首页 > 最新文献

Journal of Plant Interactions最新文献

英文 中文
Insights into the infection dynamics and interactions between high-virulence and low-virulence isolates of Phytophthora palmivora and durian seedlings 棕榈疫霉高毒力和低毒力分离株与榴莲幼苗的感染动态及相互作用
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-07-26 DOI: 10.1080/17429145.2023.2236139
Nussara Putaporntip, Umaporn Siriwattanakul, Supawadee Phetkhajone, J. Narangajavana, K. Supaibulwatana, A. Pichakum, W. Songnuan
ABSTRACT Durian (Durio zibethinus L.) is susceptible to Phytophthora palmivora, which causes rot disease, leading to significant yield loss. This study aimed to investigate local defense responses of durian to P. palmivora and compare the infection dynamics of high virulence (HV) and low virulence (LV) isolates. Durian leaves on 1-year-old seedlings were inoculated with mycelial plugs. Symptoms were observed within 24 h. The HV-isolate was more aggressive, leading to larger lesions, earlier and denser colonization, and higher sporulation. P. palmivora lifestyle related gene (PpEF1α, PpHmp1, PpCdc14, and PpOPEL) were expressed at a higher level in HV compared to LV. Local defense response showed intense accumulation of H2O2, with a stronger response to the HV. Callose deposition increased initially but declined after inoculation, with different diameters between isolates, but no significantly different intensity patterns. These findings provide insights into the P. palmivora-durian interaction, with potential applications in improving disease management strategies.
{"title":"Insights into the infection dynamics and interactions between high-virulence and low-virulence isolates of Phytophthora palmivora and durian seedlings","authors":"Nussara Putaporntip, Umaporn Siriwattanakul, Supawadee Phetkhajone, J. Narangajavana, K. Supaibulwatana, A. Pichakum, W. Songnuan","doi":"10.1080/17429145.2023.2236139","DOIUrl":"https://doi.org/10.1080/17429145.2023.2236139","url":null,"abstract":"ABSTRACT Durian (Durio zibethinus L.) is susceptible to Phytophthora palmivora, which causes rot disease, leading to significant yield loss. This study aimed to investigate local defense responses of durian to P. palmivora and compare the infection dynamics of high virulence (HV) and low virulence (LV) isolates. Durian leaves on 1-year-old seedlings were inoculated with mycelial plugs. Symptoms were observed within 24 h. The HV-isolate was more aggressive, leading to larger lesions, earlier and denser colonization, and higher sporulation. P. palmivora lifestyle related gene (PpEF1α, PpHmp1, PpCdc14, and PpOPEL) were expressed at a higher level in HV compared to LV. Local defense response showed intense accumulation of H2O2, with a stronger response to the HV. Callose deposition increased initially but declined after inoculation, with different diameters between isolates, but no significantly different intensity patterns. These findings provide insights into the P. palmivora-durian interaction, with potential applications in improving disease management strategies.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49101510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide identification of papain-like cysteine proteases in Citrus sinensis and expression analysis in response to Candidatus Liberibacter asiaticus 柑橘木瓜样半胱氨酸蛋白酶的全基因组鉴定及对亚洲liberibacterium asiaticus的表达分析
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-07-23 DOI: 10.1080/17429145.2023.2238785
Tianyu Li, Chang-xi Liu, Xiaopeng Chang, Fuxuan Li, Tao Wang, Guiyan Huang, Ruimin Li
ABSTRACT Papain-like cysteine proteases (PLCPs) play important roles in plant-pathogen interactions. In citrus, PLCPs are targeted by effectors from Candidatus Liberibacter asiaticus (CLas), the causal agent of Huanglongbing (HLB). To study interactions between Citrus sinensis and CLas, we identified 33 candidate CsPLCP genes by HMMsearch with the Peptidase_C1 domain (PF00112), and further confirmed them using local BLAST with PLCP sequences from Arabidopsis thaliana. The 33 CsPLCPs were classified into 9 subfamilies. Analysis of the cis-acting elements in their promoters indicated that CsPLCPs are responsive to various phytohormones and stressors. Further qPCR analysis indicated that several CsPLCPs were up-regulated during CLas infection. Subcellular localization analysis indicated that five CsPLCPs were localized to the cytoplasm and nucleus, while CsXBCP2 was localized only to the cytoplasm. In summary, this study provides a sound basis for understanding the roles of CsPLCPs in the Citrus-CLas interaction.
{"title":"Genome-wide identification of papain-like cysteine proteases in Citrus sinensis and expression analysis in response to Candidatus Liberibacter asiaticus","authors":"Tianyu Li, Chang-xi Liu, Xiaopeng Chang, Fuxuan Li, Tao Wang, Guiyan Huang, Ruimin Li","doi":"10.1080/17429145.2023.2238785","DOIUrl":"https://doi.org/10.1080/17429145.2023.2238785","url":null,"abstract":"ABSTRACT Papain-like cysteine proteases (PLCPs) play important roles in plant-pathogen interactions. In citrus, PLCPs are targeted by effectors from Candidatus Liberibacter asiaticus (CLas), the causal agent of Huanglongbing (HLB). To study interactions between Citrus sinensis and CLas, we identified 33 candidate CsPLCP genes by HMMsearch with the Peptidase_C1 domain (PF00112), and further confirmed them using local BLAST with PLCP sequences from Arabidopsis thaliana. The 33 CsPLCPs were classified into 9 subfamilies. Analysis of the cis-acting elements in their promoters indicated that CsPLCPs are responsive to various phytohormones and stressors. Further qPCR analysis indicated that several CsPLCPs were up-regulated during CLas infection. Subcellular localization analysis indicated that five CsPLCPs were localized to the cytoplasm and nucleus, while CsXBCP2 was localized only to the cytoplasm. In summary, this study provides a sound basis for understanding the roles of CsPLCPs in the Citrus-CLas interaction.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41785896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endophytic bacterial taxonomic and functional diversity in the seeds of wheat genotypes from different agroecologies 不同农业生态小麦基因型种子内生细菌的分类和功能多样性
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-07-05 DOI: 10.1080/17429145.2023.2227652
Pushpendra Sharma, A. Suman, K. Aswini, Jogdande SaiPrasad, S. Gond
ABSTRACT Plant genotype and agroecology influence the composition and functionality of seed endophytic bacterial communities. Taxonomic analysis of 123 wheat seeds endophytic bacteria classified these into 23 genera predominantly under Firmicutes followed by Actinobacteria and Proteobacteria. Genus Bacillus was most abundant (30.7%) followed by Streptomyces (18.4%) with other representative genera such as Stenotrophomonas, Paenibacillus, Mixta, Enterobacter, Micrococcus, Pantoea, Alkalihalobacillus, Cortiobacterium, and more. Across agroecologies, the core microbiota of seeds consists of Bacillus, Streptomyces, Paenibacillus, and Stenotrophomonas, with maximum diversity and abundance observed in seeds of the North Western Plain Zone of India. Seed endophytic bacteria had PGP traits; nitrogen fixation (n = 101), production of IAA (n = 65), siderophores (n = 43), ammonia (n = 82) and solubilization of phosphate (n = 47), potassium (n = 37), and zinc (n = 8). The isolates produced HCN and hydrolytic enzymes and displayed antagonism against fungal pathogens. Overall, the information generated on wheat seeds’ endophytic bacterial taxonomy and beneficial traits may pave the path for the development of novel bioinoculants. Key message Wheat seeds from various agro-ecologies of India harbor diverse endophytic bacteria. Firmicutes were dominant followed by Actinobacteria and Proteobacteria. Genus Bacillus, Stenotrophomonas, Streptomyces, and Paenibacillus were core endophytic bacteria in different agro-ecologies. The endophytic bacterial strains were displaying diverse functional traits.
{"title":"Endophytic bacterial taxonomic and functional diversity in the seeds of wheat genotypes from different agroecologies","authors":"Pushpendra Sharma, A. Suman, K. Aswini, Jogdande SaiPrasad, S. Gond","doi":"10.1080/17429145.2023.2227652","DOIUrl":"https://doi.org/10.1080/17429145.2023.2227652","url":null,"abstract":"ABSTRACT Plant genotype and agroecology influence the composition and functionality of seed endophytic bacterial communities. Taxonomic analysis of 123 wheat seeds endophytic bacteria classified these into 23 genera predominantly under Firmicutes followed by Actinobacteria and Proteobacteria. Genus Bacillus was most abundant (30.7%) followed by Streptomyces (18.4%) with other representative genera such as Stenotrophomonas, Paenibacillus, Mixta, Enterobacter, Micrococcus, Pantoea, Alkalihalobacillus, Cortiobacterium, and more. Across agroecologies, the core microbiota of seeds consists of Bacillus, Streptomyces, Paenibacillus, and Stenotrophomonas, with maximum diversity and abundance observed in seeds of the North Western Plain Zone of India. Seed endophytic bacteria had PGP traits; nitrogen fixation (n = 101), production of IAA (n = 65), siderophores (n = 43), ammonia (n = 82) and solubilization of phosphate (n = 47), potassium (n = 37), and zinc (n = 8). The isolates produced HCN and hydrolytic enzymes and displayed antagonism against fungal pathogens. Overall, the information generated on wheat seeds’ endophytic bacterial taxonomy and beneficial traits may pave the path for the development of novel bioinoculants. Key message Wheat seeds from various agro-ecologies of India harbor diverse endophytic bacteria. Firmicutes were dominant followed by Actinobacteria and Proteobacteria. Genus Bacillus, Stenotrophomonas, Streptomyces, and Paenibacillus were core endophytic bacteria in different agro-ecologies. The endophytic bacterial strains were displaying diverse functional traits.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48262980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Halotolerant endophytes promote grapevine regrowth after salt-induced defoliation 耐盐内生菌促进盐诱导落叶后葡萄的再生
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-05-26 DOI: 10.1080/17429145.2023.2215235
Salvadora Navarro-Torre, Sara Ferrario, A. Caperta, G. Victorino, Marion Bailly, Vicelina Sousa, Wanda Viegas, Amaia Nogales
ABSTRACT Salinity is an important problem for agriculture in the Mediterranean area, and thus, it is essential to develop mitigation strategies to reduce its impact. The main objective of this study was to test the effectiveness of halotolerant plant growth-promoting bacteria (H-PGPB) in improving grapevine salt stress tolerance. Grapevines grafted onto a salt-sensitive rootstock were inoculated with a consortium of H-PGPB. The substrate of half of the plants of each treatment was salinized up to 2 dS m−1. Plants grew for six days under these conditions, and afterward, NaCl was removed to assess plant recovery through growth, physiology, and canopy temperature measurements. Inoculation with H-PGPB had a positive effect on plant physiology, but after salt treatment, grapevines stopped their photosynthetic metabolism, leading to severe defoliation. Remarkably, after salt stress removal, inoculated plants re-sprouted faster, demonstrating that H-PGPB inoculation could be a good practice to increase vineyard resilience to salt stress.
{"title":"Halotolerant endophytes promote grapevine regrowth after salt-induced defoliation","authors":"Salvadora Navarro-Torre, Sara Ferrario, A. Caperta, G. Victorino, Marion Bailly, Vicelina Sousa, Wanda Viegas, Amaia Nogales","doi":"10.1080/17429145.2023.2215235","DOIUrl":"https://doi.org/10.1080/17429145.2023.2215235","url":null,"abstract":"ABSTRACT Salinity is an important problem for agriculture in the Mediterranean area, and thus, it is essential to develop mitigation strategies to reduce its impact. The main objective of this study was to test the effectiveness of halotolerant plant growth-promoting bacteria (H-PGPB) in improving grapevine salt stress tolerance. Grapevines grafted onto a salt-sensitive rootstock were inoculated with a consortium of H-PGPB. The substrate of half of the plants of each treatment was salinized up to 2 dS m−1. Plants grew for six days under these conditions, and afterward, NaCl was removed to assess plant recovery through growth, physiology, and canopy temperature measurements. Inoculation with H-PGPB had a positive effect on plant physiology, but after salt treatment, grapevines stopped their photosynthetic metabolism, leading to severe defoliation. Remarkably, after salt stress removal, inoculated plants re-sprouted faster, demonstrating that H-PGPB inoculation could be a good practice to increase vineyard resilience to salt stress.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43640185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolomic analysis reveals responses of Spirodela polyrhiza L. to salt stress 代谢组学分析揭示了绣线菌对盐胁迫的反应
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-05-11 DOI: 10.1080/17429145.2023.2210163
Tanyue Hui, Yamei Zhang, Rong Jia, Yue Hu, Wenjing Wang, Yi Wang, Yong Wang, Yerong Zhu, Lin Yang, Beibei Xiang
ABSTRACT Duckweeds are particularly well suited for studies needing high output because of their quick growth and reproduction. Due to their starches and flavonoids, the potential for using duckweed as a source of food, medicine or feed has been studied. Through LC-MS analysis, 195 differential metabolites, including organic acids, phenolics, and other categories, were screened in Spirodela polyrhiza L. exposed to 4 days of NaCl. S. polyrhiza contained higher amounts of oxidized glutathione, jasmonates, and phenolic compounds but lower amounts of citric acid and glutathione under salt stress. Additionally, after 4 days of salt stress, there was an increase in the relative expression levels of genes involved in the phenolic biosynthesis pathway. Based on metabolomics, this study provides insight into the mechanism of salt-tolerant by duckweeds, as well as useful information for plant breeders and molecular biologists developing duckweed cultivars with salt tolerance and high phenolic content. Key policy highlights A total of 195 differential metabolites were examined in S. polyrhiza under salt stress using LC‒MS analysis. The effects of salt stress on S. polyrhiza metabolic pathways were reported. Under salt stress, the expression of genes involved in the S. polyrhiza phenolic biosynthesis pathway was evaluated.
{"title":"Metabolomic analysis reveals responses of Spirodela polyrhiza L. to salt stress","authors":"Tanyue Hui, Yamei Zhang, Rong Jia, Yue Hu, Wenjing Wang, Yi Wang, Yong Wang, Yerong Zhu, Lin Yang, Beibei Xiang","doi":"10.1080/17429145.2023.2210163","DOIUrl":"https://doi.org/10.1080/17429145.2023.2210163","url":null,"abstract":"ABSTRACT Duckweeds are particularly well suited for studies needing high output because of their quick growth and reproduction. Due to their starches and flavonoids, the potential for using duckweed as a source of food, medicine or feed has been studied. Through LC-MS analysis, 195 differential metabolites, including organic acids, phenolics, and other categories, were screened in Spirodela polyrhiza L. exposed to 4 days of NaCl. S. polyrhiza contained higher amounts of oxidized glutathione, jasmonates, and phenolic compounds but lower amounts of citric acid and glutathione under salt stress. Additionally, after 4 days of salt stress, there was an increase in the relative expression levels of genes involved in the phenolic biosynthesis pathway. Based on metabolomics, this study provides insight into the mechanism of salt-tolerant by duckweeds, as well as useful information for plant breeders and molecular biologists developing duckweed cultivars with salt tolerance and high phenolic content. Key policy highlights A total of 195 differential metabolites were examined in S. polyrhiza under salt stress using LC‒MS analysis. The effects of salt stress on S. polyrhiza metabolic pathways were reported. Under salt stress, the expression of genes involved in the S. polyrhiza phenolic biosynthesis pathway was evaluated.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41678438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The roots of olive cultivars differing in tolerance to Verticillium dahliae show quantitative differences in phenolic and triterpenic profiles 不同耐黄萎病橄榄品种的根在酚类和三萜谱上存在数量差异
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-05-02 DOI: 10.1080/17429145.2023.2206840
M. Cardoni, L. Olmo-García, Irene Serrano-García, A. Carrasco-Pancorbo, J. Mercado-Blanco
ABSTRACT Verticillium wilt of olive (VWO), caused by Verticillium dahliae, is a major concern in many olive-growing countries. An efficient VWO control measure is the use of tolerant/resistant cultivars. Low information is available about olive secondary metabolites and its relationship with VWO tolerance. In this study, a comprehensive metabolic profiling of the roots of six olive cultivars differing in their level of tolerance/susceptibility to VWO was addressed. Potential changes in the metabolite profiles due to the presence of the pathogen were also assessed. A strong relationship between the quantitative basal composition of the root secondary metabolic profile and VWO tolerance/susceptibility of olive varieties was found. Tolerant cultivars showed higher content of secoiridoids, while the susceptible ones presented greater amounts of verbascoside and methoxypinoresinol glucoside. The presence of V. dahliae only caused few significant variations mostly restricted to the earliest times after inoculation. Thus, a rapid activation of biochemical-based root defense mechanisms was observed. Key policy highlights Quantitative differences of secondary metabolites in roots contribute to explain the tolerance/susceptibility of olive cultivars to Verticillium dahliae. Higher basal content of secoiridoids correlate with tolerance, while greater concentration of verbascoside and methoxypinoresinol glucoside seem to be linked to susceptibility. Few alterations are observed in the olive root metabolic profiles in the presence of the pathogen. Changes in the root metabolic profile occur at early times after pathogen inoculation which suggests a rapid activation of a biochemical-based defense response against V. dahliae.
{"title":"The roots of olive cultivars differing in tolerance to Verticillium dahliae show quantitative differences in phenolic and triterpenic profiles","authors":"M. Cardoni, L. Olmo-García, Irene Serrano-García, A. Carrasco-Pancorbo, J. Mercado-Blanco","doi":"10.1080/17429145.2023.2206840","DOIUrl":"https://doi.org/10.1080/17429145.2023.2206840","url":null,"abstract":"ABSTRACT Verticillium wilt of olive (VWO), caused by Verticillium dahliae, is a major concern in many olive-growing countries. An efficient VWO control measure is the use of tolerant/resistant cultivars. Low information is available about olive secondary metabolites and its relationship with VWO tolerance. In this study, a comprehensive metabolic profiling of the roots of six olive cultivars differing in their level of tolerance/susceptibility to VWO was addressed. Potential changes in the metabolite profiles due to the presence of the pathogen were also assessed. A strong relationship between the quantitative basal composition of the root secondary metabolic profile and VWO tolerance/susceptibility of olive varieties was found. Tolerant cultivars showed higher content of secoiridoids, while the susceptible ones presented greater amounts of verbascoside and methoxypinoresinol glucoside. The presence of V. dahliae only caused few significant variations mostly restricted to the earliest times after inoculation. Thus, a rapid activation of biochemical-based root defense mechanisms was observed. Key policy highlights Quantitative differences of secondary metabolites in roots contribute to explain the tolerance/susceptibility of olive cultivars to Verticillium dahliae. Higher basal content of secoiridoids correlate with tolerance, while greater concentration of verbascoside and methoxypinoresinol glucoside seem to be linked to susceptibility. Few alterations are observed in the olive root metabolic profiles in the presence of the pathogen. Changes in the root metabolic profile occur at early times after pathogen inoculation which suggests a rapid activation of a biochemical-based defense response against V. dahliae.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41970604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Finding optimal microorganisms to increase crop productivity and sustainability under drought – a structured reflection 在干旱条件下寻找提高作物生产力和可持续性的最佳微生物——一种结构化的反映
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-03-12 DOI: 10.1080/17429145.2023.2178680
Ana Paula Rosa, Teresa Dias, A. Mouazen, C. Cruz, M. Santana
ABSTRACT Considering the more frequent and longer drought events due to climate change, improving plant drought tolerance became a priority. The search for plant growth promoting rhizobacteria (PGPR) able to improve plant drought tolerance has been long addressed, but with inconsistent results. Here, we summarize the PGPR mechanisms that improve plant drought tolerance, identify the pitfalls in current PGPR isolation and selection routines, and discuss the key points to define new strategies to get optimal PGPR for plant drought tolerance. Drought and host genotype impact rhizo-communities, and host-mediated selection strategies may be used to obtain a drought-adapted rhizomicrobiome that can be a source for PGPR isolation. Alternatively, an integrated omics-level analysis can improve our knowledge on the mechanisms of rhizomicrobiome construction, and a targeted approach can be designed, which will be focused on key PGP traits. New strategies to build PGPR consortia for improvement of plant drought tolerance are also suggested.
{"title":"Finding optimal microorganisms to increase crop productivity and sustainability under drought – a structured reflection","authors":"Ana Paula Rosa, Teresa Dias, A. Mouazen, C. Cruz, M. Santana","doi":"10.1080/17429145.2023.2178680","DOIUrl":"https://doi.org/10.1080/17429145.2023.2178680","url":null,"abstract":"ABSTRACT Considering the more frequent and longer drought events due to climate change, improving plant drought tolerance became a priority. The search for plant growth promoting rhizobacteria (PGPR) able to improve plant drought tolerance has been long addressed, but with inconsistent results. Here, we summarize the PGPR mechanisms that improve plant drought tolerance, identify the pitfalls in current PGPR isolation and selection routines, and discuss the key points to define new strategies to get optimal PGPR for plant drought tolerance. Drought and host genotype impact rhizo-communities, and host-mediated selection strategies may be used to obtain a drought-adapted rhizomicrobiome that can be a source for PGPR isolation. Alternatively, an integrated omics-level analysis can improve our knowledge on the mechanisms of rhizomicrobiome construction, and a targeted approach can be designed, which will be focused on key PGP traits. New strategies to build PGPR consortia for improvement of plant drought tolerance are also suggested.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43180641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Genome-wide identification and expression analysis of the CHYR gene family in Phaseolus vulgaris under abiotic stress at the seeding stage 苗期非生物胁迫下菜豆CHYR基因家族的全基因组鉴定及表达分析
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-02-24 DOI: 10.1080/17429145.2023.2182922
Xianxin Meng, Zhengong Yin, Guangdong Yang, Shuhong Wei, Y. Guo, Wei Zhang, Qianqian Wang
{"title":"Genome-wide identification and expression analysis of the CHYR gene family in Phaseolus vulgaris under abiotic stress at the seeding stage","authors":"Xianxin Meng, Zhengong Yin, Guangdong Yang, Shuhong Wei, Y. Guo, Wei Zhang, Qianqian Wang","doi":"10.1080/17429145.2023.2182922","DOIUrl":"https://doi.org/10.1080/17429145.2023.2182922","url":null,"abstract":"","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43180845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytoconstituents of Butterbur (P. japonicus), their metabolic pathway and ability to modulate bone morphogenic protein (BMP) signaling 刺桐的植物成分、代谢途径和调节骨形态发生蛋白(BMP)信号传导的能力
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-02-24 DOI: 10.1080/17429145.2023.2181415
A. Belal, Mona H. Ibrahim, W. Mahdi, Sultan Alshehri, H. Ebrahim, M. Ghoneim, M. El-Sherbiny, Ahmed B. M. Mehany, Heba I. Ghamry
ABSTRACT A library of natural sesquiterpene and phenolic compounds from Petasites japonicus are being investigated through different computational techniques to study their ability to target BMP. Lipinski rule, ADMET, molecular docking studies and metabolism were used to reach promising candidates with proposed activity against BMP. Four sesquiterpenes (kablicin, petisinol, bakkenolide D and bakkenolide IIIa) and four phenolic compounds exhibited drug-like properties (caffeic acid, petasiphenol, petasitesin A and petasitesin B), so they deserve further clinical exploration as bone loss modulators. The phenolic compounds specially fukinolic acid and petasiphenol showed lower binding energy with both BMPRIA and BMPRII than Icariin agonist and sesquiterpenes. Bakkenolide IIIa showed dual potential on both BMPRIA and BMPRII with binding energies equal – 7.82 and – 9.9 Kcal/mol respectively, which is more better score than Betulinic acid agonist. This research is focusing on plant-human interactions and exploring the ability of plant constituents to modulate a human protein such as BMP.
{"title":"Phytoconstituents of Butterbur (P. japonicus), their metabolic pathway and ability to modulate bone morphogenic protein (BMP) signaling","authors":"A. Belal, Mona H. Ibrahim, W. Mahdi, Sultan Alshehri, H. Ebrahim, M. Ghoneim, M. El-Sherbiny, Ahmed B. M. Mehany, Heba I. Ghamry","doi":"10.1080/17429145.2023.2181415","DOIUrl":"https://doi.org/10.1080/17429145.2023.2181415","url":null,"abstract":"ABSTRACT A library of natural sesquiterpene and phenolic compounds from Petasites japonicus are being investigated through different computational techniques to study their ability to target BMP. Lipinski rule, ADMET, molecular docking studies and metabolism were used to reach promising candidates with proposed activity against BMP. Four sesquiterpenes (kablicin, petisinol, bakkenolide D and bakkenolide IIIa) and four phenolic compounds exhibited drug-like properties (caffeic acid, petasiphenol, petasitesin A and petasitesin B), so they deserve further clinical exploration as bone loss modulators. The phenolic compounds specially fukinolic acid and petasiphenol showed lower binding energy with both BMPRIA and BMPRII than Icariin agonist and sesquiterpenes. Bakkenolide IIIa showed dual potential on both BMPRIA and BMPRII with binding energies equal – 7.82 and – 9.9 Kcal/mol respectively, which is more better score than Betulinic acid agonist. This research is focusing on plant-human interactions and exploring the ability of plant constituents to modulate a human protein such as BMP.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49212450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Transcriptome analyses revealed chilling response genes in mango (Mangifera indica L. cv. Keitt) leaf 转录组分析揭示了芒果(Mangifera indica L. cv.)的低温反应基因。Keitt)叶
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-02-15 DOI: 10.1080/17429145.2023.2172226
Mark Owusu Adjei, Jun Ma, R. Luo, Jianfeng Huang, Zhichang Zhao, Yingying Wang, A. Gao
ABSTRACT Mangifera indica L. cv. Keitt is a cold-stress fruit plant native to China's drought river valley. Chilling stress affects productivity. Understanding the mechanisms of chilling stress is important to increasing chilling resistance in mango. Leaves of Keitti were subjected to 4 °C for 0, 3, 6, and 9 h for RNA-Seq-based transcriptome analysis, respectively. The chlorophyll content, carotenoid content, catalase, and peroxidase activities significantly increased during 9 h. The leaves responded to the stress by enhancing photosynthetic pigment content and antioxidant enzyme activity. After 3 h of chilling, 410 genes were differentially expressed. WRKY70 and PLD1 were significantly up-regulated after 9 h. Compared to 9 and 0 h, there were 1123 DEG. The DEGs are enriched in hormonal signal transduction, secondary metabolites, and the abiotic stress response. Similarly, the transcriptional factor families including NCED2, MYB73, and HLH162 up-regulated. The study will promote research on the development of chill-resistant mangoes.
{"title":"Transcriptome analyses revealed chilling response genes in mango (Mangifera indica L. cv. Keitt) leaf","authors":"Mark Owusu Adjei, Jun Ma, R. Luo, Jianfeng Huang, Zhichang Zhao, Yingying Wang, A. Gao","doi":"10.1080/17429145.2023.2172226","DOIUrl":"https://doi.org/10.1080/17429145.2023.2172226","url":null,"abstract":"ABSTRACT Mangifera indica L. cv. Keitt is a cold-stress fruit plant native to China's drought river valley. Chilling stress affects productivity. Understanding the mechanisms of chilling stress is important to increasing chilling resistance in mango. Leaves of Keitti were subjected to 4 °C for 0, 3, 6, and 9 h for RNA-Seq-based transcriptome analysis, respectively. The chlorophyll content, carotenoid content, catalase, and peroxidase activities significantly increased during 9 h. The leaves responded to the stress by enhancing photosynthetic pigment content and antioxidant enzyme activity. After 3 h of chilling, 410 genes were differentially expressed. WRKY70 and PLD1 were significantly up-regulated after 9 h. Compared to 9 and 0 h, there were 1123 DEG. The DEGs are enriched in hormonal signal transduction, secondary metabolites, and the abiotic stress response. Similarly, the transcriptional factor families including NCED2, MYB73, and HLH162 up-regulated. The study will promote research on the development of chill-resistant mangoes.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42601282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Journal of Plant Interactions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1