yeom, Int. J. Adhes. Adhes., 96 (2020) 102445. 28. P. Bednarczyk, K. Mozelewska, and Z. Czech, Int. J. Adhes. Adhes., 102 (2020) 102652. 29. K. Suyama and H. Tachi, J. Photopolym. Sci. Technol., 28 (2015) 45. Fabrication of Diffractive Waveplates by Scanning Wave Photopolymerization with Digital Light Processor","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78358851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fundamental Evaluation of Resist on EUV Lithography at NewSUBARU Synchrotron Light Facility 新subaru同步加速器EUV光刻抗蚀剂的基本评价
IF 0.8 4区 化学 Q3 Materials Science Pub Date : 2021-06-11 DOI: 10.2494/photopolymer.34.49
Takeo Watanabe, T. Harada, Shinji Yamakawa
Extreme ultraviolet lithography was started to use for the production of 7-nm node-logic-semiconductor devices in 2019. And it was adapted to use for high volume manufacturing (HVM) of 5-nm logic devices in 2020. EUVL is required to be extended to use in 1.5-nm-node-device fabrications. However, it still has many technical issues. Especially, for EUV resists, simultaneous achievement of high sensitivity and low line edge width are required. To solve the EUV resist issue, the fundamental work using synchrotron in soft X-ray region is necessary. The fundamental evaluation study of EUV resist at NewSUBARU synchrotron light facility is described in this paper.
极紫外光刻技术于2019年开始用于生产7nm节点逻辑半导体器件。该芯片将于2020年用于5nm逻辑器件的大批量生产(HVM)。EUVL需要扩展到1.5 nm节点器件制造中使用。然而,它仍然存在许多技术问题。特别是对于极紫外光电阻,需要同时实现高灵敏度和低线边宽度。为了解决极紫外光阻问题,需要在软x射线区进行同步加速器的基础工作。本文介绍了在NewSUBARU同步加速器上进行的极紫外光阻基本评估研究。
{"title":"Fundamental Evaluation of Resist on EUV Lithography at NewSUBARU Synchrotron Light Facility","authors":"Takeo Watanabe, T. Harada, Shinji Yamakawa","doi":"10.2494/photopolymer.34.49","DOIUrl":"https://doi.org/10.2494/photopolymer.34.49","url":null,"abstract":"Extreme ultraviolet lithography was started to use for the production of 7-nm node-logic-semiconductor devices in 2019. And it was adapted to use for high volume manufacturing (HVM) of 5-nm logic devices in 2020. EUVL is required to be extended to use in 1.5-nm-node-device fabrications. However, it still has many technical issues. Especially, for EUV resists, simultaneous achievement of high sensitivity and low line edge width are required. To solve the EUV resist issue, the fundamental work using synchrotron in soft X-ray region is necessary. The fundamental evaluation study of EUV resist at NewSUBARU synchrotron light facility is described in this paper.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73888209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Impact of Water Treatment Reactor using TiO2-coated Micropillar Made by UV-NIL UV-NIL包覆二氧化钛微柱对水处理反应器的影响
IF 0.8 4区 化学 Q3 Materials Science Pub Date : 2021-06-11 DOI: 10.2494/photopolymer.34.127
Kazuki Daigo, Ryota Akama, N. Unno, S. Satake, J. Taniguchi
{"title":"Impact of Water Treatment Reactor using TiO2-coated Micropillar Made by UV-NIL","authors":"Kazuki Daigo, Ryota Akama, N. Unno, S. Satake, J. Taniguchi","doi":"10.2494/photopolymer.34.127","DOIUrl":"https://doi.org/10.2494/photopolymer.34.127","url":null,"abstract":"","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74002259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Bile Direct Stent Having Antifouling Properties by Atmospheric Pressure Low-Temperature Plasma 常压低温等离子体抗脏胆汁直接支架的研制
IF 0.8 4区 化学 Q3 Materials Science Pub Date : 2021-06-11 DOI: 10.2494/photopolymer.34.401
A. Sekiguchi, Masashi Yamamoto, T. Kumagai, Youichirou Mori, H. Minami, M. Aikawa, H. Horibe
Biomimetics (or biomimicry) is a field of technologies based on imitating various functions and properties of organisms. examined structure structures the scale nanoholes, the thin water is costly and unsuitable for mass production. To overcome these issues, we sought to develop elemental technologies for providing antifouling properties to biliary stents, which are made of polyethylenes (PEs), by forming nanostructures directly on the inner surface, using atmospheric pressure low-temperature plasma. We formed nanostructures on the inner walls of PE tubes of varying diameters under varying plasma conditions. We then examined the resulting structures and effects of the antifouling properties thus imparted.
仿生学(Biomimetics或biomimicry)是一门以模仿生物体的各种功能和特性为基础的技术领域。所研究的结构结构为尺度纳米孔,薄水结构成本高,不适合批量生产。为了克服这些问题,我们寻求开发基本技术,通过在聚乙烯(PEs)制成的胆道支架的内表面直接形成纳米结构,使用常压低温等离子体,为其提供防污性能。在不同的等离子体条件下,我们在不同直径的PE管内壁上形成了纳米结构。然后,我们研究了由此产生的防污性能的结构和效果。
{"title":"Development of Bile Direct Stent Having Antifouling Properties by Atmospheric Pressure Low-Temperature Plasma","authors":"A. Sekiguchi, Masashi Yamamoto, T. Kumagai, Youichirou Mori, H. Minami, M. Aikawa, H. Horibe","doi":"10.2494/photopolymer.34.401","DOIUrl":"https://doi.org/10.2494/photopolymer.34.401","url":null,"abstract":"Biomimetics (or biomimicry) is a field of technologies based on imitating various functions and properties of organisms. examined structure structures the scale nanoholes, the thin water is costly and unsuitable for mass production. To overcome these issues, we sought to develop elemental technologies for providing antifouling properties to biliary stents, which are made of polyethylenes (PEs), by forming nanostructures directly on the inner surface, using atmospheric pressure low-temperature plasma. We formed nanostructures on the inner walls of PE tubes of varying diameters under varying plasma conditions. We then examined the resulting structures and effects of the antifouling properties thus imparted.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84989692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Photopolymer Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1