Pub Date : 2024-10-10DOI: 10.1016/j.jsv.2024.118769
Daniele Dessi , Fabio Passacantilli , Andrea Venturi
The objective of this paper is to address and reduce the uncertainties associated with measurement noise and discretization in damage identification methods based on modal curvature analysis. The experimental case study considers the local reduction in the bending stiffness of a slender beam under free-free and simply supported boundary conditions. First, the analysis of error sources and their propagation is theoretically set up. Second, the mitigation of uncertainties in damage localization is pursued using a two-stage approach based on multiple hypothesis testing relative to the normalized indices and the definition of a combined macro-index. Finally, the Monte Carlo method is exploited to obtain the statistical error distribution of the experimental damage position and severity predictions by randomizing the numerical displacement mode shapes with the identified noise. The present analysis allows us to find the optimal number of sensors that minimizes the combination of bias and truncation errors, to highlight how sensor spacing and data noise affect damage localization, and to determine the uncertainty bounds of the predicted damage severity. The two-stage approach, enhanced by selecting thresholds related to real noise levels and tuned on SHM objectives, appears to improve identification accuracy compared to the separate use of damage indices based on absolute confidence levels.
{"title":"Analysis and mitigation of uncertainties in damage identification by modal-curvature based methods","authors":"Daniele Dessi , Fabio Passacantilli , Andrea Venturi","doi":"10.1016/j.jsv.2024.118769","DOIUrl":"10.1016/j.jsv.2024.118769","url":null,"abstract":"<div><div>The objective of this paper is to address and reduce the uncertainties associated with measurement noise and discretization in damage identification methods based on modal curvature analysis. The experimental case study considers the local reduction in the bending stiffness of a slender beam under free-free and simply supported boundary conditions. First, the analysis of error sources and their propagation is theoretically set up. Second, the mitigation of uncertainties in damage localization is pursued using a two-stage approach based on multiple hypothesis testing relative to the normalized indices and the definition of a combined macro-index. Finally, the Monte Carlo method is exploited to obtain the statistical error distribution of the experimental damage position and severity predictions by randomizing the numerical displacement mode shapes with the identified noise. The present analysis allows us to find the optimal number of sensors that minimizes the combination of bias and truncation errors, to highlight how sensor spacing and data noise affect damage localization, and to determine the uncertainty bounds of the predicted damage severity. The two-stage approach, enhanced by selecting thresholds related to real noise levels and tuned on SHM objectives, appears to improve identification accuracy compared to the separate use of damage indices based on absolute confidence levels.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"596 ","pages":"Article 118769"},"PeriodicalIF":4.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noise reductions due to trailing edge serrations of several representative unmanned air vehicle propellers are calculated using a low-order methodology based on RANS simulations coupled with an extension of Ayton’s model proposed by Li and Lee, which provides a heuristic three-dimensional model for finite span applicable to rotor blades. The latter model is validated in the limit of zero serration amplitude against Amiet’s and Schlinker and Amiet’s models, finding good agreement at high frequencies for both airfoils and rotating blade elements. Similar good validation results are obtained for finite serrations by comparing with experiments achieved on the Controlled Diffusion airfoil at Université de Sherbrooke, and with calculations for a serrated blade element by Tian and Lyu. The coupled methodology is then validated both aerodynamically and acoustically with ISAE measurements for a representative drone propeller at different rotational speeds. The corresponding serrated model is then used to calculate noise reductions caused by different shapes. The square wave serration is shown to outperform the sawtooth and sinusoidal shapes for all frequencies and observer angles for small propeller blades typically used for drones. Yet, for larger chord blades typically used for ducted fans, combinations of sawtooth and sinusoidal serrations provide better noise reductions.
{"title":"Shape considerations for the design of propellers with trailing edge serrations","authors":"Jorge Santamaria , André Bierrenbach-Lima , Marlène Sanjosé , Stéphane Moreau","doi":"10.1016/j.jsv.2024.118771","DOIUrl":"10.1016/j.jsv.2024.118771","url":null,"abstract":"<div><div>Noise reductions due to trailing edge serrations of several representative unmanned air vehicle propellers are calculated using a low-order methodology based on RANS simulations coupled with an extension of Ayton’s model proposed by Li and Lee, which provides a heuristic three-dimensional model for finite span applicable to rotor blades. The latter model is validated in the limit of zero serration amplitude against Amiet’s and Schlinker and Amiet’s models, finding good agreement at high frequencies for both airfoils and rotating blade elements. Similar good validation results are obtained for finite serrations by comparing with experiments achieved on the Controlled Diffusion airfoil at Université de Sherbrooke, and with calculations for a serrated blade element by Tian and Lyu. The coupled methodology is then validated both aerodynamically and acoustically with ISAE measurements for a representative drone propeller at different rotational speeds. The corresponding serrated model is then used to calculate noise reductions caused by different shapes. The square wave serration is shown to outperform the sawtooth and sinusoidal shapes for all frequencies and observer angles for small propeller blades typically used for drones. Yet, for larger chord blades typically used for ducted fans, combinations of sawtooth and sinusoidal serrations provide better noise reductions.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"595 ","pages":"Article 118771"},"PeriodicalIF":4.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.jsv.2024.118765
Sihui Li, Xiang Yu, Li Cheng
Sonic black hole (SBH) effects in a retarding duct can be exploited for sound wave manipulation and absorption. The phenomenon relies on two fundamental physical mechanisms: wave speed reduction and energy dissipation. In this study, we demonstrate that these two physical processes can be meticulously balanced through adjusting the perforation parameters in a perforation-modulated SBH (PMSBH). To elucidate the mechanism of slow wave generation and the effect of perforation parameters, an analytic model based on the Wentzel-Kramers-Brillouin (WKB) solutions to the linear acoustic wave equation is established. Alongside transient finite element simulations, the study unveils the roles that major physical parameters play in terms of regulating sound speed and sound absorption. The perforation ratio of the PMSBH is identified as the dominant factor affecting the slow-sound effect, with an optimal range of above 10 % for a PMSBH with densely segmented internal rings. Owing to the inclusion of the perforated boundary, prominent slow wave effects can still be maintained even with a reduced number of rings, provided that the perforation ratio is properly chosen within a reduced variation range. In both cases, the identified perforation ratio largely exceeds the conventional range widely adopted in the micro-perforation community when the slow wave effects are absent. On top of this, tuning the hole size can further enhance air friction for better sound absorption. Theoretical and numerical findings are experimentally validated, and the performance of the PMSBH is demonstrated. While bringing forward the concept of tunable design, this study offers physical insights and guidance for realizing effective sound absorbers embracing slow wave principles and perforation-induced sound absorption.
{"title":"Enhancing wave retarding and sound absorption performances in perforation-modulated sonic black hole structures","authors":"Sihui Li, Xiang Yu, Li Cheng","doi":"10.1016/j.jsv.2024.118765","DOIUrl":"10.1016/j.jsv.2024.118765","url":null,"abstract":"<div><div>Sonic black hole (SBH) effects in a retarding duct can be exploited for sound wave manipulation and absorption. The phenomenon relies on two fundamental physical mechanisms: wave speed reduction and energy dissipation. In this study, we demonstrate that these two physical processes can be meticulously balanced through adjusting the perforation parameters in a perforation-modulated SBH (PMSBH). To elucidate the mechanism of slow wave generation and the effect of perforation parameters, an analytic model based on the Wentzel-Kramers-Brillouin (WKB) solutions to the linear acoustic wave equation is established. Alongside transient finite element simulations, the study unveils the roles that major physical parameters play in terms of regulating sound speed and sound absorption. The perforation ratio of the PMSBH is identified as the dominant factor affecting the slow-sound effect, with an optimal range of above 10 % for a PMSBH with densely segmented internal rings. Owing to the inclusion of the perforated boundary, prominent slow wave effects can still be maintained even with a reduced number of rings, provided that the perforation ratio is properly chosen within a reduced variation range. In both cases, the identified perforation ratio largely exceeds the conventional range widely adopted in the micro-perforation community when the slow wave effects are absent. On top of this, tuning the hole size can further enhance air friction for better sound absorption. Theoretical and numerical findings are experimentally validated, and the performance of the PMSBH is demonstrated. While bringing forward the concept of tunable design, this study offers physical insights and guidance for realizing effective sound absorbers embracing slow wave principles and perforation-induced sound absorption.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"596 ","pages":"Article 118765"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.jsv.2024.118766
G. Deepak Kumar, B. Panigrahi
It is essential to understand the nonlinear free vibration behaviour of a thin-walled composite structure as they find their applications in harsher environments prone to large deformations. Further, these structures made of fibrous materials, have directional properties for different fibre orientations resulting in a diversified and a complex nonlinear behaviour. In this regard, present work provides a comprehensive mathematical formulation on nonlinear vibration of pre-twisted thin-walled anisotropic box beam. The mathematical model is derived as coupled (flap-lag-extension-torsion) model considering shear deformation and green's strain tensor for large displacements in order to study the influence of nonlinear couplings on the dynamic behaviour. The derived energy equations are presented depending on degree of nonlinearity. These nonlinear equations those derived are nondimensionalized and solved with in the frame work of energy method using classical Ritz approximation. An iterative method is used to solve the nonlinear equations pertaining displacement terms. This nonlinear behaviour is evaluated for two important types of structural tailoring techniques available for thin-walled composite beams namely Circumferentially Asymmetric Stiffness (CAS) and Circumferentially Uniform Stiffness (CUS). It is found that CAS layup experiences significantly severe nonlinear effects compared to CUS due to the presence of 3rd degree nonlinear coupling terms. The variation of nonlinear frequency ratios over different ply angles showing the influence of nonlinearity on fibres orientation is presented for the first time for the two ply lay ups. The influence of degree of nonlinearity on the accuracy of the nonlinear frequencies is evaluated and presented. Moreover, the impact of nonlinearity on the pre-twisted beam is presented for different pre-twist angles.
{"title":"Nonlinear free vibrations of a structurally tailored anisotropic pre-twisted thin-walled beam subjected to large deformations","authors":"G. Deepak Kumar, B. Panigrahi","doi":"10.1016/j.jsv.2024.118766","DOIUrl":"10.1016/j.jsv.2024.118766","url":null,"abstract":"<div><div>It is essential to understand the nonlinear free vibration behaviour of a thin-walled composite structure as they find their applications in harsher environments prone to large deformations. Further, these structures made of fibrous materials, have directional properties for different fibre orientations resulting in a diversified and a complex nonlinear behaviour. In this regard, present work provides a comprehensive mathematical formulation on nonlinear vibration of pre-twisted thin-walled anisotropic box beam. The mathematical model is derived as coupled (flap-lag-extension-torsion) model considering shear deformation and green's strain tensor for large displacements in order to study the influence of nonlinear couplings on the dynamic behaviour. The derived energy equations are presented depending on degree of nonlinearity. These nonlinear equations those derived are nondimensionalized and solved with in the frame work of energy method using classical Ritz approximation. An iterative method is used to solve the nonlinear equations pertaining displacement terms. This nonlinear behaviour is evaluated for two important types of structural tailoring techniques available for thin-walled composite beams namely Circumferentially Asymmetric Stiffness (CAS) and Circumferentially Uniform Stiffness (CUS). It is found that CAS layup experiences significantly severe nonlinear effects compared to CUS due to the presence of 3rd degree nonlinear coupling terms. The variation of nonlinear frequency ratios over different ply angles showing the influence of nonlinearity on fibres orientation is presented for the first time for the two ply lay ups. The influence of degree of nonlinearity on the accuracy of the nonlinear frequencies is evaluated and presented. Moreover, the impact of nonlinearity on the pre-twisted beam is presented for different pre-twist angles.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"596 ","pages":"Article 118766"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.jsv.2024.118767
Brennen Clark , Matthew S. Allen , Benjamin Pacini
This work seeks to provide a comprehensive review of the effects that stiffness bilinearity can have on the nonlinear modes of a system, its response in a random vibration environment, and the connection between the two. Stiffness bilinearity here refers to a continuous piecewise linear force vs displacement function that is composed of two linear regions. This work focuses on a bilinear stiffness function that is regularized so there is a smooth transition at the point where the two linear regions meet. A single-degree-of-freedom system (SDOF) and a two-degree-of-freedom (2DOF) system are explored and several interesting behaviors are shown. The SDOF bilinear spring model is characterized by four parameters: the low amplitude frequency, the ratio of the linear stiffnesses on either side of the transition, the displacement at which the transition occurs, and the rate or sharpness of the transition. The effect of each parameter on the shape of the NNM is described. In a 2DOF system, these parameters have similar effects, but modal coupling is found to play a significant role. When a bilinear system is subjected to random excitation, many harmonics appear in the response for both the SDOF and 2DOF cases. The root-mean-square (RMS) response of the bilinear system can be larger or smaller than the corresponding linear case depending on the values of the parameters and the type of forcing (broadband, bandlimited, in the shape of a vibration mode, etc.). However, many cases were observed in which the RMS response of the bilinear system was almost the same as that of a linear system, and hence the response could be predicted well using linear analysis. It is hoped that the results presented herein can assist engineers in helping to determine when linear analysis would be adequate to predict the failure of a system, when a rigorous nonlinear analysis is required, and what phenomena are likely to be observed in the latter case.
{"title":"Nonlinear normal modes and response to random inputs of systems with bilinear stiffness","authors":"Brennen Clark , Matthew S. Allen , Benjamin Pacini","doi":"10.1016/j.jsv.2024.118767","DOIUrl":"10.1016/j.jsv.2024.118767","url":null,"abstract":"<div><div>This work seeks to provide a comprehensive review of the effects that stiffness bilinearity can have on the nonlinear modes of a system, its response in a random vibration environment, and the connection between the two. Stiffness bilinearity here refers to a continuous piecewise linear force vs displacement function that is composed of two linear regions. This work focuses on a bilinear stiffness function that is regularized so there is a smooth transition at the point where the two linear regions meet. A single-degree-of-freedom system (SDOF) and a two-degree-of-freedom (2DOF) system are explored and several interesting behaviors are shown. The SDOF bilinear spring model is characterized by four parameters: the low amplitude frequency, the ratio of the linear stiffnesses on either side of the transition, the displacement at which the transition occurs, and the rate or sharpness of the transition. The effect of each parameter on the shape of the NNM is described. In a 2DOF system, these parameters have similar effects, but modal coupling is found to play a significant role. When a bilinear system is subjected to random excitation, many harmonics appear in the response for both the SDOF and 2DOF cases. The root-mean-square (RMS) response of the bilinear system can be larger or smaller than the corresponding linear case depending on the values of the parameters and the type of forcing (broadband, bandlimited, in the shape of a vibration mode, etc.). However, many cases were observed in which the RMS response of the bilinear system was almost the same as that of a linear system, and hence the response could be predicted well using linear analysis. It is hoped that the results presented herein can assist engineers in helping to determine when linear analysis would be adequate to predict the failure of a system, when a rigorous nonlinear analysis is required, and what phenomena are likely to be observed in the latter case.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"595 ","pages":"Article 118767"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.jsv.2024.118762
Bo Zhu , Ji Zuo Feng , Yang Guo , Yan Qing Wang
In this paper, the exact closed-form solution is given to investigate the influence of the intermediate elastic support on the buckling and free vibration of an elastically supported pipe. According to the Euler–Bernoulli beam theory, the mechanical model of the pipe is established. The exact equilibrium configuration is derived using the generalised function method without enforcing continuity conditions. A simple solution to the eigenvalue problem is formulated using the methods of complex mode superposition and Laplace transformation. The comparative study shows the differences in the supercritical vibration characteristics and highlights the limitations of previous studies. Parametric studies are carried out to investigate the influence of elastic support and intermediate support conditions on the equilibrium configuration, critical flow velocity, and natural frequency. The results demonstrate that the proposed closed-form solution can determine the support conditions that lead to the maximum critical flow velocity and natural frequency of a pipe with multiple intermediate supports. The maximum values are required to adjust the support conditions leading to the nodes of higher-order equilibrium configurations and complex modes. Furthermore, the natural frequencies of the pipe conveying supercritical fluid no longer satisfy the monotonicity for the support stiffness, the symmetry for the support position, and the ‘zero-point’ property for the support number.
{"title":"Exact closed-form solution for buckling and free vibration of pipes conveying fluid with intermediate elastic supports","authors":"Bo Zhu , Ji Zuo Feng , Yang Guo , Yan Qing Wang","doi":"10.1016/j.jsv.2024.118762","DOIUrl":"10.1016/j.jsv.2024.118762","url":null,"abstract":"<div><div>In this paper, the exact closed-form solution is given to investigate the influence of the intermediate elastic support on the buckling and free vibration of an elastically supported pipe. According to the Euler–Bernoulli beam theory, the mechanical model of the pipe is established. The exact equilibrium configuration is derived using the generalised function method without enforcing continuity conditions. A simple solution to the eigenvalue problem is formulated using the methods of complex mode superposition and Laplace transformation. The comparative study shows the differences in the supercritical vibration characteristics and highlights the limitations of previous studies. Parametric studies are carried out to investigate the influence of elastic support and intermediate support conditions on the equilibrium configuration, critical flow velocity, and natural frequency. The results demonstrate that the proposed closed-form solution can determine the support conditions that lead to the maximum critical flow velocity and natural frequency of a pipe with multiple intermediate supports. The maximum values are required to adjust the support conditions leading to the nodes of higher-order equilibrium configurations and complex modes. Furthermore, the natural frequencies of the pipe conveying supercritical fluid no longer satisfy the monotonicity for the support stiffness, the symmetry for the support position, and the ‘zero-point’ property for the support number.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"596 ","pages":"Article 118762"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.jsv.2024.118760
Nicolas Madinier , Quentin Leclère , Kerem Ege , Alain Berry
Vibroacoustic inverse methods use the measured response of a vibrating structure to identify a structural parameter or a dynamic load. Two inverse methods are considered, the Force Analysis Technique (FAT) and the Virtual Fields Method (VFM). The Corrected Force Analysis Technique (CFAT) is a variant of FAT that corrects its singularity. This correction allows the method to be applied in the high-frequency domain, when the number of measurement points per flexural wavelength becomes small. In this study, the proposed novelty is the development of a Frequency-Adapted VFM (FA VFM) to the case of a Love–Kirchhoff plate. Thanks to this method, the VFM can now be applied to identify the equivalent bending stiffness and structural damping of a thin plate when the number of measurement points per wavelength is small. The method has previously been developed for an Euler–Bernoulli beam. An experimental identification of the complex bending stiffness of an locally damped aluminium plate using Laser Doppler Velocimetry (LDV) data and the developed method is performed. The experimental study shows for the first time that the FA VFM can be used to map the equivalent bending stiffness and structural damping as a function of position on a plate and identify these parameters as a function of frequency over a large frequency band. The results of the Frequency-Adapted VFM are compared with those of CFAT and the classical VFM approach. FA VFM results are more accurate than those of classical VFM and similar to those of CFAT.
{"title":"Spatial and frequency identification of the dynamic properties of thin plates with the Frequency-Adapted Virtual Fields Method","authors":"Nicolas Madinier , Quentin Leclère , Kerem Ege , Alain Berry","doi":"10.1016/j.jsv.2024.118760","DOIUrl":"10.1016/j.jsv.2024.118760","url":null,"abstract":"<div><div>Vibroacoustic inverse methods use the measured response of a vibrating structure to identify a structural parameter or a dynamic load. Two inverse methods are considered, the Force Analysis Technique (FAT) and the Virtual Fields Method (VFM). The Corrected Force Analysis Technique (CFAT) is a variant of FAT that corrects its singularity. This correction allows the method to be applied in the high-frequency domain, when the number of measurement points per flexural wavelength becomes small. In this study, the proposed novelty is the development of a Frequency-Adapted VFM (FA VFM) to the case of a Love–Kirchhoff plate. Thanks to this method, the VFM can now be applied to identify the equivalent bending stiffness and structural damping of a thin plate when the number of measurement points per wavelength is small. The method has previously been developed for an Euler–Bernoulli beam. An experimental identification of the complex bending stiffness of an locally damped aluminium plate using Laser Doppler Velocimetry (LDV) data and the developed method is performed. The experimental study shows for the first time that the FA VFM can be used to map the equivalent bending stiffness and structural damping as a function of position on a plate and identify these parameters as a function of frequency over a large frequency band. The results of the Frequency-Adapted VFM are compared with those of CFAT and the classical VFM approach. FA VFM results are more accurate than those of classical VFM and similar to those of CFAT.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"596 ","pages":"Article 118760"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1016/j.jsv.2024.118763
Junyong Zhou , Zhanyu Zhang , Zeren Jin , Xuan Kong , Xiaohui Wang , Hai Liu
This study addresses the challenge of indirectly measuring bridge surface roughness through the vibration responses of a moving vehicle, which is crucial for pavement maintenance and bridge safety assessment. A physics-constrained generative adversarial network (PC-GAN) was proposed for the probabilistic estimation of surface roughness. The method consists of two steps: initially, a GAN informed by physics-based knowledge extracts combined information of bridge vibration deflection and surface roughness from vehicle accelerations. Subsequently, a feed-forward network isolates the bridge surface roughness from the combined data. Numerical examples validate the PC-GAN method, demonstrating sustained high accuracy under challenging conditions, including ISO 8608 level C road roughness, vehicle speeds up to 8 m s-1, 10 % deviation in vehicle parameters, 10 % environmental noise, and 10 % vehicle damping ratio. Laboratory tests further confirmed the method's efficacy, with the successful detection of artificial barriers on the bridge surface and a mean relative error of 3.33 % in height estimation. The PC-GAN method is demonstrated to be a robust tool for estimating bridge surface roughness under various numerical and laboratory conditions. These findings provide valuable insights for the rapid inspection of bridge pavement conditions using vibration responses from moving test vehicles.
本研究解决了通过移动车辆的振动响应间接测量桥梁表面粗糙度的难题,这对路面维护和桥梁安全评估至关重要。针对表面粗糙度的概率估算,提出了一种物理约束生成式对抗网络(PC-GAN)。该方法包括两个步骤:首先,基于物理知识的生成式对抗网络从车辆加速度中提取桥梁振动挠度和表面粗糙度的综合信息。随后,前馈网络从综合数据中分离出桥梁表面粗糙度。数值示例验证了 PC-GAN 方法,证明该方法在具有挑战性的条件下仍能保持高精度,包括 ISO 8608 C 级路面粗糙度、最高 8 m s-1 的车辆速度、10 % 的车辆参数偏差、10 % 的环境噪声和 10 % 的车辆阻尼比。实验室测试进一步证实了该方法的有效性,成功检测到桥面上的人工障碍物,高度估计的平均相对误差为 3.33%。PC-GAN 方法被证明是在各种数值和实验室条件下估算桥梁表面粗糙度的可靠工具。这些发现为利用移动测试车辆的振动响应快速检测桥梁路面状况提供了宝贵的见解。
{"title":"Indirect measurement of bridge surface roughness using vibration responses of a two-axle moving vehicle based on physics-constrained generative adversarial network","authors":"Junyong Zhou , Zhanyu Zhang , Zeren Jin , Xuan Kong , Xiaohui Wang , Hai Liu","doi":"10.1016/j.jsv.2024.118763","DOIUrl":"10.1016/j.jsv.2024.118763","url":null,"abstract":"<div><div>This study addresses the challenge of indirectly measuring bridge surface roughness through the vibration responses of a moving vehicle, which is crucial for pavement maintenance and bridge safety assessment. A physics-constrained generative adversarial network (PC-GAN) was proposed for the probabilistic estimation of surface roughness. The method consists of two steps: initially, a GAN informed by physics-based knowledge extracts combined information of bridge vibration deflection and surface roughness from vehicle accelerations. Subsequently, a feed-forward network isolates the bridge surface roughness from the combined data. Numerical examples validate the PC-GAN method, demonstrating sustained high accuracy under challenging conditions, including ISO 8608 level C road roughness, vehicle speeds up to 8 m s<sup>-1</sup>, 10 % deviation in vehicle parameters, 10 % environmental noise, and 10 % vehicle damping ratio. Laboratory tests further confirmed the method's efficacy, with the successful detection of artificial barriers on the bridge surface and a mean relative error of 3.33 % in height estimation. The PC-GAN method is demonstrated to be a robust tool for estimating bridge surface roughness under various numerical and laboratory conditions. These findings provide valuable insights for the rapid inspection of bridge pavement conditions using vibration responses from moving test vehicles.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"595 ","pages":"Article 118763"},"PeriodicalIF":4.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.jsv.2024.118764
Jianing Li, Xun Wang
This paper investigates the identification of multiple dipole sound sources using sound pressures measured from a microphone array. The problem is addressed in the maximum likelihood (ML) framework, where the locations, orientations, and powers of multiple dipole sound sources are unknown parameters to be estimated. By the consistency property of ML, the estimated parameters converge to their actual values, which implies an asymptotically perfect spatial resolution, if a sufficiently high signal-to-noise ratio can be achieved. In order to reduce the dimension of the optimization problem of ML, the contribution of each dipole source to the measured pressures is assumed to be a latent variable and the ML problem is equivalently solved via the expectation–maximization (EM) algorithm, which iteratively and sequentially updates each source contribution and the associated sound source parameters. The number of sound sources can also be determined by the model selection approaches which add a penalty of model dimension to the ML objective function. The proposed method is assessed via a laboratory experiment where the sound field is produced by dipole speakers and a wind tunnel experiment where airframe aerodynamic noise is generated at a high Reynolds number. Experimental results show that the proposed method outperforms existing approaches in the sense of higher spatial resolution, more accurate localization, and the capacity to identify the orientations of multiple dipole sound sources.
本文研究了利用麦克风阵列测得的声压识别多个偶极声源的问题。该问题是在最大似然法(ML)框架下解决的,多个偶极声源的位置、方向和功率都是需要估计的未知参数。根据最大似然法的一致性特性,如果能达到足够高的信噪比,估计参数会收敛到其实际值,这意味着空间分辨率近似完美。为了降低 ML 优化问题的维度,每个偶极声源对测量压力的贡献被假定为一个潜变量,ML 问题可等效地通过期望最大化(EM)算法来解决,该算法会迭代并依次更新每个声源贡献和相关声源参数。声源的数量也可以通过模型选择方法来确定,这种方法在 ML 目标函数中增加了模型维度的惩罚。通过偶极子扬声器产生声场的实验室实验和在高雷诺数下产生机身空气动力噪声的风洞实验,对所提出的方法进行了评估。实验结果表明,所提出的方法在更高的空间分辨率、更精确的定位以及识别多个偶极声源方向的能力方面优于现有方法。
{"title":"Super-resolution localization and orientation estimation of multiple dipole sound sources: From a maximum likelihood framework to wind tunnel validation","authors":"Jianing Li, Xun Wang","doi":"10.1016/j.jsv.2024.118764","DOIUrl":"10.1016/j.jsv.2024.118764","url":null,"abstract":"<div><div>This paper investigates the identification of multiple dipole sound sources using sound pressures measured from a microphone array. The problem is addressed in the maximum likelihood (ML) framework, where the locations, orientations, and powers of multiple dipole sound sources are unknown parameters to be estimated. By the consistency property of ML, the estimated parameters converge to their actual values, which implies an asymptotically perfect spatial resolution, if a sufficiently high signal-to-noise ratio can be achieved. In order to reduce the dimension of the optimization problem of ML, the contribution of each dipole source to the measured pressures is assumed to be a latent variable and the ML problem is equivalently solved via the expectation–maximization (EM) algorithm, which iteratively and sequentially updates each source contribution and the associated sound source parameters. The number of sound sources can also be determined by the model selection approaches which add a penalty of model dimension to the ML objective function. The proposed method is assessed via a laboratory experiment where the sound field is produced by dipole speakers and a wind tunnel experiment where airframe aerodynamic noise is generated at a high Reynolds number. Experimental results show that the proposed method outperforms existing approaches in the sense of higher spatial resolution, more accurate localization, and the capacity to identify the orientations of multiple dipole sound sources.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"595 ","pages":"Article 118764"},"PeriodicalIF":4.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1016/j.jsv.2024.118759
F.J.P. Allison , S.G. Haslinger , Ö. Selsil , F. Shi
The ability to design surfaces with specific scattering properties has widespread applicability. In this article, we leverage a stochastic method for designing randomly rough, two-dimensional surfaces with a prescribed mean angular intensity distribution. Analytical and numerical techniques are implemented for a linearly elastic medium-vacuum interface, to generate band-limited diffusers with square and elliptical domains of scattering. Longitudinal incidence is assumed, and the theory allows for bulk wave mode conversions. Multivalued, discontinuous surfaces are formulated, and it is shown that the theoretical model may be satisfied independently of the facet shape utilised, with square and hexagonal discretisations given as examples. In the context of elastic wave scattering, the surfaces presented in this article may have applications in the calibration of scatterometers for wave manipulation as well as for crack detection using ultrasound.
{"title":"The design of two-dimensional elastic diffusers","authors":"F.J.P. Allison , S.G. Haslinger , Ö. Selsil , F. Shi","doi":"10.1016/j.jsv.2024.118759","DOIUrl":"10.1016/j.jsv.2024.118759","url":null,"abstract":"<div><div>The ability to design surfaces with specific scattering properties has widespread applicability. In this article, we leverage a stochastic method for designing randomly rough, two-dimensional surfaces with a prescribed mean angular intensity distribution. Analytical and numerical techniques are implemented for a linearly elastic medium-vacuum interface, to generate band-limited diffusers with square and elliptical domains of scattering. Longitudinal incidence is assumed, and the theory allows for bulk wave mode conversions. Multivalued, discontinuous surfaces are formulated, and it is shown that the theoretical model may be satisfied independently of the facet shape utilised, with square and hexagonal discretisations given as examples. In the context of elastic wave scattering, the surfaces presented in this article may have applications in the calibration of scatterometers for wave manipulation as well as for crack detection using ultrasound.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"596 ","pages":"Article 118759"},"PeriodicalIF":4.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}