Pub Date : 2023-03-22DOI: 10.24425/jppr.2023.144504
{"title":"Bioactivity of Trichoderma harzianum A peptaibols against Zymoseptoria tritici causal agent of septoria leaf blotch of wheat","authors":"","doi":"10.24425/jppr.2023.144504","DOIUrl":"https://doi.org/10.24425/jppr.2023.144504","url":null,"abstract":"","PeriodicalId":16848,"journal":{"name":"Journal of Plant Protection Research","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47184591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edyta Konecka, A. Kaznowski, W. Marcinkiewicz, Damian Tomkowiak, M. Maciag, M. Stachowiak
Our research provides novel information concerning the insecticidal activity of Brassica alba mustard oil applied to the intestinal tract via insects’ diet against pests from the order Lepidoptera: Cydia pomonella , Dendrolimus pini , and Spodoptera exigua . The LC 50 value of the oil against C. pomonella was 0.422 mg ⋅ ml –1 . The LC 50 of the plant oil against D. pini was 11.74 mg ⋅ ml –1 . The LC 50 of the botanical product against S. exigua was 11.66 mg ⋅ ml –1 . The plant substance was the most active against C. pomonella in comparison with D. pini and S. exigua . The LC 50 values of the oil against D. pini and S. exigua were similar. The plant oil exhibited high insecticidal activity against pests from the order Lepidoptera and may prove to be an effective biopesticide.
{"title":"Insecticidal activity of Brassica alba mustard oil against lepidopteran pests Cydia pomonella (Lepidoptera: Tortricidae), Dendrolimus pini (Lepidoptera: Lasiocampidae), and Spodoptera exigua (Lepidoptera: Noctuidae)","authors":"Edyta Konecka, A. Kaznowski, W. Marcinkiewicz, Damian Tomkowiak, M. Maciag, M. Stachowiak","doi":"10.24425/119129","DOIUrl":"https://doi.org/10.24425/119129","url":null,"abstract":"Our research provides novel information concerning the insecticidal activity of Brassica alba mustard oil applied to the intestinal tract via insects’ diet against pests from the order Lepidoptera: Cydia pomonella , Dendrolimus pini , and Spodoptera exigua . The LC 50 value of the oil against C. pomonella was 0.422 mg ⋅ ml –1 . The LC 50 of the plant oil against D. pini was 11.74 mg ⋅ ml –1 . The LC 50 of the botanical product against S. exigua was 11.66 mg ⋅ ml –1 . The plant substance was the most active against C. pomonella in comparison with D. pini and S. exigua . The LC 50 values of the oil against D. pini and S. exigua were similar. The plant oil exhibited high insecticidal activity against pests from the order Lepidoptera and may prove to be an effective biopesticide.","PeriodicalId":16848,"journal":{"name":"Journal of Plant Protection Research","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45273226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.24425/jppr.2022.140292
E. Ziedan
The fumigant pesticide methyl bromide (MB) is no longer used in most countries due to its carcinogenic effects. It is followed by carbon bisulfide and chloropicrin which are the most effective liquid synthetic chemicals in pesticide formulations. They are converted to gas to penetrate soil particles and eliminate plant pests such as insects, weeds, and causal plant diseases of viruses, bacteria, fungi, and nematodes under greenhouse, field and storage conditions. These fumigants are non specific pesticides and highly hazardous to humans, environmental resources, and deplete the ozone layers. Furthermore, increasing the cost of crop production by inceasing the amount of pesticides treatments was increased the cost of research on the alternatives of green pesticides from eco-friendly agents, natural organic soil amendments of organic wastes, green manure, biofumigation crops, compost, and essential oils, as well as formulations, are examples of this. Organic fumigants that are non toxic, non-residual, highly degradable and decomposable are available as eco-friendly alternatives to chemical pesticides to manage soil borne pests and diseases of plants. This article summarizes the development of applicable eco-friendly formulations which use natural organic materials to disinfest soil in order to reduce plant diseases caused by soil--borne pathogens.
{"title":"A review of the efficacy of biofumigation agents in the control of soil-borne plant diseases","authors":"E. Ziedan","doi":"10.24425/jppr.2022.140292","DOIUrl":"https://doi.org/10.24425/jppr.2022.140292","url":null,"abstract":"The fumigant pesticide methyl bromide (MB) is no longer used in most countries due to its carcinogenic effects. It is followed by carbon bisulfide and chloropicrin which are the most effective liquid synthetic chemicals in pesticide formulations. They are converted to gas to penetrate soil particles and eliminate plant pests such as insects, weeds, and causal plant diseases of viruses, bacteria, fungi, and nematodes under greenhouse, field and storage conditions. These fumigants are non specific pesticides and highly hazardous to humans, environmental resources, and deplete the ozone layers. Furthermore, increasing the cost of crop production by inceasing the amount of pesticides treatments was increased the cost of research on the alternatives of green pesticides from eco-friendly agents, natural organic soil amendments of organic wastes, green manure, biofumigation crops, compost, and essential oils, as well as formulations, are examples of this. Organic fumigants that are non toxic, non-residual, highly degradable and decomposable are available as eco-friendly alternatives to chemical pesticides to manage soil borne pests and diseases of plants. This article summarizes the development of applicable eco-friendly formulations which use natural organic materials to disinfest soil in order to reduce plant diseases caused by soil--borne pathogens.","PeriodicalId":16848,"journal":{"name":"Journal of Plant Protection Research","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45273604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.24425/jppr.2021.139239
Carlos Eduardo Leite Mello, E. L. Carmo, G.B.P. Braz, G. Simon, João Vitor Alves de Sousa, Ana Carollina Pereira dos Reis, Marco Túlio Moura Leite, Gabriel Elias Soares de Araújo
There is an ongoing search for technologies that guarantee soybean productivity. Among them, the application of phytosanitary products stands out, since the sprayer is the most required implement during the agricultural production cycle and each error, in practice, represents a loss in the production process. With this in mind, the objective of this work was to evaluate the volume captured and the characteristics of the application in the different thirds of soybean plants with variations in hydraulic nozzles and spray volumes, as well as the use of electrification of the drops. To this end, a field experiment was conducted during the 2018/2019 summer harvest in an experimental area at the University of Rio Verde. The experimental design used was randomized blocks in a factorial scheme (3 × 4), with four repetitions, in which the first factor consisted of three variations of spray nozzles (simple fan, hollow cone and hollow cone with electrification of the drops). The second factor involved four application rates (50, 100, 150 and 200 l · ha–1). The variables evaluated were the number of drops per cm–2, percentage of coverage, volume median diameter (VMD) and the captured volume (μl · cm–2). According to the results, for the upper thirds, an increase in the application rate increased the volume of captured syrup. However, for the lower third, the factors evaluated did not interfere in this characteristic. The hydraulic tips influenced the density of droplets in the three thirds and the coverage only in the lower one. The increasing rates of application, increases the density of drops and percentage of coverage in the different thirds of the plants. The evaluated factors had no effect on the syrup distribution on the median abaxial surface of the leaves.
{"title":"The effects of rates, nozzle tips and electrostatics on the quality of sprayed applications on soybean crop","authors":"Carlos Eduardo Leite Mello, E. L. Carmo, G.B.P. Braz, G. Simon, João Vitor Alves de Sousa, Ana Carollina Pereira dos Reis, Marco Túlio Moura Leite, Gabriel Elias Soares de Araújo","doi":"10.24425/jppr.2021.139239","DOIUrl":"https://doi.org/10.24425/jppr.2021.139239","url":null,"abstract":"There is an ongoing search for technologies that guarantee soybean productivity. Among them, the application of phytosanitary products stands out, since the sprayer is the most required implement during the agricultural production cycle and each error, in practice, represents a loss in the production process. With this in mind, the objective of this work was to evaluate the volume captured and the characteristics of the application in the different thirds of soybean plants with variations in hydraulic nozzles and spray volumes, as well as the use of electrification of the drops. To this end, a field experiment was conducted during the 2018/2019 summer harvest in an experimental area at the University of Rio Verde. The experimental design used was randomized blocks in a factorial scheme (3 × 4), with four repetitions, in which the first factor consisted of three variations of spray nozzles (simple fan, hollow cone and hollow cone with electrification of the drops). The second factor involved four application rates (50, 100, 150 and 200 l · ha–1). The variables evaluated were the number of drops per cm–2, percentage of coverage, volume median diameter (VMD) and the captured volume (μl · cm–2). According to the results, for the upper thirds, an increase in the application rate increased the volume of captured syrup. However, for the lower third, the factors evaluated did not interfere in this characteristic. The hydraulic tips influenced the density of droplets in the three thirds and the coverage only in the lower one. The increasing rates of application, increases the density of drops and percentage of coverage in the different thirds of the plants. The evaluated factors had no effect on the syrup distribution on the median abaxial surface of the leaves.","PeriodicalId":16848,"journal":{"name":"Journal of Plant Protection Research","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45659549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.24425/jppr.2021.139246
Pepper yellow leaf curl Thailand virus (PepYLCTHV) causes leaf curl disease in chili production regions of the tropics and subtropics. Information on PepYLCTHV disease severity and resistance in chili pepper is still limited in Thailand. This study reports PepYLCTHV disease severity through graft inoculation and selection of single resistant plants for use in a chili breeding program. Twenty-one chili genotypes consisting of the local cultivar (5) collected from Thailand, breeding lines (9) developed at Khon Kaen University (KKU), Thailand and improved lines (7) obtained from the World Vegetable Center, Taiwan were used in this study. Forty-five-day-old seedlings of all the genotypes were graft inoculated with PepYLCTHV in a randomized complete block design (RCBD) with three replications and 10 plants per replication and kept in a plastic net house. Disease symptoms were scored at 20, 27, 34, 41 48, and 55 days after graft/inoculation (DAI). Disease severity was visually recorded using 0 − 5 scores. Results showed that the disease severity of 21 chili genotypes significantly differed at 48 days after grafting. High resistance and stability were shown by 9853-123 genotypes. Two genotypes, PSP11-7 and PSP11-10-1, showed resistant reaction with disease severity scores of 1.9 and 1.8, respectively. However, among 21 chili genotypes or 630 grafted plants, 302 plants were successfully grafted inoculated plants. Therefore, from the results of this work, highly resistant plants (69 single plants) can be selected, selfed and advanced for breeding.
{"title":"Chili ( Capsicum annuum L.) genotypes resistant to Pepper yellow leaf curl Thailand virus (PepYLCTHV)","authors":"","doi":"10.24425/jppr.2021.139246","DOIUrl":"https://doi.org/10.24425/jppr.2021.139246","url":null,"abstract":"Pepper yellow leaf curl Thailand virus (PepYLCTHV) causes leaf curl disease in chili production regions of the tropics and subtropics. Information on PepYLCTHV disease severity and resistance in chili pepper is still limited in Thailand. This study reports PepYLCTHV disease severity through graft inoculation and selection of single resistant plants for use in a chili breeding program. Twenty-one chili genotypes consisting of the local cultivar (5) collected from Thailand, breeding lines (9) developed at Khon Kaen University (KKU), Thailand and improved lines (7) obtained from the World Vegetable Center, Taiwan were used in this study. Forty-five-day-old seedlings of all the genotypes were graft inoculated with PepYLCTHV in a randomized complete block design (RCBD) with three replications and 10 plants per replication and kept in a plastic net house. Disease symptoms were scored at 20, 27, 34, 41 48, and 55 days after graft/inoculation (DAI). Disease severity was visually recorded using 0 − 5 scores. Results showed that the disease severity of 21 chili genotypes significantly differed at 48 days after grafting. High resistance and stability were shown by 9853-123 genotypes. Two genotypes, PSP11-7 and PSP11-10-1, showed resistant reaction with disease severity scores of 1.9 and 1.8, respectively. However, among 21 chili genotypes or 630 grafted plants, 302 plants were successfully grafted inoculated plants. Therefore, from the results of this work, highly resistant plants (69 single plants) can be selected, selfed and advanced for breeding.","PeriodicalId":16848,"journal":{"name":"Journal of Plant Protection Research","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47504489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.24425/JPPR.2018.124653
G. Adibmoradi, Jalal Jalali Sendi, S. Tirgari, S. Imani, Avid Razavi-Nematolahi
{"title":"Effect of 1,8-cineol on the biology and physiology of elm leaf beetle, Xanthogaleruca luteola (Col.: Chrysomelidae)","authors":"G. Adibmoradi, Jalal Jalali Sendi, S. Tirgari, S. Imani, Avid Razavi-Nematolahi","doi":"10.24425/JPPR.2018.124653","DOIUrl":"https://doi.org/10.24425/JPPR.2018.124653","url":null,"abstract":"","PeriodicalId":16848,"journal":{"name":"Journal of Plant Protection Research","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41908283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.24425/jppr.2021.139245
Meloidogyne arenaria belongs to root-knot nematodes (RKNs) which constitute a group of highly polyphagous nematodes causing serious damages to many crop varieties. Maize ( Zea mays ) is one of its main hosts. During plant response to RKN infection, many mechanisms are involved. Pathogenesis-related proteins (PRs), which present many functions and enzymatic activities, such as ribonucleases (RNases), antioxidative enzymes, or proteases are involved in these processes. The aim of this study was to describe changes in peroxidase and RNase activities induced in Z. mays during its response to M. arenaria infection. Moreover, proteins potentially responsible for peroxidase activity were indicated. RNase and peroxidase activities were tested on proteins extracted from roots of healthy plants, M. arenaria infected plants, and healthy plants mixed with M. arenaria juveniles, in native polyacrylamide (PAA) gels. Samples were collected from two varieties of maize at four time points. A selected fraction showing peroxidase activity was excised from the gel and analyzed using mass spectrometry (MS) to determine protein factors responsible for enzymatic activity. As a result, the analyzed varieties showed slight differences in their RNase and peroxidase activities. Higher activity was observed in the Tasty Sweet variety than in the Waza variety. There were no significant differences between healthy and infected plants in RNase activities at all time points. This was in contrast to peroxidase activity, which was the highest in M. arenaria -infected plants 15 days after inoculation. On the basis of protein identification in excised gel fractions using MS it can be assumed that mainly peroxidase 12 is responsible for the observed peroxidase activity. Moreover, peroxidase activity may be presented by glutathione-S-transferase as well.
{"title":"Analysis of ribonuclease and peroxidase activities during maize ( Zea mays) response to Meloidogyne arenaria infection","authors":"","doi":"10.24425/jppr.2021.139245","DOIUrl":"https://doi.org/10.24425/jppr.2021.139245","url":null,"abstract":"Meloidogyne arenaria belongs to root-knot nematodes (RKNs) which constitute a group of highly polyphagous nematodes causing serious damages to many crop varieties. Maize ( Zea mays ) is one of its main hosts. During plant response to RKN infection, many mechanisms are involved. Pathogenesis-related proteins (PRs), which present many functions and enzymatic activities, such as ribonucleases (RNases), antioxidative enzymes, or proteases are involved in these processes. The aim of this study was to describe changes in peroxidase and RNase activities induced in Z. mays during its response to M. arenaria infection. Moreover, proteins potentially responsible for peroxidase activity were indicated. RNase and peroxidase activities were tested on proteins extracted from roots of healthy plants, M. arenaria infected plants, and healthy plants mixed with M. arenaria juveniles, in native polyacrylamide (PAA) gels. Samples were collected from two varieties of maize at four time points. A selected fraction showing peroxidase activity was excised from the gel and analyzed using mass spectrometry (MS) to determine protein factors responsible for enzymatic activity. As a result, the analyzed varieties showed slight differences in their RNase and peroxidase activities. Higher activity was observed in the Tasty Sweet variety than in the Waza variety. There were no significant differences between healthy and infected plants in RNase activities at all time points. This was in contrast to peroxidase activity, which was the highest in M. arenaria -infected plants 15 days after inoculation. On the basis of protein identification in excised gel fractions using MS it can be assumed that mainly peroxidase 12 is responsible for the observed peroxidase activity. Moreover, peroxidase activity may be presented by glutathione-S-transferase as well.","PeriodicalId":16848,"journal":{"name":"Journal of Plant Protection Research","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46330645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.24425/jppr.2021.139248
{"title":"Charcoal rot and root-knot nematode control on faba bean by photosynthesized colloidal silver nanoparticles using bioactive compounds from Moringa oleifera leaf extract","authors":"","doi":"10.24425/jppr.2021.139248","DOIUrl":"https://doi.org/10.24425/jppr.2021.139248","url":null,"abstract":"","PeriodicalId":16848,"journal":{"name":"Journal of Plant Protection Research","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48285312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.24425/jppr.2023.144506
{"title":"Induction of systemic resistance to Orobanche crenata in lentil by exogenous application of salicylic acid and indole acetic acid","authors":"","doi":"10.24425/jppr.2023.144506","DOIUrl":"https://doi.org/10.24425/jppr.2023.144506","url":null,"abstract":"","PeriodicalId":16848,"journal":{"name":"Journal of Plant Protection Research","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48530632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.24425/jppr.2022.140295
L. Galon, Felipe José Menin, Basso, C. T. Forte, Maico André, Michelon Bagnara, A. Gallina, I. Aspiazú, A. L. Radünz, G. F. Perin, L. Brunetto
Determination of interference periods, competitive ability and economic threshold level ( ETL ) are important tools for integrated weed management (IWM) in barley. The objec-tive of the work was to determine the periods of interference, the competitive ability and the ETL of weeds in barley ( Hordeum vulgare ). Two field experiments were carried out, in a randomized block design, with four replications. In this study, the periods of coexistence and control for ryegrass ( Lolium multiflorum ) and turnip ( Raphanus raphanistrum ) infesting barley cultivar, cv. ANA 01 were evaluated. The coexistence periods and/or control were: 0, 7, 14, 21, 28, 35, 42 and 120 days after barley emergence (DAE). In experiment 2the treatments for determination of ETL s were composed by barley cultivars (BRS Suábia, ANA 01, BRS Korbel, BRS Manduri, BRS Cauê and BRS Greta), and turnip densities, from zero (0) to maximum densities of 816, 788, 948, 394, 584 and 618 plants · m − 2 , in competition with each cultivar. Control of turnip and ryegrass should be adopted in barley in the period between 12 to 22 DAE, which is described as a critical control period. The rectangular hyperbola adequately estimates losses in grain yield due to turnip infestation. There is an effect on the competitive ability of the cultivars in relation to turnip, which resulted in ETL s that ranged from 0.27 to 1.99 plants · m − 2 . The cultivars BRS Greta, BRS Suábia, ANA 01 and BRS Manduri were the most competitive in the presence of turnip.
{"title":"Weed interference period and economic threshold level in barley","authors":"L. Galon, Felipe José Menin, Basso, C. T. Forte, Maico André, Michelon Bagnara, A. Gallina, I. Aspiazú, A. L. Radünz, G. F. Perin, L. Brunetto","doi":"10.24425/jppr.2022.140295","DOIUrl":"https://doi.org/10.24425/jppr.2022.140295","url":null,"abstract":"Determination of interference periods, competitive ability and economic threshold level ( ETL ) are important tools for integrated weed management (IWM) in barley. The objec-tive of the work was to determine the periods of interference, the competitive ability and the ETL of weeds in barley ( Hordeum vulgare ). Two field experiments were carried out, in a randomized block design, with four replications. In this study, the periods of coexistence and control for ryegrass ( Lolium multiflorum ) and turnip ( Raphanus raphanistrum ) infesting barley cultivar, cv. ANA 01 were evaluated. The coexistence periods and/or control were: 0, 7, 14, 21, 28, 35, 42 and 120 days after barley emergence (DAE). In experiment 2the treatments for determination of ETL s were composed by barley cultivars (BRS Suábia, ANA 01, BRS Korbel, BRS Manduri, BRS Cauê and BRS Greta), and turnip densities, from zero (0) to maximum densities of 816, 788, 948, 394, 584 and 618 plants · m − 2 , in competition with each cultivar. Control of turnip and ryegrass should be adopted in barley in the period between 12 to 22 DAE, which is described as a critical control period. The rectangular hyperbola adequately estimates losses in grain yield due to turnip infestation. There is an effect on the competitive ability of the cultivars in relation to turnip, which resulted in ETL s that ranged from 0.27 to 1.99 plants · m − 2 . The cultivars BRS Greta, BRS Suábia, ANA 01 and BRS Manduri were the most competitive in the presence of turnip.","PeriodicalId":16848,"journal":{"name":"Journal of Plant Protection Research","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48074872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}