Eomecon chionantha Hance, an endemic species in China, has a long medical history in Chinese ethnic minority medicine and is known for its anti-inflammatory and analgesic effects. However, studies of E. chionantha are lacking. In this study, we investigated the characteristics of the E. chionantha chloroplast genome and determined the taxonomic position of E. chionantha in Papaveraceae via phylogenetic analysis. In addition, we determined molecular markers to identify E. chionantha at the molecular level by comparing the chloroplast genomes of E. chionantha and its closely related species. The complete chloroplast genomic information indicated that E. chionantha chloroplast DNA (178,808 bp) contains 99 protein-coding genes, 8 rRNAs, and 37 tRNAs. Meanwhile, we were able to identify a total of 54 simple sequence repeats through our analysis. Our findings from the phylogenetic analysis suggest that E. chionantha shares a close relationship with four distinct species, namely Macleaya microcarpa, Coreanomecon hylomeconoides, Hylomecon japonica, and Chelidonium majus. Additionally, using the Kimura two-parameter model, we successfully identified five hypervariable regions (ycf4-cemA, ycf3-trnS-GGA, trnC-GCA-petN, rpl32-trnL-UAG, and psbI-trnS-UGA). To the best of our knowledge, this is the first report of the complete chloroplast genome of E. chionantha, providing a scientific reference for further understanding of E. chionantha from the perspective of the chloroplast genome and establishing a solid foundation for the future identification, taxonomic determination and evolutionary analysis of this species.
Eomecon chionantha Hance 是中国特有的物种,在中国少数民族医学中有着悠久的历史,并以其消炎和镇痛作用而闻名。然而,目前还缺乏对 E. chionantha 的研究。在本研究中,我们研究了 E. chionantha 叶绿体基因组的特征,并通过系统发育分析确定了 E. chionantha 在罂粟科中的分类位置。此外,我们还通过比较 E. chionantha 及其近缘种的叶绿体基因组,确定了在分子水平上鉴定 E. chionantha 的分子标记。完整的叶绿体基因组信息表明,E. chionantha叶绿体DNA(178,808 bp)包含99个蛋白编码基因、8个rRNA和37个tRNA。同时,我们还通过分析鉴定出了 54 个简单序列重复序列。系统进化分析结果表明,E. chionantha 与 Macleaya microcarpa、Coreanomecon hylomeconoides、Hylomecon japonica 和 Chelidonium majus 这四个不同的物种关系密切。此外,利用木村双参数模型,我们成功地确定了五个超变区(ycf4-cemA、ycf3-trnS-GGA、trnC-GCA-petN、rpl32-trnL-UAG 和 psbI-trnS-UGA)。据我们所知,这是首次报道 E. chionantha 的完整叶绿体基因组,为从叶绿体基因组的角度进一步了解 E. chionantha 提供了科学参考,并为今后该物种的鉴定、分类确定和进化分析奠定了坚实的基础。
{"title":"The complete chloroplast genome sequence and phylogenetic relationship analysis of Eomecon chionantha, one species unique to China","authors":"Zhi Zhang, Guoshuai Zhang, Xinke Zhang, Huihui Zhang, Junbo Xie, Rui Zeng, Baolin Guo, Linfang Huang","doi":"10.1007/s10265-024-01539-y","DOIUrl":"https://doi.org/10.1007/s10265-024-01539-y","url":null,"abstract":"<p><i>Eomecon chionantha</i> Hance, an endemic species in China, has a long medical history in Chinese ethnic minority medicine and is known for its anti-inflammatory and analgesic effects. However, studies of <i>E. chionantha</i> are lacking. In this study, we investigated the characteristics of the <i>E. chionantha</i> chloroplast genome and determined the taxonomic position of <i>E. chionantha</i> in Papaveraceae via phylogenetic analysis. In addition, we determined molecular markers to identify <i>E. chionantha</i> at the molecular level by comparing the chloroplast genomes of <i>E. chionantha</i> and its closely related species. The complete chloroplast genomic information indicated that <i>E. chionantha</i> chloroplast DNA (178,808 bp) contains 99 protein-coding genes, 8 rRNAs, and 37 tRNAs. Meanwhile, we were able to identify a total of 54 simple sequence repeats through our analysis. Our findings from the phylogenetic analysis suggest that <i>E. chionantha</i> shares a close relationship with four distinct species, namely <i>Macleaya microcarpa</i>, <i>Coreanomecon hylomeconoides</i>, <i>Hylomecon japonica</i>, and <i>Chelidonium majus</i>. Additionally, using the Kimura two-parameter model, we successfully identified five hypervariable regions (ycf4-cemA, ycf3-trnS-GGA, trnC-GCA-petN, rpl32-trnL-UAG, and psbI-trnS-UGA). To the best of our knowledge, this is the first report of the complete chloroplast genome of <i>E. chionantha</i>, providing a scientific reference for further understanding of <i>E. chionantha</i> from the perspective of the chloroplast genome and establishing a solid foundation for the future identification, taxonomic determination and evolutionary analysis of this species.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":"67 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ecophysiological studies of lichens in tropical Asia are rare, and additional studies can increase the understanding of lichen life in this region. The main aim of this study was to observe the relationships between water availability and photosynthetic parameters, as well as hydration trait parameters, in macrolichens during the rainy and dry seasons in a tropical forest. A total of 11 lichen species growing in a lower montane rainforest in Thailand were collected and studied. The results clearly showed that the specific thallus mass (STM), net photosynthetic rate (Pn), the potential quantum yield of primary photochemistry (Fv/Fm), chlorophyll content, and carotenoid content of almost all lichens were lower in the dry season than in the rainy season. Field measurements in the dry season revealed that only the foliose chlorolichen Parmotrema tinctorum was metabolically active and exhibited slight carbon assimilation. In the rainy season, all lichens started their photosynthesis in the early morning, reached maximal values, declined, and ceased when the thalli desiccated. The photosynthetically active period of the lichens was approximately 2–3 h in the morning, and the activities of the cyanolichens ended approximately 30 min after the chlorolichens. The hydration trait parameters, including the STM, maximal water content (WCmax), and water holding capacity (WHC), were greater in the cyanolichens. In addition, the maximal Pn (Pnmax) and optimal water content (WCopt) for Pn were also greater in the cyanolichens, but the maximal Fv/Fm (Fv/Fmmax) was lower. The cyanolichens compensated for their inability to use humid air to restore photosynthesis by having higher water content and storage, higher photosynthetic rates, and longer photosynthetically active periods. This study provides additional insights into lichen ecophysiology in tropical forests that can be useful for lichen conservation.
{"title":"Laboratory and field measurements of water relations, photosynthetic parameters, and hydration traits in macrolichens in a tropical lower montane rainforest in Thailand","authors":"Chaiwat Boonpeng, Marisa Pischom, Pawanrat Butrid, Sutatip Noikrad, Kansri Boonpragob","doi":"10.1007/s10265-024-01542-3","DOIUrl":"https://doi.org/10.1007/s10265-024-01542-3","url":null,"abstract":"<p>Ecophysiological studies of lichens in tropical Asia are rare, and additional studies can increase the understanding of lichen life in this region. The main aim of this study was to observe the relationships between water availability and photosynthetic parameters, as well as hydration trait parameters, in macrolichens during the rainy and dry seasons in a tropical forest. A total of 11 lichen species growing in a lower montane rainforest in Thailand were collected and studied. The results clearly showed that the specific thallus mass (STM), net photosynthetic rate (Pn), the potential quantum yield of primary photochemistry (Fv/Fm), chlorophyll content, and carotenoid content of almost all lichens were lower in the dry season than in the rainy season. Field measurements in the dry season revealed that only the foliose chlorolichen <i>Parmotrema tinctorum</i> was metabolically active and exhibited slight carbon assimilation. In the rainy season, all lichens started their photosynthesis in the early morning, reached maximal values, declined, and ceased when the thalli desiccated. The photosynthetically active period of the lichens was approximately 2–3 h in the morning, and the activities of the cyanolichens ended approximately 30 min after the chlorolichens. The hydration trait parameters, including the STM, maximal water content (WC<sub>max</sub>), and water holding capacity (WHC), were greater in the cyanolichens. In addition, the maximal Pn (Pn<sub>max</sub>) and optimal water content (WC<sub>opt</sub>) for Pn were also greater in the cyanolichens, but the maximal Fv/Fm (Fv/Fm<sub>max</sub>) was lower. The cyanolichens compensated for their inability to use humid air to restore photosynthesis by having higher water content and storage, higher photosynthetic rates, and longer photosynthetically active periods. This study provides additional insights into lichen ecophysiology in tropical forests that can be useful for lichen conservation.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":"10 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chloroplast-actin (cp-actin) filaments are crucial for light-induced chloroplast movement, and appear in the front region of moving chloroplasts when visualized using GFP-mouse Talin. They are short and thick, exist between a chloroplast and the plasma membrane, and move actively and rapidly compared to cytoplasmic long actin filaments that run through a cell. The average period during which a cp-actin filament was observed at the same position was less than 0.5 s. The average lengths of the cp-actin filaments calculated from those at the front region of the moving chloroplast and those around the chloroplast periphery after stopping the movement were almost the same, approximately 0.8 µm. Each cp-actin filament is shown as a dotted line consisting of 4–5 dots. The vector sum of cp-actin filaments in a moving chloroplast is parallel to the moving direction of the chloroplast, suggesting that the direction of chloroplast movement is regulated by the vector sum of cp-actin filaments. However, once the chloroplasts stopped moving, the vector sum of the cp-actin filaments around the chloroplast periphery was close to zero, indicating that the direction of movement was undecided. To determine the precise structure of cp-actin filaments under electron microscopy, Arabidopsis leaves and fern Adiantum capillus-veneris gametophytes were frozen using a high-pressure freezer, and observed under electron microscopy. However, no bundled microfilaments were found, suggesting that the cp-actin filaments were unstable even under high-pressure freezing.
{"title":"Chloroplast-actin filaments decide the direction of chloroplast avoidance movement under strong light in Arabidopsis thaliana","authors":"Masamitsu Wada, Takeshi Higa, Kaoru Katoh, Nobuko Moritoki, Tomonori Nakai, Yuri Nishino, Atsuo Miyazawa, Shinsuke Shibata, Yoshinobu Mineyuki","doi":"10.1007/s10265-024-01540-5","DOIUrl":"https://doi.org/10.1007/s10265-024-01540-5","url":null,"abstract":"<p>Chloroplast-actin (cp-actin) filaments are crucial for light-induced chloroplast movement, and appear in the front region of moving chloroplasts when visualized using GFP-mouse Talin. They are short and thick, exist between a chloroplast and the plasma membrane, and move actively and rapidly compared to cytoplasmic long actin filaments that run through a cell. The average period during which a cp-actin filament was observed at the same position was less than 0.5 s. The average lengths of the cp-actin filaments calculated from those at the front region of the moving chloroplast and those around the chloroplast periphery after stopping the movement were almost the same, approximately 0.8 µm. Each cp-actin filament is shown as a dotted line consisting of 4–5 dots. The vector sum of cp-actin filaments in a moving chloroplast is parallel to the moving direction of the chloroplast, suggesting that the direction of chloroplast movement is regulated by the vector sum of cp-actin filaments. However, once the chloroplasts stopped moving, the vector sum of the cp-actin filaments around the chloroplast periphery was close to zero, indicating that the direction of movement was undecided. To determine the precise structure of cp-actin filaments under electron microscopy, Arabidopsis leaves and fern <i>Adiantum capillus-veneris</i> gametophytes were frozen using a high-pressure freezer, and observed under electron microscopy. However, no bundled microfilaments were found, suggesting that the cp-actin filaments were unstable even under high-pressure freezing.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":"50 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.1007/s10265-024-01541-4
Hokuto Nakayama
Leaf form can vary at different levels, such as inter/intraspecies, and diverse leaf shapes reflect their remarkable ability to adapt to various environmental conditions. Over the past two decades, considerable progress has been made in unraveling the molecular mechanisms underlying leaf form diversity, particularly the regulatory mechanisms of leaf complexity. However, the mechanisms identified thus far are only part of the entire process, and numerous questions remain unanswered. This review aims to provide an overview of the current understanding of the molecular mechanisms driving leaf form diversity while highlighting the existing gaps in our knowledge. By focusing on the unanswered questions, this review aims to shed light on areas that require further research, ultimately fostering a more comprehensive understanding of leaf form diversity.
{"title":"Leaf form diversity and evolution: a never-ending story in plant biology","authors":"Hokuto Nakayama","doi":"10.1007/s10265-024-01541-4","DOIUrl":"https://doi.org/10.1007/s10265-024-01541-4","url":null,"abstract":"<p>Leaf form can vary at different levels, such as inter/intraspecies, and diverse leaf shapes reflect their remarkable ability to adapt to various environmental conditions. Over the past two decades, considerable progress has been made in unraveling the molecular mechanisms underlying leaf form diversity, particularly the regulatory mechanisms of leaf complexity. However, the mechanisms identified thus far are only part of the entire process, and numerous questions remain unanswered. This review aims to provide an overview of the current understanding of the molecular mechanisms driving leaf form diversity while highlighting the existing gaps in our knowledge. By focusing on the unanswered questions, this review aims to shed light on areas that require further research, ultimately fostering a more comprehensive understanding of leaf form diversity.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":"64 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The nurse effect is a positive interaction in which a nurse plant improves the abiotic environment for another species (beneficiary plant) and facilitates its establishment. The evergreen shrub Vaccinium vitis-idaea (a beneficiary plant) grows mainly under the dwarf shrub Pinus pumila (a nurse plant) in the alpine regions of central Japan. However, whether V. vitis-idaea shrubs under various P. pumila shrubs spread through clonal growth and/or seeds remains unclear. We investigated the clonal structure of V. vitis-idaea under the nurse plant P. pumila in Japanese alpine regions. MIG-seq analysis was conducted to clarify the clonal diversity of V. vitis-idaea in isolated and patchy P. pumila plots on a ridge (PATs), and in a plot covered by dense P. pumila on a slope adjacent to the ridge (MAT) on Mt. Norikura, Japan. We detected 28 multilocus genotypes in 319 ramets of V. vitis-idaea across 11 PATs and MAT. Three genets expanded to more than 10 m in the MAT. Some genets were shared among neighboring PATs or among PATs and MAT. These findings suggest that the clonal growth of V. vitis-idaea plays an important role in the sustainability of populations. The clonal diversity of V. vitis-idaea was positively related with the spatial size of PATs and was higher in MAT than in PATs at a small scale. Therefore, the spatial spread of the nurse plant P. pumila might facilitate the nurse effect on the genetic diversity of beneficiary plants, leading to the sustainability of beneficiary populations.
哺育效应是一种积极的相互作用,在这种作用中,哺育植物会改善另一物种(受益植物)的非生物环境,并促进其成活。在日本中部的高寒地区,常绿灌木蔓越橘(受益植物)主要生长在矮灌木松树(哺育植物)之下。然而,在各种松属灌木下的蔓越橘灌木是否通过克隆生长和/或种子传播仍不清楚。我们研究了日本高寒地区灌木 V. vitis-idaea 在哺育植物 P. pumila 下的克隆结构。我们进行了 MIG-seq 分析,以弄清在日本纪仓山山脊上孤立和成片的 Pumila 小块(PATs)以及在山脊附近斜坡上被茂密 Pumila 覆盖的小块(MAT)中 V. vitis-idaea 的克隆多样性。我们在 11 个 PATs 和 MAT 的 319 个 V. vitis-idaea 柱头中检测到 28 个多焦点基因型。三个基因组在 MAT 中扩展到 10 米以上。一些基因组在相邻的 PAT 之间或 PAT 和 MAT 之间共享。这些发现表明,V. vitis-idaea的克隆生长对种群的可持续性起着重要作用。薇甘菊的克隆多样性与 PAT 的空间大小呈正相关,在小范围内,MAT 中的薇甘菊克隆多样性高于 PAT 中的薇甘菊克隆多样性。因此,哺育植物 P. pumila 的空间扩散可能会促进对受益植物遗传多样性的哺育效应,从而导致受益种群的可持续性。
{"title":"Fine-scale clonal structure of the lingonberry Vaccinium vitis-idaea under the nurse plant Pinus pumila vegetation in an alpine region, Mt. Norikura","authors":"Kensuke Sugimoto, Rio Kawai, Takahiko Koizumi, Ayumi Matsuo, Yoshihisa Suyama, Inoue Mizuki","doi":"10.1007/s10265-024-01537-0","DOIUrl":"https://doi.org/10.1007/s10265-024-01537-0","url":null,"abstract":"<p>The nurse effect is a positive interaction in which a nurse plant improves the abiotic environment for another species (beneficiary plant) and facilitates its establishment. The evergreen shrub <i>Vaccinium vitis-idaea</i> (a beneficiary plant) grows mainly under the dwarf shrub <i>Pinus pumila</i> (a nurse plant) in the alpine regions of central Japan. However, whether <i>V. vitis-idaea</i> shrubs under various <i>P. pumila</i> shrubs spread through clonal growth and/or seeds remains unclear. We investigated the clonal structure of <i>V. vitis-idaea</i> under the nurse plant <i>P. pumila</i> in Japanese alpine regions. MIG-seq analysis was conducted to clarify the clonal diversity of <i>V. vitis-idaea</i> in isolated and patchy <i>P. pumila</i> plots on a ridge (PATs), and in a plot covered by dense <i>P. pumila</i> on a slope adjacent to the ridge (MAT) on Mt. Norikura, Japan. We detected 28 multilocus genotypes in 319 ramets of <i>V. vitis-idaea</i> across 11 PATs and MAT. Three genets expanded to more than 10 m in the MAT. Some genets were shared among neighboring PATs or among PATs and MAT. These findings suggest that the clonal growth of <i>V. vitis-idaea</i> plays an important role in the sustainability of populations. The clonal diversity of <i>V. vitis-idaea</i> was positively related with the spatial size of PATs and was higher in MAT than in PATs at a small scale. Therefore, the spatial spread of the nurse plant <i>P. pumila</i> might facilitate the nurse effect on the genetic diversity of beneficiary plants, leading to the sustainability of beneficiary populations.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":"55 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant glutamate receptor-like channels (GLRs) play important roles in plant development, immune response, defense signaling and Nitric oxide (NO) production. However, their involvement in abiotic stress responses, particularly in regulating Reactive Oxygen Species (ROS), is not well understood. This study aimed to investigate GLR-mediated NO production on ROS regulation in salt-stressed cells. To achieve this, Arabidopsis thaliana Columbia (Col-0) were treated with NaCl, glutamate antagonists [(DNQX (6,7-dinitroquinoxaline-2,3-dione and AP-5(D-2-amino-5-phosphono pentanoic acid)], and NO scavenger [cPTIO (2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt)]. Salt-stressed plants in combination with DNQX and AP-5 have exhibited higher increase in lipid peroxidation (TBARS), hydrogen peroxide (H2O2) and superoxide radical (O−2) contents as compared to solely NaCl-treated plants. Furthermore, NO and total glutathione contents, and S-nitrosoglutathione reductase (GSNOR) activity decreased with these treatments. AP-5 and DNQX increased the activities of NADPH oxidase (NOX), catalase (CAT), peroxidase (POX), cell wall peroxidase (CWPOX) in salt-stressed Arabidopsis leaves. However, their activities (except NOX) were significantly inhibited by cPTIO. Conversely, the combination of NaCl and GLR antagonists, NO scavenger decreased the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) resulting in elevated GSSG levels, a low GSH/GSSG ratio, impaired ROS scavenging, excessive ROS accumulation and cell membrane damage. The findings of this study provide evidence that GLR-mediated NO plays a crucial role in improvement of the tolerance of Arabidopsis plants to salt-induced oxidative stress. It helps to maintain cellular redox homeostasis by reducing ROS accumulation and increasing the activity of SOD, GSNOR, and the ASC-GSH cycle enzymes.
{"title":"Involvement of GLR-mediated nitric oxide effects on ROS metabolism in Arabidopsis plants under salt stress","authors":"Azime Gokce, Askim Hediye Sekmen Cetinel, Ismail Turkan","doi":"10.1007/s10265-024-01528-1","DOIUrl":"https://doi.org/10.1007/s10265-024-01528-1","url":null,"abstract":"<p>Plant glutamate receptor-like channels (GLRs) play important roles in plant development, immune response, defense signaling and Nitric oxide (NO) production. However, their involvement in abiotic stress responses, particularly in regulating Reactive Oxygen Species (ROS), is not well understood. This study aimed to investigate GLR-mediated NO production on ROS regulation in salt-stressed cells. To achieve this, <i>Arabidopsis thaliana</i> Columbia (Col-0) were treated with NaCl, glutamate antagonists [(DNQX (6,7-dinitroquinoxaline-2,3-dione and AP-5(D-2-amino-5-phosphono pentanoic acid)], and NO scavenger [cPTIO (2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt)]. Salt-stressed plants in combination with DNQX and AP-5 have exhibited higher increase in lipid peroxidation (TBARS), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and superoxide radical (O<sup>−2</sup>) contents as compared to solely NaCl-treated plants. Furthermore, NO and total glutathione contents, and S-nitrosoglutathione reductase (GSNOR) activity decreased with these treatments. AP-5 and DNQX increased the activities of NADPH oxidase (NOX), catalase (CAT), peroxidase (POX), cell wall peroxidase (CWPOX) in salt-stressed Arabidopsis leaves. However, their activities (except NOX) were significantly inhibited by cPTIO. Conversely, the combination of NaCl and GLR antagonists, NO scavenger decreased the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) resulting in elevated GSSG levels, a low GSH/GSSG ratio, impaired ROS scavenging, excessive ROS accumulation and cell membrane damage. The findings of this study provide evidence that GLR-mediated NO plays a crucial role in improvement of the tolerance of Arabidopsis plants to salt-induced oxidative stress. It helps to maintain cellular redox homeostasis by reducing ROS accumulation and increasing the activity of SOD, GSNOR, and the ASC-GSH cycle enzymes.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":"19 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-09DOI: 10.1007/s10265-023-01511-2
Suzue M Kawakami, Shogo Kawakami
Haploid sporophytes of Anisocampium niponicum with 2n = 40, were produced artificially by induced apogamy in vitro. They were subsequently transplanted into pots and two of them have been cultivated for the investigation of sporogenesis and/or production of chimera for more than 20 years. Haploid A. niponicum is sterile, but an abnormal chimeric pinnule that developed spontaneously in a single frond produced sporangia with spores. Each sporangium bore approximately 32 spores that were almost uniform in size. Sowing of these spores resulted in 50 gametophytes. Of 20 gametophytes cultured individually, five produced sporophytes apogamously after eight months. Both the gametophytes and subsequent apogamous sporophytes showed a chromosome number of 2n = 40. Our study demonstrates that a haploid sporophyte offspring can be produced from a haploid mother sporophyte via haploid spores. Since asexual reproduction is a prominent evolutionary process in ferns, the reproduction of a haploid A. niponicum sporophyte by unreduced spore formation might help to elucidate how apogamous ferns occur and evolve.
{"title":"Unreduced spore formation in a spontaneous chimeric pinnule in an artificially produced haploid Anisocampium niponicum (Athyriaceae, Polypodiales).","authors":"Suzue M Kawakami, Shogo Kawakami","doi":"10.1007/s10265-023-01511-2","DOIUrl":"10.1007/s10265-023-01511-2","url":null,"abstract":"<p><p>Haploid sporophytes of Anisocampium niponicum with 2n = 40, were produced artificially by induced apogamy in vitro. They were subsequently transplanted into pots and two of them have been cultivated for the investigation of sporogenesis and/or production of chimera for more than 20 years. Haploid A. niponicum is sterile, but an abnormal chimeric pinnule that developed spontaneously in a single frond produced sporangia with spores. Each sporangium bore approximately 32 spores that were almost uniform in size. Sowing of these spores resulted in 50 gametophytes. Of 20 gametophytes cultured individually, five produced sporophytes apogamously after eight months. Both the gametophytes and subsequent apogamous sporophytes showed a chromosome number of 2n = 40. Our study demonstrates that a haploid sporophyte offspring can be produced from a haploid mother sporophyte via haploid spores. Since asexual reproduction is a prominent evolutionary process in ferns, the reproduction of a haploid A. niponicum sporophyte by unreduced spore formation might help to elucidate how apogamous ferns occur and evolve.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"161-165"},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139403367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Resveratrol and its derivatives are the most important phytoalexins with a crucial role in plant defense mechanisms. These compounds can occur either naturally or in response to abiotic stresses. Among them, salinity is one of the major threats to the sustainability and productivity of agro-economically important species, particularly those involved in the vini-viticulture sector. Understating salinity tolerance mechanisms in plants is required for the development of novel engineering tools. This study aimed to investigate the potential role of resveratrol derivatives in salinity tolerance of wild grapevines. Our data revealed that the tolerant Tunisian wild grapevine genotype "Ouchtata" exhibited an increased accumulation of resveratrol derivatives (glycosylated and non-glycosylated resveratrol and t-ɛ-viniferin and hydroxylated t-piceatannol) in both stems and roots, along with an increased total antioxidant activity (TAA) compared to the sensitive genotype "Djebba" under stress conditions, suggesting an involvement of these stilbenes in redox homeostasis, thereby, protecting cells from salt-induced oxidative damage. Overall, our study revealed, for the first time, an active role for resveratrol derivatives in salt stress tolerance in wild grapevine, highlighting their potential use as metabolic markers in future grapevine breeding programs for a sustainable vini-viticulture in salt-affected regions.
{"title":"Evidence of an active role of resveratrol derivatives in the tolerance of wild grapevines (Vitis vinifera ssp. sylvestris) to salinity.","authors":"Faouzia Hanzouli, Hassène Zemni, Mahmoud Gargouri, Hatem Boubakri, Ahmed Mliki, Simone Vincenzi, Samia Daldoul","doi":"10.1007/s10265-023-01515-y","DOIUrl":"10.1007/s10265-023-01515-y","url":null,"abstract":"<p><p>Resveratrol and its derivatives are the most important phytoalexins with a crucial role in plant defense mechanisms. These compounds can occur either naturally or in response to abiotic stresses. Among them, salinity is one of the major threats to the sustainability and productivity of agro-economically important species, particularly those involved in the vini-viticulture sector. Understating salinity tolerance mechanisms in plants is required for the development of novel engineering tools. This study aimed to investigate the potential role of resveratrol derivatives in salinity tolerance of wild grapevines. Our data revealed that the tolerant Tunisian wild grapevine genotype \"Ouchtata\" exhibited an increased accumulation of resveratrol derivatives (glycosylated and non-glycosylated resveratrol and t-ɛ-viniferin and hydroxylated t-piceatannol) in both stems and roots, along with an increased total antioxidant activity (TAA) compared to the sensitive genotype \"Djebba\" under stress conditions, suggesting an involvement of these stilbenes in redox homeostasis, thereby, protecting cells from salt-induced oxidative damage. Overall, our study revealed, for the first time, an active role for resveratrol derivatives in salt stress tolerance in wild grapevine, highlighting their potential use as metabolic markers in future grapevine breeding programs for a sustainable vini-viticulture in salt-affected regions.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"265-277"},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139040150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-25DOI: 10.1007/s10265-024-01521-8
Wangai Zhao, Jibo Xiao, Guo Lin, Qianqian Peng, Shuyi Chu
Rotala rotundifolia is an amphibious aquatic plant that can live in submerged and emergent forms. It is superior in nitrogen and phosphorus removal. To elucidate its adaptation strategies from emergent to submerged conditions, phenotypic and physiological responses of R. rotundifolia were investigated during three months of submergence, at water levels of 0 cm (CK), 50 cm (W50), and 90 cm (W90). Results showed that submergence stress reduced the relative growth rate of plant height, fresh weight, and biomass accumulation, leading to root degradation and a significant decline in the root-shoot ratio. The amounts of soluble protein (SP), soluble sugar (SS), and starch in the aerial leaves of W50 and W90 decreased during the early stages of submergence compared to CK, whereas the total chlorophyll and proline contents, and activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased. The contents of endogenous hormones, including abscisic acid (ABA), gibberellin (GA), and indole-3-acetic acid (IAA), decreased during the change in leaf shape; the decline in ABA was more obvious. The leaf primordium generated transition leaves and submerged leaves to resolve the "carbon starvation" of plants. The maximum values of non-structural carbohydrates (NSC) in the leaves of W50 and W90 occurred at day 30, reaching 14.0 mg g- 1and 10.5 mg g- 1, respectively. The contents of SP and starch, activities of SOD and CAT of the roots in submerged treatments increased, while SS and proline content decreased at day 7. These results demonstrated that developing heterophyllous leaves, increasing chlorophyll content, and regulating plant carbon allocation and consumption were important mechanisms of R. rotundifolia to adapt to underwater habitats.
Rotala rotundifolia 是一种两栖水生植物,能以沉水和浮水的形式生活。它在脱氮除磷方面具有优势。为了阐明其从出水状态到沉水状态的适应策略,研究人员分别在水位为 0 厘米(CK)、50 厘米(W50)和 90 厘米(W90)的三个月沉水期调查了 R. rotundifolia 的表型和生理反应。结果表明,淹没胁迫降低了植株高度、鲜重和生物量积累的相对生长率,导致根系退化和根-芽比显著下降。与CK相比,W50和W90在淹没初期气生叶片中的可溶性蛋白质(SP)、可溶性糖(SS)和淀粉含量下降,而叶绿素总量、脯氨酸含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的活性增加。在叶形变化过程中,脱落酸(ABA)、赤霉素(GA)和吲哚-3-乙酸(IAA)等内源激素含量下降,其中 ABA 的下降更为明显。叶原基产生过渡叶和沉水叶,解决了植物的 "碳饥饿 "问题。W50和W90叶片中的非结构碳水化合物(NSC)最大值出现在第30天,分别达到14.0 mg g- 1和10.5 mg g- 1。浸没处理的根中 SP 和淀粉含量、SOD 和 CAT 活性均有所增加,而 SS 和脯氨酸含量在第 7 天时有所下降。这些结果表明,发育异叶叶、增加叶绿素含量、调节植物碳分配和碳消耗是 R. rotundifolia 适应水下生境的重要机制。
{"title":"Morphological and physiological response of amphibious Rotala rotundifolia from emergent to submerged form.","authors":"Wangai Zhao, Jibo Xiao, Guo Lin, Qianqian Peng, Shuyi Chu","doi":"10.1007/s10265-024-01521-8","DOIUrl":"10.1007/s10265-024-01521-8","url":null,"abstract":"<p><p>Rotala rotundifolia is an amphibious aquatic plant that can live in submerged and emergent forms. It is superior in nitrogen and phosphorus removal. To elucidate its adaptation strategies from emergent to submerged conditions, phenotypic and physiological responses of R. rotundifolia were investigated during three months of submergence, at water levels of 0 cm (CK), 50 cm (W50), and 90 cm (W90). Results showed that submergence stress reduced the relative growth rate of plant height, fresh weight, and biomass accumulation, leading to root degradation and a significant decline in the root-shoot ratio. The amounts of soluble protein (SP), soluble sugar (SS), and starch in the aerial leaves of W50 and W90 decreased during the early stages of submergence compared to CK, whereas the total chlorophyll and proline contents, and activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased. The contents of endogenous hormones, including abscisic acid (ABA), gibberellin (GA), and indole-3-acetic acid (IAA), decreased during the change in leaf shape; the decline in ABA was more obvious. The leaf primordium generated transition leaves and submerged leaves to resolve the \"carbon starvation\" of plants. The maximum values of non-structural carbohydrates (NSC) in the leaves of W50 and W90 occurred at day 30, reaching 14.0 mg g<sup>- 1</sup>and 10.5 mg g<sup>- 1</sup>, respectively. The contents of SP and starch, activities of SOD and CAT of the roots in submerged treatments increased, while SS and proline content decreased at day 7. These results demonstrated that developing heterophyllous leaves, increasing chlorophyll content, and regulating plant carbon allocation and consumption were important mechanisms of R. rotundifolia to adapt to underwater habitats.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"279-291"},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139546771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-09DOI: 10.1007/s10265-023-01512-1
Chao Xu, Xiaomin Xue, Zhixing Li, Mingguang Chen, Yating Yang, Siyu Wang, Mingrui Shang, Lei Qiu, Xianyan Zhao, Wenxiao Hu
'Red Meat Honey Crisp (RMHC)' has been widely cultivated by growers in recent years due to its early maturity, and red meat type characteristics. As a bud variant of 'Super Red (SR)' peach, red flesh is the most distinctive characteristic of 'Red Meat Honey Crisp (RMHC)'. However, the mechanism of red flesh formation in 'RMHC' remains unclear. In this study, 79 differentially produced metabolites were identified by metabolomics analysis. The anthocyanin content in 'RMHC' was significantly higher than that in 'SR' during the same period, such as cyanidin O-syringic acid and cyanidin 3-O-glucoside. Other flavonoids also increased during the formation of red flesh, including flavonols (6-hydroxykaempferol-7-O-glucoside, hyperin), flavanols (protocatechuic acid, (+)-gallocatechin), and flavonoids (chrysoeriol 5-O-hexoside, tricetin). In addition, transcriptomic analysis and RT-qPCR showed that the expression levels of the flavonoid synthesis pathway transcription factor MYB75 and some structural genes, such as PpDFR, PpCHS, PpC4H, and PpLDOX increased significantly in 'RMHC'. Subcellular localization analysis revealed that MYB75 was localized to the nucleus. Yeast single hybridization assays showed that MYB75 bound to the cis-acting element CCGTTG of the PpDFR promoter region. The MYB75-PpDFR regulatory network was identified to be a key pathway in the reddening of 'RMHC' flesh. Moreover, this is the first study to describe the cause for red meat reddening in 'RMHC' compared to 'SR' peaches using transcriptomics, metabolomics and molecular methods. Our study identified a key transcription factor involved in the regulation of the flavonoid synthetic pathway and contributes to peach breeding-related efforts as well as the identification of genes involved in color formation in other species.
{"title":"The PpMYB75-PpDFR module reveals the difference between 'SR' and its bud variant 'RMHC' in peach red flesh.","authors":"Chao Xu, Xiaomin Xue, Zhixing Li, Mingguang Chen, Yating Yang, Siyu Wang, Mingrui Shang, Lei Qiu, Xianyan Zhao, Wenxiao Hu","doi":"10.1007/s10265-023-01512-1","DOIUrl":"10.1007/s10265-023-01512-1","url":null,"abstract":"<p><p>'Red Meat Honey Crisp (RMHC)' has been widely cultivated by growers in recent years due to its early maturity, and red meat type characteristics. As a bud variant of 'Super Red (SR)' peach, red flesh is the most distinctive characteristic of 'Red Meat Honey Crisp (RMHC)'. However, the mechanism of red flesh formation in 'RMHC' remains unclear. In this study, 79 differentially produced metabolites were identified by metabolomics analysis. The anthocyanin content in 'RMHC' was significantly higher than that in 'SR' during the same period, such as cyanidin O-syringic acid and cyanidin 3-O-glucoside. Other flavonoids also increased during the formation of red flesh, including flavonols (6-hydroxykaempferol-7-O-glucoside, hyperin), flavanols (protocatechuic acid, (+)-gallocatechin), and flavonoids (chrysoeriol 5-O-hexoside, tricetin). In addition, transcriptomic analysis and RT-qPCR showed that the expression levels of the flavonoid synthesis pathway transcription factor MYB75 and some structural genes, such as PpDFR, PpCHS, PpC4H, and PpLDOX increased significantly in 'RMHC'. Subcellular localization analysis revealed that MYB75 was localized to the nucleus. Yeast single hybridization assays showed that MYB75 bound to the cis-acting element CCGTTG of the PpDFR promoter region. The MYB75-PpDFR regulatory network was identified to be a key pathway in the reddening of 'RMHC' flesh. Moreover, this is the first study to describe the cause for red meat reddening in 'RMHC' compared to 'SR' peaches using transcriptomics, metabolomics and molecular methods. Our study identified a key transcription factor involved in the regulation of the flavonoid synthetic pathway and contributes to peach breeding-related efforts as well as the identification of genes involved in color formation in other species.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"241-254"},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139403366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}