Excess salinity is becoming a prevalent problem for production of highbush blueberry (Vaccinium L. section Cyanococcus Gray), but information on how and when it affects the plants is needed. Two experiments, including one on the northern highbush (Vaccinium corymbosum L.) cultivar, Bluecrop, and another on the southern highbush (V. corymbosum interspecific hybrid) cultivar, Springhigh, were conducted to investigate their response to salinity and assess whether any suppression in growth was ion specific or due primarily to osmotic stress. In both cases, the plants were grown in soilless media (calcined clay) and fertigated using a complete nutrient solution containing four levels of salinity [none (control), low (0.7–1.3 mmol·d−1), medium (1.4–3.4 mmol·d−1), and high (2.8–6.7 mmol·d−1)] from either NaCl or CaCl2. Drainage was minimized in each treatment except for periodic determination of electrical conductivity (EC) using the pour-through method, which, depending on the experiment, reached levels as high as 3.2 to 6.3 dS·m−1 with NaCl and 7.8 to 9.5 dS·m−1 with CaCl2. Total dry weight of the plants was negatively correlated to EC and, depending on source and duration of the salinity treatment, decreased linearly at a rate of 1.6 to 7.4 g·dS−1·m−1 in ‘Bluecrop’ and 0.4 to 12.5 g·dS−1·m−1 in ‘Springhigh’. Reductions in total dry weight were initially similar between the two salinity sources; however, by the end of the study, which occurred at 125 days in ‘Bluecrop’ and at 111 days in ‘Springhigh’, dry weight declined more so with NaCl than with CaCl2 in each part of the plant, including in the leaves, stems, and roots. The percentage of root length colonized by mycorrhizal fungi also declined with increasing levels of salinity in Bluecrop and was lower in both cultivars when the plants were treated with NaCl than with CaCl2. However, leaf damage, which included tip burn and marginal necrosis, was greater with CaCl2 than with NaCl. In general, CaCl2 had no effect on uptake or concentration of Na in the plant tissues, whereas NaCl reduced Ca uptake in both cultivars and reduced the concentration of Ca in the leaves and stems of Bluecrop and in each part of the plant in Springhigh. Salinity from NaCl also resulted in higher concentrations of Cl and lower concentrations of K in the plant tissues than CaCl2 in both cultivars. The concentration of other nutrients in the plants, including N, P, Mg, S, B, Cu, Fe, Mn, and Zn, was also affected by salinity, but in most cases, the response was similar between the two salts. These results point to ion-specific effects of different salts on the plants and indicate that source is an important consideration when managing salinity in highbush blueberry.
{"title":"Ion-specific Limitations of Sodium Chloride and Calcium Chloride on Growth, Nutrient Uptake, and Mycorrhizal Colonization in Northern and Southern Highbush Blueberry","authors":"D. Bryla, C. Scagel, Scott B. Lukas, D. Sullivan","doi":"10.21273/jashs05084-21","DOIUrl":"https://doi.org/10.21273/jashs05084-21","url":null,"abstract":"Excess salinity is becoming a prevalent problem for production of highbush blueberry (Vaccinium L. section Cyanococcus Gray), but information on how and when it affects the plants is needed. Two experiments, including one on the northern highbush (Vaccinium corymbosum L.) cultivar, Bluecrop, and another on the southern highbush (V. corymbosum interspecific hybrid) cultivar, Springhigh, were conducted to investigate their response to salinity and assess whether any suppression in growth was ion specific or due primarily to osmotic stress. In both cases, the plants were grown in soilless media (calcined clay) and fertigated using a complete nutrient solution containing four levels of salinity [none (control), low (0.7–1.3 mmol·d−1), medium (1.4–3.4 mmol·d−1), and high (2.8–6.7 mmol·d−1)] from either NaCl or CaCl2. Drainage was minimized in each treatment except for periodic determination of electrical conductivity (EC) using the pour-through method, which, depending on the experiment, reached levels as high as 3.2 to 6.3 dS·m−1 with NaCl and 7.8 to 9.5 dS·m−1 with CaCl2. Total dry weight of the plants was negatively correlated to EC and, depending on source and duration of the salinity treatment, decreased linearly at a rate of 1.6 to 7.4 g·dS−1·m−1 in ‘Bluecrop’ and 0.4 to 12.5 g·dS−1·m−1 in ‘Springhigh’. Reductions in total dry weight were initially similar between the two salinity sources; however, by the end of the study, which occurred at 125 days in ‘Bluecrop’ and at 111 days in ‘Springhigh’, dry weight declined more so with NaCl than with CaCl2 in each part of the plant, including in the leaves, stems, and roots. The percentage of root length colonized by mycorrhizal fungi also declined with increasing levels of salinity in Bluecrop and was lower in both cultivars when the plants were treated with NaCl than with CaCl2. However, leaf damage, which included tip burn and marginal necrosis, was greater with CaCl2 than with NaCl. In general, CaCl2 had no effect on uptake or concentration of Na in the plant tissues, whereas NaCl reduced Ca uptake in both cultivars and reduced the concentration of Ca in the leaves and stems of Bluecrop and in each part of the plant in Springhigh. Salinity from NaCl also resulted in higher concentrations of Cl and lower concentrations of K in the plant tissues than CaCl2 in both cultivars. The concentration of other nutrients in the plants, including N, P, Mg, S, B, Cu, Fe, Mn, and Zn, was also affected by salinity, but in most cases, the response was similar between the two salts. These results point to ion-specific effects of different salts on the plants and indicate that source is an important consideration when managing salinity in highbush blueberry.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48680202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The calla lily (Zantedeschia hybrida) is a valued ornamental plant due to its unique shape and color variations. To determine the mechanisms responsible for color development in the calla lily spathe, we conducted a comparative transcriptomic analysis of the spathes of the black [Black Girl (B)], pink [Romantic (P)], and white [Ventura (W)] cultivars. The gene expression patterns in six spathe colors, including the preceding three colors as well as the amaranth [Promise (N)], red [Figo (F)], and yellow [Sun Club (Y)] cultivars were analyzed by real-time quantitative polymerase chain reaction (PCR). Transcriptomic analysis identified 25,165 differentially expressed genes. The transcription abundance and expression level of genes annotated as anthocyanidin reductase (ANR1, ANR2), basic-helix-loop-helix (bHLH1), and glutathione S-transferases (GST1) were significantly upregulated in B, and the expression of anthocyanidin synthase (ANS) was highest in B except for N. However, chalcone isomerase (CHI2) and dihydroflavonol 4-reductase (DFR1, DFR2) were expressed at significantly lower levels in P, W, and Y. Correlation analysis revealed that bHLH1 might act as a positive regulator of ANS expression, promoting anthocyanin synthesis. Moreover, GST1-encoded proteins may be related to the accumulation and transport of both anthocyanin and procyanidin in the calla lily spathe. It is speculated that the formation of the black spathe is related to the accumulation of anthocyanins and procyanidins. However, the low expression of CHI2, DFR1, and DFR2 may result in the inhibition of anthocyanin synthesis, which may lead to lightening of the spathe color. This preliminary study revealed the mechanism responsible for calla lily spathe color, identifying the key genes involved, thus providing effective gene resources and a theoretical basis for flower color molecular breeding.
{"title":"Mechanism Underlying Color Variation in Calla Lily Spathes Based on Transcriptomic Analysis","authors":"Ying Fang, Ting Lei, Yanmei Wu, Xuehua Jin","doi":"10.21273/jashs05077-21","DOIUrl":"https://doi.org/10.21273/jashs05077-21","url":null,"abstract":"The calla lily (Zantedeschia hybrida) is a valued ornamental plant due to its unique shape and color variations. To determine the mechanisms responsible for color development in the calla lily spathe, we conducted a comparative transcriptomic analysis of the spathes of the black [Black Girl (B)], pink [Romantic (P)], and white [Ventura (W)] cultivars. The gene expression patterns in six spathe colors, including the preceding three colors as well as the amaranth [Promise (N)], red [Figo (F)], and yellow [Sun Club (Y)] cultivars were analyzed by real-time quantitative polymerase chain reaction (PCR). Transcriptomic analysis identified 25,165 differentially expressed genes. The transcription abundance and expression level of genes annotated as anthocyanidin reductase (ANR1, ANR2), basic-helix-loop-helix (bHLH1), and glutathione S-transferases (GST1) were significantly upregulated in B, and the expression of anthocyanidin synthase (ANS) was highest in B except for N. However, chalcone isomerase (CHI2) and dihydroflavonol 4-reductase (DFR1, DFR2) were expressed at significantly lower levels in P, W, and Y. Correlation analysis revealed that bHLH1 might act as a positive regulator of ANS expression, promoting anthocyanin synthesis. Moreover, GST1-encoded proteins may be related to the accumulation and transport of both anthocyanin and procyanidin in the calla lily spathe. It is speculated that the formation of the black spathe is related to the accumulation of anthocyanins and procyanidins. However, the low expression of CHI2, DFR1, and DFR2 may result in the inhibition of anthocyanin synthesis, which may lead to lightening of the spathe color. This preliminary study revealed the mechanism responsible for calla lily spathe color, identifying the key genes involved, thus providing effective gene resources and a theoretical basis for flower color molecular breeding.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45750240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Candidatus Liberibacter asiaticus (CLas), the bacteria responsible for citrus greening disease [huanglongbing (HLB)], has become a worldwide threat to citrus (Citrus sp.) production. HLB has proven difficult to study and treat because of the complex interactions between CLas, the citrus host, and insect vectors. We have selected for single chain fragment variable (scFv) antibodies from a specialized bacteriophage library for binding activity against CLas proteins InvA and TolC. Portions of each protein were chosen as antigens based on predicted binding availability and theorized necessary functions in pathogenicity. Binding affinity for individual scFv-expressing clones was confirmed by phage enzyme-linked immunosorbent assay (ELISA). The scFv sequences were stably transformed under the control of a tandem Cauliflower mosaic virus 35S (CaMV 2x35S) promoter by Agrobacterium tumefacien–mediated transformation into ‘Carrizo’ citrange (Citrus sinensis × Poncirus trifoliate), a citrus rootstock cultivar. Replicated plants of single transformations were inoculated by infestation with CLas positive asian citrus psyllid (Diaphorina citri), a CLas vector. Inoculation and disease progression was monitored through quantitative real-time polymerase chain reaction. Inoculated transgenic plants showed significantly reduced CLas titer compared with wild types. A subpopulation of transgenic plants displayed no measurable surviving bacteria after 12 months. Interestingly, individual replicated plants from the same transgenic events strongly segregated into two populations by resistance phenotype: a minority that were indistinguishable from wild-type plants and a majority that were highly resistant. Our results are the first step in developing a novel protection strategy for HLB.
{"title":"Novel Plantibodies Show Promise to Protect Citrus from Greening Disease","authors":"Joseph Krystel, Huawei Liu, J. Hartung, E. Stover","doi":"10.21273/jashs05078-21","DOIUrl":"https://doi.org/10.21273/jashs05078-21","url":null,"abstract":"Candidatus Liberibacter asiaticus (CLas), the bacteria responsible for citrus greening disease [huanglongbing (HLB)], has become a worldwide threat to citrus (Citrus sp.) production. HLB has proven difficult to study and treat because of the complex interactions between CLas, the citrus host, and insect vectors. We have selected for single chain fragment variable (scFv) antibodies from a specialized bacteriophage library for binding activity against CLas proteins InvA and TolC. Portions of each protein were chosen as antigens based on predicted binding availability and theorized necessary functions in pathogenicity. Binding affinity for individual scFv-expressing clones was confirmed by phage enzyme-linked immunosorbent assay (ELISA). The scFv sequences were stably transformed under the control of a tandem Cauliflower mosaic virus 35S (CaMV 2x35S) promoter by Agrobacterium tumefacien–mediated transformation into ‘Carrizo’ citrange (Citrus sinensis × Poncirus trifoliate), a citrus rootstock cultivar. Replicated plants of single transformations were inoculated by infestation with CLas positive asian citrus psyllid (Diaphorina citri), a CLas vector. Inoculation and disease progression was monitored through quantitative real-time polymerase chain reaction. Inoculated transgenic plants showed significantly reduced CLas titer compared with wild types. A subpopulation of transgenic plants displayed no measurable surviving bacteria after 12 months. Interestingly, individual replicated plants from the same transgenic events strongly segregated into two populations by resistance phenotype: a minority that were indistinguishable from wild-type plants and a majority that were highly resistant. Our results are the first step in developing a novel protection strategy for HLB.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48276237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan Tang, Wuhua Zhang, Liwen Chen, Yan Wang, Daocheng Tang
{"title":"Reference Gene Selection for Real-time Quantitative Reverse-transcription Polymerase Chain Reaction in Flower Buds of Marigold","authors":"Nan Tang, Wuhua Zhang, Liwen Chen, Yan Wang, Daocheng Tang","doi":"10.21273/JASHS05074-21","DOIUrl":"https://doi.org/10.21273/JASHS05074-21","url":null,"abstract":"","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":"146 1","pages":"363-373"},"PeriodicalIF":1.9,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46528095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A BSTRACT . Hybrid-onion ( Allium cepa ) seed is produced using systems of cytoplasmic male sterility (CMS) and two different CMS systems have been genetically characterized. S cytoplasm was the fi rst source of onion CMS identi fi ed in the 1920s, followed by T cytoplasm that was described in the 1960s. Numerous studies have documented polymor- phisms in the organellar DNAs differentiating S and T cytoplasms from the normal male-fertile cytoplasm of onion. There may be additional source(s) of onion CMS that have been described as “ T-like ” and appear to be more similar to N and T cytoplasms than S cytoplasm. In this study, onion breeding lines from commercial entities were evaluated for molecular markers distinguishing sources of onion CMS. Our results reveal that bona fi de T cytoplasm is rarely used commercially to produce hybrid-onion seed, and both S cytoplasm and “ T-like ” cytoplasm are widely used. We propose that this “ T-like ” cytoplasm be labeled as “ R ” cytoplasm because it may have originated from population(s) of ‘ Rijnsburger ’ onion in the Netherlands. The results of this study also help to clarify inconsistent reports regarding nuclear male-fertility restoration for different sources of onion CMS.
{"title":"Molecular Marker Characterization of Commercially Used Cytoplasmic Male Sterilities in Onion","authors":"M. Havey, Sunggil Kim","doi":"10.21273/JASHS05083-21","DOIUrl":"https://doi.org/10.21273/JASHS05083-21","url":null,"abstract":"A BSTRACT . Hybrid-onion ( Allium cepa ) seed is produced using systems of cytoplasmic male sterility (CMS) and two different CMS systems have been genetically characterized. S cytoplasm was the fi rst source of onion CMS identi fi ed in the 1920s, followed by T cytoplasm that was described in the 1960s. Numerous studies have documented polymor- phisms in the organellar DNAs differentiating S and T cytoplasms from the normal male-fertile cytoplasm of onion. There may be additional source(s) of onion CMS that have been described as “ T-like ” and appear to be more similar to N and T cytoplasms than S cytoplasm. In this study, onion breeding lines from commercial entities were evaluated for molecular markers distinguishing sources of onion CMS. Our results reveal that bona fi de T cytoplasm is rarely used commercially to produce hybrid-onion seed, and both S cytoplasm and “ T-like ” cytoplasm are widely used. We propose that this “ T-like ” cytoplasm be labeled as “ R ” cytoplasm because it may have originated from population(s) of ‘ Rijnsburger ’ onion in the Netherlands. The results of this study also help to clarify inconsistent reports regarding nuclear male-fertility restoration for different sources of onion CMS.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":"-1 1","pages":"1-5"},"PeriodicalIF":1.9,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44171246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genetic Diversity and Relationship of China’s Bergenia Germplasm Revealed by Intersimple Sequence Repeat Markers","authors":"Xiuli Lv, Yuan Guan, Jian Wang, Yanwei Zhou, Qunlu Liu, Zequn Yu","doi":"10.21273/JASHS05032-20","DOIUrl":"https://doi.org/10.21273/JASHS05032-20","url":null,"abstract":"","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":"1-7"},"PeriodicalIF":1.9,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48399466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genetic Analysis of Mitochondrial Sorting from the MSC3 Mosaic Mutant of Cucumber","authors":"Lyle T Wallace, M. Havey","doi":"10.21273/JASHS05075-21","DOIUrl":"https://doi.org/10.21273/JASHS05075-21","url":null,"abstract":"A","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":"-1 1","pages":"1-7"},"PeriodicalIF":1.9,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46438820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The volatile profile of ‘Redchief Delicious’ apple (Malus ×domestica Borkh.) fruit was evaluated at 18 time points from 3 weeks before to 8 weeks after onset of autocatalytic ethylene production to capture the dynamics associated with development from mature green to senescent fruit. Minor amounts of ester production began several days before the onset of ethylene production. Ester production rose rapidly as internal ethylene levels increased beyond 22 nmol·L−1 (0.5 µL·L−1). Peak ester production roughly coincided with maximum ethylene synthesis, declining thereafter. Ester production was further evaluated according to the acid- (alkanoate) and alcohol- (alkyl) derived portions of the ester. The maximum rate of production for a given ester tended to occur later in development as the chain length of the alcohol-derived portion declined. The production rate for many esters paralleled the rate of emanation of their respective alcohol substrates, suggesting that availability of the alcohols limits ester production more than availability of the acid substrates. Combining production rates with sensory descriptors and human sensitivity to individual volatiles permitted approximations of aroma sensations likely engendered by the fruit throughout ripening. Overripe and alcoholic sensations are predicted to increase 2 weeks after the initiation of ripening in response to an increase in the production of ethyl esters. Acetate esters predominated, comprising 50% to 80% of esters throughout maturation and ripening, indicating that the substrate acetyl-CoA may be at saturating levels for alcohol acyl transferase (AAT) at the final step of ester formation. Acetate feeding did not enhance ester production, although label from 13C-acetate was extensively incorporated into esters. The data are consistent with the action of multiple AAT isozymes differing in activity and substrate preference. Incorporation of labeled 13C-acetate into precursors of esters, alcohols, and acids, reflected ester biosynthesis via 1- and 2-carbon chain elongation pathways in ripening ‘Redchief Delicious’ apple fruit.
{"title":"Emission Patterns of Esters and Their Precursors Throughout Ripening and Senescence in ‘Redchief Delicious’ Apple Fruit and Implications Regarding Biosynthesis and Aroma Perception","authors":"A. Ferenczi, N. Sugimoto, R. Beaudry","doi":"10.21273/jashs05064-21","DOIUrl":"https://doi.org/10.21273/jashs05064-21","url":null,"abstract":"The volatile profile of ‘Redchief Delicious’ apple (Malus ×domestica Borkh.) fruit was evaluated at 18 time points from 3 weeks before to 8 weeks after onset of autocatalytic ethylene production to capture the dynamics associated with development from mature green to senescent fruit. Minor amounts of ester production began several days before the onset of ethylene production. Ester production rose rapidly as internal ethylene levels increased beyond 22 nmol·L−1 (0.5 µL·L−1). Peak ester production roughly coincided with maximum ethylene synthesis, declining thereafter. Ester production was further evaluated according to the acid- (alkanoate) and alcohol- (alkyl) derived portions of the ester. The maximum rate of production for a given ester tended to occur later in development as the chain length of the alcohol-derived portion declined. The production rate for many esters paralleled the rate of emanation of their respective alcohol substrates, suggesting that availability of the alcohols limits ester production more than availability of the acid substrates. Combining production rates with sensory descriptors and human sensitivity to individual volatiles permitted approximations of aroma sensations likely engendered by the fruit throughout ripening. Overripe and alcoholic sensations are predicted to increase 2 weeks after the initiation of ripening in response to an increase in the production of ethyl esters. Acetate esters predominated, comprising 50% to 80% of esters throughout maturation and ripening, indicating that the substrate acetyl-CoA may be at saturating levels for alcohol acyl transferase (AAT) at the final step of ester formation. Acetate feeding did not enhance ester production, although label from 13C-acetate was extensively incorporated into esters. The data are consistent with the action of multiple AAT isozymes differing in activity and substrate preference. Incorporation of labeled 13C-acetate into precursors of esters, alcohols, and acids, reflected ester biosynthesis via 1- and 2-carbon chain elongation pathways in ripening ‘Redchief Delicious’ apple fruit.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48507958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A diversity panel of 190 National Plant Germplasm System (NPGS) tomato (Solanum lycopersicum) accessions was genotyped using genotyping by sequencing. These originated from 31 countries and included fresh market, ornamental, processing, breeders’ lines, landraces, and home gardening types, as well as six different accessions of the economically valuable cultivar San Marzano. Most of the 34,531 discovered single nucleotide polymorphisms were rare and therefore excluded from downstream analyses. A total of 3713 high-quality, mapped single nucleotide polymorphisms that were present in at least two accessions were used to estimate genetic distances and population structure. Results showed that these phenotypically and geographically diverse NPGS tomato accessions were closely related to each other. However, a subset of divergent genotypes was identified that included landraces from primary centers of diversity (South America), secondary centers of diversity (Italy, Taiwan, and France), and genotypes that originated from wild species through 20th century breeding for disease resistance (e.g., ‘VFNT Cherry’). Extreme variant accessions produce cultivated fruit traits in a background that contains many wild or primitive genes. These accessions are promising sources of novel genes for continued crop improvement.
{"title":"DNA Variation in a Diversity Panel of Tomato Genetic Resources","authors":"J. Labate","doi":"10.21273/jashs05066-21","DOIUrl":"https://doi.org/10.21273/jashs05066-21","url":null,"abstract":"A diversity panel of 190 National Plant Germplasm System (NPGS) tomato (Solanum lycopersicum) accessions was genotyped using genotyping by sequencing. These originated from 31 countries and included fresh market, ornamental, processing, breeders’ lines, landraces, and home gardening types, as well as six different accessions of the economically valuable cultivar San Marzano. Most of the 34,531 discovered single nucleotide polymorphisms were rare and therefore excluded from downstream analyses. A total of 3713 high-quality, mapped single nucleotide polymorphisms that were present in at least two accessions were used to estimate genetic distances and population structure. Results showed that these phenotypically and geographically diverse NPGS tomato accessions were closely related to each other. However, a subset of divergent genotypes was identified that included landraces from primary centers of diversity (South America), secondary centers of diversity (Italy, Taiwan, and France), and genotypes that originated from wild species through 20th century breeding for disease resistance (e.g., ‘VFNT Cherry’). Extreme variant accessions produce cultivated fruit traits in a background that contains many wild or primitive genes. These accessions are promising sources of novel genes for continued crop improvement.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47486368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The persistent color (pc) trait in snap bean (Phaseolus vulgaris L.) is a member of the stay-green gene family and falls into the cosmetic subclass. Cosmetic stay-green variants remain green but lose photosynthetic competence during senescence. It is an economically useful trait in snap bean as a result of its effects on pod quality. The trait produces a dark-green, uniform appearance of fresh pods, but has other pleiotropic effects, including a light-green seed color, bleached-white cotyledons on emergence, and foliage and pods that remain green even while senescing. One additional pleiotropic effect is reduced field germination and emergence compared with white- and colored-seeded genotypes. Nevertheless, with the aid of seed-applied fungicides, pc types occupy ≈40% of commercial snap bean acreage in the United States. This research project was aimed at understanding why and how germination and emergence is affected in pc beans. The effect is thought to be related to soil-borne pathogens because fungicide treatment of pc seeds increases germination and emergence rates to levels comparable to treated white- and colored-seeded genotypes. For our experiments, we increased seeds of 45 experimental lines and commercial cultivars (25 of which were pc) under uniform growing conditions. Initial experiments documented that, in the laboratory, all seeds analyzed in a tetrazolium test had high viability. Furthermore, untreated seeds of pc and non-pc types germinated in the laboratory showed no difference in germinability, whereas in the field, germination of pc types was reduced significantly. In addition, pc types showed substantially greater infection rates of seeds and seedlings, with the main pathogen being Fusarium oxysporum Schl. f. sp. phaseoli Kendrick & Snyder. Water uptake by green pc seeds was significantly more rapid than white and colored seeds. Measurements of electrical conductivity revealed that pc types had greater solute leakage than other seed types. When seed anatomic structure was examined, pc types had a significantly thinner testa, especially the osteosclereid layer. The reduction in germination and emergence appears to begin with a thinner, more fragile testa showing increased cracking that may happen during seed harvest and conditioning (but certainly does happen during imbibition), allowing more rapid water uptake during germination that leads to testa rupture. Increased and rapid solute diffusion into the surrounding spermosphere stimulates and attracts pathogens to colonize the seeds before seedlings can become established. Seed handling and conditioning processes before planting could be modified to improve field emergence and stand establishment. Selection for thicker testa may also mitigate some of the damage observed during germination of pc cultivars.
{"title":"Cosmetic Stay-green Trait in Snap Bean and the Event Cascade That Reduces Seed Germination and Emergence","authors":"Melike Cirak, J. Myers","doi":"10.21273/JASHS05038-20","DOIUrl":"https://doi.org/10.21273/JASHS05038-20","url":null,"abstract":"The persistent color (pc) trait in snap bean (Phaseolus vulgaris L.) is a member of the stay-green gene family and falls into the cosmetic subclass. Cosmetic stay-green variants remain green but lose photosynthetic competence during senescence. It is an economically useful trait in snap bean as a result of its effects on pod quality. The trait produces a dark-green, uniform appearance of fresh pods, but has other pleiotropic effects, including a light-green seed color, bleached-white cotyledons on emergence, and foliage and pods that remain green even while senescing. One additional pleiotropic effect is reduced field germination and emergence compared with white- and colored-seeded genotypes. Nevertheless, with the aid of seed-applied fungicides, pc types occupy ≈40% of commercial snap bean acreage in the United States. This research project was aimed at understanding why and how germination and emergence is affected in pc beans. The effect is thought to be related to soil-borne pathogens because fungicide treatment of pc seeds increases germination and emergence rates to levels comparable to treated white- and colored-seeded genotypes. For our experiments, we increased seeds of 45 experimental lines and commercial cultivars (25 of which were pc) under uniform growing conditions. Initial experiments documented that, in the laboratory, all seeds analyzed in a tetrazolium test had high viability. Furthermore, untreated seeds of pc and non-pc types germinated in the laboratory showed no difference in germinability, whereas in the field, germination of pc types was reduced significantly. In addition, pc types showed substantially greater infection rates of seeds and seedlings, with the main pathogen being Fusarium oxysporum Schl. f. sp. phaseoli Kendrick & Snyder. Water uptake by green pc seeds was significantly more rapid than white and colored seeds. Measurements of electrical conductivity revealed that pc types had greater solute leakage than other seed types. When seed anatomic structure was examined, pc types had a significantly thinner testa, especially the osteosclereid layer. The reduction in germination and emergence appears to begin with a thinner, more fragile testa showing increased cracking that may happen during seed harvest and conditioning (but certainly does happen during imbibition), allowing more rapid water uptake during germination that leads to testa rupture. Increased and rapid solute diffusion into the surrounding spermosphere stimulates and attracts pathogens to colonize the seeds before seedlings can become established. Seed handling and conditioning processes before planting could be modified to improve field emergence and stand establishment. Selection for thicker testa may also mitigate some of the damage observed during germination of pc cultivars.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48838982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}