Pub Date : 2021-06-11DOI: 10.2494/photopolymer.34.205
Mitsuaki Kobayashi, Yukihisa Okada, T. Shirai, O. Sawajiri, R. Gieger, M. Entezarian
and T. Sasaki. J. Photopolym. Sci. Technol., 25 . (2012) 389. 7. M. Ree, C-W. Chu, and M. J. Goldberg J. Appl. Phys., 75 (1994) 1410. The high purity requirements of materials used in semiconductor manufacturing are being pushed to unprecedented levels as demand for reliability in computer processors over increasingly longer lifetimes continues to rise. The production of these high purity chemicals requires new purification methods and technologies where the metal concentrations of low parts per billion (ppb) were effectively reduced to low parts per trillion (ppt). The new approach discussed in this paper would present a method for dividing the fluid through micro-channels that form tortuous pathways. These micro-channels allow for further dividing and converging of the fluid thereby presenting the metal species to the purifying surfaces throughout the porous matrix. The ion exchange capability was a function of the concentration and the presence of the species in the solution. Two ion exchange chemistries of strong acid and chelating were made into these structures and their purification performances were assessed and compared in terms of removal efficiencies. Furthermore, these two chemistries were evaluated in series to demonstrate the overall synergistic purification capabilities.
{"title":"Purification Method for Achieving Low Trace Metals in Ultra-High Purity Chemicals","authors":"Mitsuaki Kobayashi, Yukihisa Okada, T. Shirai, O. Sawajiri, R. Gieger, M. Entezarian","doi":"10.2494/photopolymer.34.205","DOIUrl":"https://doi.org/10.2494/photopolymer.34.205","url":null,"abstract":"and T. Sasaki. J. Photopolym. Sci. Technol., 25 . (2012) 389. 7. M. Ree, C-W. Chu, and M. J. Goldberg J. Appl. Phys., 75 (1994) 1410. The high purity requirements of materials used in semiconductor manufacturing are being pushed to unprecedented levels as demand for reliability in computer processors over increasingly longer lifetimes continues to rise. The production of these high purity chemicals requires new purification methods and technologies where the metal concentrations of low parts per billion (ppb) were effectively reduced to low parts per trillion (ppt). The new approach discussed in this paper would present a method for dividing the fluid through micro-channels that form tortuous pathways. These micro-channels allow for further dividing and converging of the fluid thereby presenting the metal species to the purifying surfaces throughout the porous matrix. The ion exchange capability was a function of the concentration and the presence of the species in the solution. Two ion exchange chemistries of strong acid and chelating were made into these structures and their purification performances were assessed and compared in terms of removal efficiencies. Furthermore, these two chemistries were evaluated in series to demonstrate the overall synergistic purification capabilities.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82212891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11DOI: 10.2494/photopolymer.34.35
Hiroshi Kobayashi, Tomoki Iwaoka, Kazuki Oi, T. Horiuchi
A new simple and low-cost optical lithography method utilizing speckles was developed for printing random patterns on surfaces of three-dimensinal objects with various shapes, and patterning characteristics were investigated by assembling a handmade exposure system. In the system, a laser beam was irradiated on a transparent diffuser plate, and generated speckles were projected onto a wafer coated with a resist. As a result, resist patterns with random shapes were successfully formed after the development. The size and number of patterns were controllable by adjusting the exposure time. Pattern sizes were between several tens microns and a few hundred microns. It was demonstrated also that the pattern sizes were controlled by changing the wafer position from the diffuser plate. However, the sizes and numbers of patterns were varied together when the exposure time or the distance between the diffuser and the wafer was changed.
{"title":"Research on a New Lithography Method Utilizing Laser Speckles for Printing Random Patterns","authors":"Hiroshi Kobayashi, Tomoki Iwaoka, Kazuki Oi, T. Horiuchi","doi":"10.2494/photopolymer.34.35","DOIUrl":"https://doi.org/10.2494/photopolymer.34.35","url":null,"abstract":"A new simple and low-cost optical lithography method utilizing speckles was developed for printing random patterns on surfaces of three-dimensinal objects with various shapes, and patterning characteristics were investigated by assembling a handmade exposure system. In the system, a laser beam was irradiated on a transparent diffuser plate, and generated speckles were projected onto a wafer coated with a resist. As a result, resist patterns with random shapes were successfully formed after the development. The size and number of patterns were controllable by adjusting the exposure time. Pattern sizes were between several tens microns and a few hundred microns. It was demonstrated also that the pattern sizes were controlled by changing the wafer position from the diffuser plate. However, the sizes and numbers of patterns were varied together when the exposure time or the distance between the diffuser and the wafer was changed.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82561383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11DOI: 10.2494/photopolymer.34.117
M. Murphy, N. Upadhyay, Munsaf Ali, James V. Passarelli, Jodi Grzeskowiak, Maximillian Weires, R. Brainard
Many antimony-carboxylate complexes containing polymerizable olefins are highly sensitive EUV photoresists. Herein we report two approaches by which we explored the reactivity of polymerizable olefin antimony carboxylate photoresists to improve lithographic performance. First, we explored the effect of replacing three phenyl groups with methyl groups in an effort to increase the relative concentration of olefins vs. size of the molecule. Second, we explored the effect of increasing the number of polymerizable olefins from two to five. This approach examines the use of tris(4-vinylphenyl)antimony-dicarboxylate complexes as photoresists and the developer chemistry capable of patterning highly crosslinked substrates.
{"title":"Polymerizable Olefins Groups in Antimony EUV Photoresists","authors":"M. Murphy, N. Upadhyay, Munsaf Ali, James V. Passarelli, Jodi Grzeskowiak, Maximillian Weires, R. Brainard","doi":"10.2494/photopolymer.34.117","DOIUrl":"https://doi.org/10.2494/photopolymer.34.117","url":null,"abstract":"Many antimony-carboxylate complexes containing polymerizable olefins are highly sensitive EUV photoresists. Herein we report two approaches by which we explored the reactivity of polymerizable olefin antimony carboxylate photoresists to improve lithographic performance. First, we explored the effect of replacing three phenyl groups with methyl groups in an effort to increase the relative concentration of olefins vs. size of the molecule. Second, we explored the effect of increasing the number of polymerizable olefins from two to five. This approach examines the use of tris(4-vinylphenyl)antimony-dicarboxylate complexes as photoresists and the developer chemistry capable of patterning highly crosslinked substrates.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89641671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11DOI: 10.2494/photopolymer.34.259
Monika Topa, J. Ortyl
Photopolymerization is an environmentally-friendly, non-destructive, safe and solvent-free method. Moreover it guarantees low energy consumption. Therefore the photopolymerization is used in many scientific disciplines, including dentistry for production photocurable dental materials. In this work, the new photoinitiating systems based on camphoroquinone (CQ) and iodonium salts with tosyl anion for initiation of photopolymerization of the acrylates monomers bisphenol A - glycidyl methacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA) was studied. As a reference, camphorquinone (CQ) and ethyl 4-(dimethylamino)benzoate (EDB) photoinitiating system was used.
{"title":"Novel Effective Photoinitiators for the Production of Dental Fillings","authors":"Monika Topa, J. Ortyl","doi":"10.2494/photopolymer.34.259","DOIUrl":"https://doi.org/10.2494/photopolymer.34.259","url":null,"abstract":"Photopolymerization is an environmentally-friendly, non-destructive, safe and solvent-free method. Moreover it guarantees low energy consumption. Therefore the photopolymerization is used in many scientific disciplines, including dentistry for production photocurable dental materials. In this work, the new photoinitiating systems based on camphoroquinone (CQ) and iodonium salts with tosyl anion for initiation of photopolymerization of the acrylates monomers bisphenol A - glycidyl methacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA) was studied. As a reference, camphorquinone (CQ) and ethyl 4-(dimethylamino)benzoate (EDB) photoinitiating system was used.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89833777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11DOI: 10.2494/photopolymer.34.111
Shinji Yamakawa, Ako Yamamoto, S. Yasui, Takeo Watanabe, T. Harada
Photopolym. Sci. Technol., 27 (2014) 623. 6. A. Sekiguchi, Y. Kono, and Y. Sensu, J. Photopolym. Sci. Technol., 16 (2003) 209. 7. M. Yanagihara, J. Cao, M. Yamamoto, A. Arai, S. Nakayama, T. Mizuide, and T. Namioka, Applied Optics, 30 (1991) 2807. 8. M. Yoshifuji, S. Niihara, T. Harada, and T. Watanabe. Jpn. J. Appl. Phys., 58 (2019). 9. Y. Fukushima, T. Watanabe, T. Harada, and H. Kinoshita. J. Photopolym. Sci. Technol., 22 (2009) 85. 10. T. Ishiguro, J. Tanaka, T. Harada, and T. Watanabe. J. Photopolym. Sci. Technol., 32 (2019) 333. 11. B. Cardineau, R. D. Re, H. Al-Mashat, M. Marnell, M. Vockenhuber, Y. Ekinci, C. Sarma, M. Neisser, D. A. Freedman, and R. L. Brainard, Proc. SPIE, 9051 (2014). 12. A. Sekiguchi, T. Harada, and T. Watanabe, Proc. SPIE, 10143 (2017). 13. A. Sekiguchi, Y. Matsumoto, M. Isono, M. Naito, Y. Utsumi, T. Harada, and T. Watanabe, Proc. SPIE, 10583 (2018). 14. F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, IEEE Trans. Electron Devices, 22 (1975) 445. 15. F. H. Dill, IEEE Trans. Electron Devices, 22 (1975) 440. Affinity Analysis of Photoacid Generator in the Thin Film of Chemical Amplification Resist by Contact Angle Measurement
{"title":"Affinity Analysis of Photoacid Generator in the Thin Film of Chemical Amplification Resist by Contact Angle Measurement","authors":"Shinji Yamakawa, Ako Yamamoto, S. Yasui, Takeo Watanabe, T. Harada","doi":"10.2494/photopolymer.34.111","DOIUrl":"https://doi.org/10.2494/photopolymer.34.111","url":null,"abstract":"Photopolym. Sci. Technol., 27 (2014) 623. 6. A. Sekiguchi, Y. Kono, and Y. Sensu, J. Photopolym. Sci. Technol., 16 (2003) 209. 7. M. Yanagihara, J. Cao, M. Yamamoto, A. Arai, S. Nakayama, T. Mizuide, and T. Namioka, Applied Optics, 30 (1991) 2807. 8. M. Yoshifuji, S. Niihara, T. Harada, and T. Watanabe. Jpn. J. Appl. Phys., 58 (2019). 9. Y. Fukushima, T. Watanabe, T. Harada, and H. Kinoshita. J. Photopolym. Sci. Technol., 22 (2009) 85. 10. T. Ishiguro, J. Tanaka, T. Harada, and T. Watanabe. J. Photopolym. Sci. Technol., 32 (2019) 333. 11. B. Cardineau, R. D. Re, H. Al-Mashat, M. Marnell, M. Vockenhuber, Y. Ekinci, C. Sarma, M. Neisser, D. A. Freedman, and R. L. Brainard, Proc. SPIE, 9051 (2014). 12. A. Sekiguchi, T. Harada, and T. Watanabe, Proc. SPIE, 10143 (2017). 13. A. Sekiguchi, Y. Matsumoto, M. Isono, M. Naito, Y. Utsumi, T. Harada, and T. Watanabe, Proc. SPIE, 10583 (2018). 14. F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, IEEE Trans. Electron Devices, 22 (1975) 445. 15. F. H. Dill, IEEE Trans. Electron Devices, 22 (1975) 440. Affinity Analysis of Photoacid Generator in the Thin Film of Chemical Amplification Resist by Contact Angle Measurement","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74224473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11DOI: 10.2494/photopolymer.34.11
X. Chevalier, Cindy Gomes Correia, Gwenaelle Pound-Lana, P. Bézard, M. Sérégé, C. Petit-Etienne, G. Gay, G. Cunge, Benjamin Cabannes-Boué, C. Nicolet, C. Navarro, I. Cayrefourcq, Marcus Müller, G. Hadziioannou, I. Iliopoulos, G. Fleury, M. Zelsmann
A concept of patternable top-coats dedicated to directed self-assembly of high- χ block copolymers is detailed, where the design enables a crosslinking reaction triggered by thermal or photo-activation. Nanostructured BCP areas with controlled domains orientation are selected through a straightforward top-coat lithography step with unique integration pathways. Additionally, the crosslinked nature of the material enables the suppression of the BCP dewetting, while exhibiting exceptional capabilities for the construction of 3D stacks.
{"title":"Multifunctional Top-Coats Strategy for DSA of High-χ Block Copolymers","authors":"X. Chevalier, Cindy Gomes Correia, Gwenaelle Pound-Lana, P. Bézard, M. Sérégé, C. Petit-Etienne, G. Gay, G. Cunge, Benjamin Cabannes-Boué, C. Nicolet, C. Navarro, I. Cayrefourcq, Marcus Müller, G. Hadziioannou, I. Iliopoulos, G. Fleury, M. Zelsmann","doi":"10.2494/photopolymer.34.11","DOIUrl":"https://doi.org/10.2494/photopolymer.34.11","url":null,"abstract":"A concept of patternable top-coats dedicated to directed self-assembly of high- χ block copolymers is detailed, where the design enables a crosslinking reaction triggered by thermal or photo-activation. Nanostructured BCP areas with controlled domains orientation are selected through a straightforward top-coat lithography step with unique integration pathways. Additionally, the crosslinked nature of the material enables the suppression of the BCP dewetting, while exhibiting exceptional capabilities for the construction of 3D stacks.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81238603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11DOI: 10.2494/photopolymer.34.133
T. Okabe, Katsuyuki Yatagawa, K. Fujiwara, J. Taniguchi
{"title":"Fabrication of Moth-eye Antireflective Nanostructures via Oxygen Ion-beam Etching on a UV-curable Polymer","authors":"T. Okabe, Katsuyuki Yatagawa, K. Fujiwara, J. Taniguchi","doi":"10.2494/photopolymer.34.133","DOIUrl":"https://doi.org/10.2494/photopolymer.34.133","url":null,"abstract":"","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87721455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11DOI: 10.2494/photopolymer.34.529
M. Furutani, Kako Maeno, Arata Tanaka
4. Conclusion We have designed and synthesized of a novel molecule, BFBZA, and found that the hybrid amorphous film of BFBZA with BA exhibited reversible change in emission color in response to exhaled breath whereas BFBZA–PFBA film did not change the emission color. In our previous paper [21,23], acidity levels of organic acids were the important factor for providing hybrid films that exhibit reversible changes in object colors and emission colors in response to moisture. The present study suggested that the basicity level of emitting material was also the important factors, that is, the balance of acidity level of organic acid and basicity level of emitting amorphous molecular materials plays a role for exhibiting reversible change in emission color. Further studies are in progress.
{"title":"Synthesis of Amino Acid-derived Curing Reagents Containing a Disulfide Bond and Their Application to Anionic UV Curing Materials","authors":"M. Furutani, Kako Maeno, Arata Tanaka","doi":"10.2494/photopolymer.34.529","DOIUrl":"https://doi.org/10.2494/photopolymer.34.529","url":null,"abstract":"4. Conclusion We have designed and synthesized of a novel molecule, BFBZA, and found that the hybrid amorphous film of BFBZA with BA exhibited reversible change in emission color in response to exhaled breath whereas BFBZA–PFBA film did not change the emission color. In our previous paper [21,23], acidity levels of organic acids were the important factor for providing hybrid films that exhibit reversible changes in object colors and emission colors in response to moisture. The present study suggested that the basicity level of emitting material was also the important factors, that is, the balance of acidity level of organic acid and basicity level of emitting amorphous molecular materials plays a role for exhibiting reversible change in emission color. Further studies are in progress.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89540193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11DOI: 10.2494/photopolymer.34.543
Takaki Kaneda, Yutaro Seki, Naoto Iwata, S. Furumi
In this report, we successfully fabricated the colloidal crystal (CC) gel films of silica microparticles combined with a temperature-responsive biocompatible hydrogel of poly(Nvinylcaprolactam) (VCL). When the CC VCL film was prepared by filling VCL precursor into the void space between silica particles of CC film, followed by the thermal polymerization, the Bragg reflection peak was red-shifted from 475 nm to 535 nm due to the change of refractive index contrast. Subsequently, immersion of the CC VCL film into an excess of water led to the formation of CC VCL gel film, wherein the VCL matrix swelled in water to form the hydrogel state. As elevating the temperature from 25 °C, this CC VCL gel film showed the reflection color changes from red to green, arising from the decrease of lattice constant induced by the shrinkage of VCL hydrogel. Moreover, the reflection color changes of CC VCL gel film were found to be fully reversible. In this way, we believe that such CC VCL gel films can be potentially applied to novel temperature sensors with biocompatibility.
{"title":"Fabrication of Colloidal Crystal Gel Film Using Poly(N-vinylcaprolactam)","authors":"Takaki Kaneda, Yutaro Seki, Naoto Iwata, S. Furumi","doi":"10.2494/photopolymer.34.543","DOIUrl":"https://doi.org/10.2494/photopolymer.34.543","url":null,"abstract":"In this report, we successfully fabricated the colloidal crystal (CC) gel films of silica microparticles combined with a temperature-responsive biocompatible hydrogel of poly(Nvinylcaprolactam) (VCL). When the CC VCL film was prepared by filling VCL precursor into the void space between silica particles of CC film, followed by the thermal polymerization, the Bragg reflection peak was red-shifted from 475 nm to 535 nm due to the change of refractive index contrast. Subsequently, immersion of the CC VCL film into an excess of water led to the formation of CC VCL gel film, wherein the VCL matrix swelled in water to form the hydrogel state. As elevating the temperature from 25 °C, this CC VCL gel film showed the reflection color changes from red to green, arising from the decrease of lattice constant induced by the shrinkage of VCL hydrogel. Moreover, the reflection color changes of CC VCL gel film were found to be fully reversible. In this way, we believe that such CC VCL gel films can be potentially applied to novel temperature sensors with biocompatibility.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82632609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11DOI: 10.2494/photopolymer.34.1
Sylvan Sunny Koyagura, Virendra Majarikar, H. Takehara, T. Ichiki
Nanoparticles, such as exosomes or liposomes, have been widely studied using poly(dimethylsiloxane) (PDMS) microchannels. The interaction between nanoparticles and solid surfaces is an important subject for basic and applied research on nanoparticles, but there have been few reports on the use of microchannels for this purpose. Micro-scale systems serve as a useful platform for adsorption analysis because of their large surface-tovolume ratio. In this study, we attempted to develop a platform to study the adsorption phenomena of nanoparticles on solid surfaces using a microchannel, in which a model that analyzes dynamic (i.e., non-equilibrium) adsorption was used. This model allowed quantitative analysis of nanoliposome adsorption onto the surface of a PDMS microchannel.
{"title":"Experimental Evaluation and Modeling of Adsorption Phenomena of Nanoliposomes on Poly(dimethylsiloxane) Surfaces","authors":"Sylvan Sunny Koyagura, Virendra Majarikar, H. Takehara, T. Ichiki","doi":"10.2494/photopolymer.34.1","DOIUrl":"https://doi.org/10.2494/photopolymer.34.1","url":null,"abstract":"Nanoparticles, such as exosomes or liposomes, have been widely studied using poly(dimethylsiloxane) (PDMS) microchannels. The interaction between nanoparticles and solid surfaces is an important subject for basic and applied research on nanoparticles, but there have been few reports on the use of microchannels for this purpose. Micro-scale systems serve as a useful platform for adsorption analysis because of their large surface-tovolume ratio. In this study, we attempted to develop a platform to study the adsorption phenomena of nanoparticles on solid surfaces using a microchannel, in which a model that analyzes dynamic (i.e., non-equilibrium) adsorption was used. This model allowed quantitative analysis of nanoliposome adsorption onto the surface of a PDMS microchannel.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82817419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}