Utilizing expired pharmaceuticals as corrosion inhibitors for copper in acidic environments offers compelling advantages, including cost-effectiveness, reduced toxicity compared to traditional inhibitors, and contribution to pharmaceutical waste reduction through recycling. This study investigates the corrosion inhibition of copper in a sulfuric acid solution using varying concentrations of Expired Betamethasone Drug, employing weight loss and Experimental Design methods. The influence of temperature on copper's corrosion behavior is examined within the range of 293–333 K. Results show that inhibition efficiency increases with higher inhibitor concentrations but decreases with rising temperature. Thermodynamic analyses elucidate adsorption and activation processes, revealing that the adsorption of Expired Betamethasone Drug on copper surfaces is characterized as endothermic and spontaneous, aligning well with the Langmuir and Frumkin adsorption isotherms. The activation and free energies of inhibition reactions support a mechanism of physical adsorption. To establish the relationship between factors and responses, we employ response surface methodology (RSM) with regression statistical analysis and probabilistic assessment. Statistical analysis demonstrates highly significant quadratic models for inhibition efficiencies (IE) with a coefficient of multiple regressions (R²) of 0.999. Further model validation confirms a strong fit (adjusted R² = 0.997), with experimental observations closely matching predictions and a highly significant model (Q² = 0.989). The findings reveal that this expired drug exhibits substantial inhibitory power, exceeding 96%, in both experimental and predictive calculations.
{"title":"Studying the Effectiveness of an Expired Betamethasone Drug in Sulfuric Acid Solutions to Examine the Corrosive Behavior of Copper Using Weight Loss and Experimental Design","authors":"T. Attar, A. Benchadli","doi":"10.18596/jotcsa.1353785","DOIUrl":"https://doi.org/10.18596/jotcsa.1353785","url":null,"abstract":"Utilizing expired pharmaceuticals as corrosion inhibitors for copper in acidic environments offers compelling advantages, including cost-effectiveness, reduced toxicity compared to traditional inhibitors, and contribution to pharmaceutical waste reduction through recycling. This study investigates the corrosion inhibition of copper in a sulfuric acid solution using varying concentrations of Expired Betamethasone Drug, employing weight loss and Experimental Design methods. The influence of temperature on copper's corrosion behavior is examined within the range of 293–333 K. Results show that inhibition efficiency increases with higher inhibitor concentrations but decreases with rising temperature. Thermodynamic analyses elucidate adsorption and activation processes, revealing that the adsorption of Expired Betamethasone Drug on copper surfaces is characterized as endothermic and spontaneous, aligning well with the Langmuir and Frumkin adsorption isotherms. The activation and free energies of inhibition reactions support a mechanism of physical adsorption. To establish the relationship between factors and responses, we employ response surface methodology (RSM) with regression statistical analysis and probabilistic assessment. Statistical analysis demonstrates highly significant quadratic models for inhibition efficiencies (IE) with a coefficient of multiple regressions (R²) of 0.999. Further model validation confirms a strong fit (adjusted R² = 0.997), with experimental observations closely matching predictions and a highly significant model (Q² = 0.989). The findings reveal that this expired drug exhibits substantial inhibitory power, exceeding 96%, in both experimental and predictive calculations.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139283023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inas Sali̇m, Ahmed MUTANABBİ ABDULA, Abdulkadir MOHAMMED NOORİ JASSİM
New 2-Isoxazoline derivatives containing furan moieties were synthesized from chalcones as starting materials, followed by antimicrobial activity. Chalcones were synthesized by reacting p-methoxy acetophenone or 3,4-(methylenedioxy)acetophenone with various aldehydes that were synthesized using Claisen-Schmidt condensation. Subsequently, the obtained products underwent cyclization with hydroxylamine hydrochloride to yield the corresponding 2-isoxazoline derivatives. The synthesized isoxazolines have been characterized via 1H-NMR, FTIR, and GC-Mass spectroscopy. The new derivatives were screened for their activity against different bacterial species as well as Candida albicans and exhibited moderate to excellent activity as new antimicrobial agents. A docking study was conducted on most potent derivatives against glucoseamine-6-phosphate synthase (GlcN-6-P), the target enzyme for antimicrobial agents. The study aimed to understand how the discovered derivatives interact with the binding pocket residues of the enzyme.
{"title":"Synthesis, Antimicrobial Evaluation, and Docking Study of Some New Isoxazoline Derivatives Derived from Chalcones","authors":"Inas Sali̇m, Ahmed MUTANABBİ ABDULA, Abdulkadir MOHAMMED NOORİ JASSİM","doi":"10.18596/jotcsa.1353554","DOIUrl":"https://doi.org/10.18596/jotcsa.1353554","url":null,"abstract":"New 2-Isoxazoline derivatives containing furan moieties were synthesized from chalcones as starting materials, followed by antimicrobial activity. Chalcones were synthesized by reacting p-methoxy acetophenone or 3,4-(methylenedioxy)acetophenone with various aldehydes that were synthesized using Claisen-Schmidt condensation. Subsequently, the obtained products underwent cyclization with hydroxylamine hydrochloride to yield the corresponding 2-isoxazoline derivatives. The synthesized isoxazolines have been characterized via 1H-NMR, FTIR, and GC-Mass spectroscopy. The new derivatives were screened for their activity against different bacterial species as well as Candida albicans and exhibited moderate to excellent activity as new antimicrobial agents. A docking study was conducted on most potent derivatives against glucoseamine-6-phosphate synthase (GlcN-6-P), the target enzyme for antimicrobial agents. The study aimed to understand how the discovered derivatives interact with the binding pocket residues of the enzyme.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139288280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, two new compounds with their closed formula, C8H10K2N6NiO4, and C8H10Na2N6NiO4, were synthesized, the first in crystal form and the second in powder form. Various properties of these compounds were characterized by SC-XRD and FT-IR methods. Theoretical information about the compounds was obtained with the help of the Gaussian 03 program. The molecular formula that best reflects the structural properties of this first 3D compound, which is in crystalline form and has polymeric properties, can be given as {K2(GA)(H2O)2[Ni(CN)4]}n. With a similar thought, it can be suggested that the molecular formula that best reflects the structural properties of the second 3D compound in powder form and with polymeric properties will be {Na2(GA)(H2O)2[Ni(CN)4]}n. The asymmetric unit of the {K2(GA)(H2O)2[Ni(μ4-CN)4]}n compound is composed of a half Ni(II) ion, one K(I) cation, two cyanide ligands, a half GA ligand molecule, and one bounded water ligand molecule. The structure of the compound, which consists of 3D polymeric chains, is formed by various bonds between the GA molecule, K(I) cations, water ligand molecules, and Ni(CN)4 ions.
{"title":"Synthesis And Characterization of Two New Hofmann-Type-Like Compounds From Some Alkali Metal Atoms And Glycine Anhydride","authors":"Z. Kartal, Z. Şahin","doi":"10.18596/jotcsa.1368425","DOIUrl":"https://doi.org/10.18596/jotcsa.1368425","url":null,"abstract":"In this study, two new compounds with their closed formula, C8H10K2N6NiO4, and C8H10Na2N6NiO4, were synthesized, the first in crystal form and the second in powder form. Various properties of these compounds were characterized by SC-XRD and FT-IR methods. Theoretical information about the compounds was obtained with the help of the Gaussian 03 program. The molecular formula that best reflects the structural properties of this first 3D compound, which is in crystalline form and has polymeric properties, can be given as {K2(GA)(H2O)2[Ni(CN)4]}n. With a similar thought, it can be suggested that the molecular formula that best reflects the structural properties of the second 3D compound in powder form and with polymeric properties will be {Na2(GA)(H2O)2[Ni(CN)4]}n. The asymmetric unit of the {K2(GA)(H2O)2[Ni(μ4-CN)4]}n compound is composed of a half Ni(II) ion, one K(I) cation, two cyanide ligands, a half GA ligand molecule, and one bounded water ligand molecule. The structure of the compound, which consists of 3D polymeric chains, is formed by various bonds between the GA molecule, K(I) cations, water ligand molecules, and Ni(CN)4 ions.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139289728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zubainun MOHAMED ZABİDİ, Nurul Aimi Zakari̇a, Ahmad NAZİB ALİAS
The combination of advanced scientific computing and quantum chemistry improves the existing approach in all chemistry and material science fields. Machine learning has revolutionized numerous disciplines within chemistry and material science. In this study, we present a supervised learning model for predicting the HOMO and LUMO energies of alkanes, which is trained on a database of molecular topological indices. We introduce a new moment topology approach has been introduced as molecular descriptors. Supervised learning utilizes artificial neural networks and support vector machines, taking advantage of the correlation between the molecular descriptors. The result demonstrate that this supervised learning model outperforms other models in predicting the HOMO and LUMO energies of alkanes. Additionally, we emphasize the importance of selecting appropriate descriptors and learning systems, as they play crucial role in accurately modeling molecules with topological orbitals.
先进科学计算与量子化学的结合改进了所有化学和材料科学领域的现有方法。机器学习为化学和材料科学领域的众多学科带来了变革。在本研究中,我们提出了一种用于预测烷烃 HOMO 和 LUMO 能量的监督学习模型,该模型是在分子拓扑指数数据库中训练出来的。我们引入了一种新的矩拓扑方法作为分子描述符。监督学习利用了人工神经网络和支持向量机,充分利用了分子描述符之间的相关性。结果表明,这种监督学习模型在预测烷烃的 HOMO 和 LUMO 能量方面优于其他模型。此外,我们还强调了选择合适的描述符和学习系统的重要性,因为它们在精确建立具有拓扑轨道的分子模型方面起着至关重要的作用。
{"title":"Supervised Machine Learning-Graph Theory Approach For Analyzing the Electronic Properties of Alkanes","authors":"Zubainun MOHAMED ZABİDİ, Nurul Aimi Zakari̇a, Ahmad NAZİB ALİAS","doi":"10.18596/jotcsa.1166158","DOIUrl":"https://doi.org/10.18596/jotcsa.1166158","url":null,"abstract":"The combination of advanced scientific computing and quantum chemistry improves the existing approach in all chemistry and material science fields. Machine learning has revolutionized numerous disciplines within chemistry and material science. In this study, we present a supervised learning model for predicting the HOMO and LUMO energies of alkanes, which is trained on a database of molecular topological indices. We introduce a new moment topology approach has been introduced as molecular descriptors. Supervised learning utilizes artificial neural networks and support vector machines, taking advantage of the correlation between the molecular descriptors. The result demonstrate that this supervised learning model outperforms other models in predicting the HOMO and LUMO energies of alkanes. Additionally, we emphasize the importance of selecting appropriate descriptors and learning systems, as they play crucial role in accurately modeling molecules with topological orbitals.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139312002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aspirin, a widely-used anti-inflammatory drug, can lead to serious consequences when overdosed. Therefore, there's a need for simple, cost-effective methods to determine its concentration and mitigate potential risks. This study aimed to develop a method for assessing aspirin in pharmaceutical preparations without the need for expensive equipment and with minimal sensitivity to ambient light. In this work, aspirin was subjected to a reaction with Fe(III), leading to the formation of violet-colored spots on filter paper and a 96-microwell plate. These colored spots were then captured using a smartphone in normal lighting conditions and analyzed on a computer. The integrated density of each spot was measured using a novel grayscale technique, and a calibration curve was created to relate integrated density to aspirin concentration. Analytical parameters and reagent concentrations were optimized for accuracy. To validate the method, three commercial aspirin samples were assayed and compared to ultraviolet-visible spectrophotometry, a reference method. The developed technique demonstrated excellent precision (coefficient of variation <0.68%) and relative errors below 5.2%. When compared to traditional color models like red-green-blue (RGB) and hue-saturation-luminosity (HSL), the grayscale model showed superior correlation (R2> 0.996), while the RGB model yielded less precise results (R2= 0.792). This study showcased the effectiveness of a cost-effective methodology for accurate aspirin quantification using a smartphone camera, even in the presence of ambient light.
{"title":"A Novel Method to Assay Aspirin in Pharmaceutical Formulations by Smartphone Camera-Based Image Scanning Densitometry","authors":"Rimsha Khan, Jamil Anwar","doi":"10.18596/jotcsa.1339301","DOIUrl":"https://doi.org/10.18596/jotcsa.1339301","url":null,"abstract":"Aspirin, a widely-used anti-inflammatory drug, can lead to serious consequences when overdosed. Therefore, there's a need for simple, cost-effective methods to determine its concentration and mitigate potential risks. This study aimed to develop a method for assessing aspirin in pharmaceutical preparations without the need for expensive equipment and with minimal sensitivity to ambient light. In this work, aspirin was subjected to a reaction with Fe(III), leading to the formation of violet-colored spots on filter paper and a 96-microwell plate. These colored spots were then captured using a smartphone in normal lighting conditions and analyzed on a computer. The integrated density of each spot was measured using a novel grayscale technique, and a calibration curve was created to relate integrated density to aspirin concentration. Analytical parameters and reagent concentrations were optimized for accuracy. To validate the method, three commercial aspirin samples were assayed and compared to ultraviolet-visible spectrophotometry, a reference method. The developed technique demonstrated excellent precision (coefficient of variation <0.68%) and relative errors below 5.2%. When compared to traditional color models like red-green-blue (RGB) and hue-saturation-luminosity (HSL), the grayscale model showed superior correlation (R2> 0.996), while the RGB model yielded less precise results (R2= 0.792). This study showcased the effectiveness of a cost-effective methodology for accurate aspirin quantification using a smartphone camera, even in the presence of ambient light.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139312467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Attar, A. Benchadli, Esma CHOUKCHOU BRAHAM, Amal Benkhaled
Widely used across industries, carbon steel is vulnerable to corrosion in aggressive environments, especially acidic ones. Thus, effective methods to mitigate metal corrosion from acids are crucial. Inhibitors are extensively used to prevent corrosion in industries, with the potential for improved protective performance. The design of experiments was employed to determine the optimal conditions for enhancing the inhibitor efficiency of Iodine–β-Cyclodextrin (Iodine/β-CD) in a sulfuric acid solution at temperatures ranging from 20°C to 50°C. The relationship between the factors and responses was established using response surface methodology (RSM), employing regression statistical analysis and probabilistic analysis. A single response was recorded: inhibitor efficiency was determined by measuring weight loss before and after immersion in the inhibitor solution. Thermodynamic parameters were also computed to determine adsorption and activation processes. The statistical analysis revealed that the quadratic models for inhibition efficiencies (IE) were highly significant with a coefficient of multiple regressions R2= 0.997. Further validation of the model indicated a good fit (R2 Adj= 0.994), and the experimentally observed values aligned well with predicted ones, demonstrating a highly significant model with Q2= 0.978. The theoretical efficiency predicted by the RSM model was 88.41%, whereas the efficiency observed during the experimental test procedure with the best-evaluated variables was 82.45%. In conclusion, this paper aims to identify the optimal conditions for employing Iodine–β-Cyclodextrin as a new corrosion inhibitor for carbon steel, utilizing experimental design methods. The results indicate that iodine/β-CD exhibits remarkable corrosion inhibitory properties for carbon steel under specific conditions.
{"title":"Iodine–β-Cyclodextrin: An Effective Corrosion Inhibitor for Carbon Steel in Sulfuric Acid Solution - Experimental Design and Investigating Thermodynamic Parameters","authors":"T. Attar, A. Benchadli, Esma CHOUKCHOU BRAHAM, Amal Benkhaled","doi":"10.18596/jotcsa.1346065","DOIUrl":"https://doi.org/10.18596/jotcsa.1346065","url":null,"abstract":"Widely used across industries, carbon steel is vulnerable to corrosion in aggressive environments, especially acidic ones. Thus, effective methods to mitigate metal corrosion from acids are crucial. Inhibitors are extensively used to prevent corrosion in industries, with the potential for improved protective performance. The design of experiments was employed to determine the optimal conditions for enhancing the inhibitor efficiency of Iodine–β-Cyclodextrin (Iodine/β-CD) in a sulfuric acid solution at temperatures ranging from 20°C to 50°C. The relationship between the factors and responses was established using response surface methodology (RSM), employing regression statistical analysis and probabilistic analysis. A single response was recorded: inhibitor efficiency was determined by measuring weight loss before and after immersion in the inhibitor solution. Thermodynamic parameters were also computed to determine adsorption and activation processes. The statistical analysis revealed that the quadratic models for inhibition efficiencies (IE) were highly significant with a coefficient of multiple regressions R2= 0.997. Further validation of the model indicated a good fit (R2 Adj= 0.994), and the experimentally observed values aligned well with predicted ones, demonstrating a highly significant model with Q2= 0.978. The theoretical efficiency predicted by the RSM model was 88.41%, whereas the efficiency observed during the experimental test procedure with the best-evaluated variables was 82.45%. In conclusion, this paper aims to identify the optimal conditions for employing Iodine–β-Cyclodextrin as a new corrosion inhibitor for carbon steel, utilizing experimental design methods. The results indicate that iodine/β-CD exhibits remarkable corrosion inhibitory properties for carbon steel under specific conditions.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139314748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to the limited supply of critical metals, their recovery from alternative sources has become a very important issue. In particular, end-of-life magnets contain significant amounts of neodymium (Nd) and dysprosium (Dy) ions and are considered secondary sources. The present study focused on the sorption and separation performance of titanium phosphate for Nd and Dy ions in an aqueous solution. In this regard, amorphous titanium phosphate (am‐TiP) was prepared via one‐step precipitation. XRD, SEM‐EDS, FTIR, and BET analysis were utilized to enlighten the morphological, structural, and surface properties of am‐TiP. The uptake of Nd3+ and Dy3+ ions was examined individually and in multiple element solutions depending on solution pH, contact time, metal concentration, and the presence of Co2+ ions. The maximum uptake capacity was 40.16 mg/g at pH 6 for Nd3+ and 26.95 mg/g at pH 4 for Dy3+. Am‐TiP has been observed to exhibit selectivity towards Nd3+ and Dy3+ ions in solutions containing Co2+ ions. The highest desorption yields obtained for Nd3+ and Dy3+ using 1.0 mol/L HCl were 95.2% and 97.4%, respectively.
{"title":"Sorption Behaviors of Amorphous Titanium Phosphate Towards Neodymium and Dysprosium","authors":"Süleyman İnan","doi":"10.18596/jotcsa.1337768","DOIUrl":"https://doi.org/10.18596/jotcsa.1337768","url":null,"abstract":"Due to the limited supply of critical metals, their recovery from alternative sources has become a very important issue. In particular, end-of-life magnets contain significant amounts of neodymium (Nd) and dysprosium (Dy) ions and are considered secondary sources. The present study focused on the sorption and separation performance of titanium phosphate for Nd and Dy ions in an aqueous solution. In this regard, amorphous titanium phosphate (am‐TiP) was prepared via one‐step precipitation. XRD, SEM‐EDS, FTIR, and BET analysis were utilized to enlighten the morphological, structural, and surface properties of am‐TiP. The uptake of Nd3+ and Dy3+ ions was examined individually and in multiple element solutions depending on solution pH, contact time, metal concentration, and the presence of Co2+ ions. The maximum uptake capacity was 40.16 mg/g at pH 6 for Nd3+ and 26.95 mg/g at pH 4 for Dy3+. Am‐TiP has been observed to exhibit selectivity towards Nd3+ and Dy3+ ions in solutions containing Co2+ ions. The highest desorption yields obtained for Nd3+ and Dy3+ using 1.0 mol/L HCl were 95.2% and 97.4%, respectively.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139314565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hydrogen is a clean energy carrier that will reduce dependence on fossil fuels and contribute to reducing the harmful effects on the environment resulting from using fossil fuels. Hydrogen is produced by the hydrolysis of sodium borohydride (NaBH4), one of the chemical hydrides, using a catalyst. In this study, Fe3O4@Salicylic acid magnetic nano-catalyst (Fe3O4@SA MNCs) was synthesized using the co-precipitation technique. The structural, physical, and chemical properties of the produced Fe3O4@SA MNCs were characterized by FT-IR, XRD, VSM, SEM, and SEM-EDX methods. At room temperature, the effect on hydrogen production performance was examined in the amounts of Fe3O4@SA MNCs (10, 25, 50, 75, and 100 mg), NaOH (0, 10, 20, and 25 mg), and NaBH4 (25, 50, 100, 150 and 200 mg). The highest hydrogen generation rates (HGR) were obtained using 10 mg Fe3O4@SA MNCs, 150 mg NaBH4, and 0 mg NaOH at room temperature. The obtained HGR value was calculated as 400 mL gcat-1.min-1. Fe3O4@SA MNCs were used for hydrogen production for the first time in this study. This study showed that Fe3O4@SA MNCs exhibit catalytic properties and are a promising, efficient catalyst in hydrogen production from NaBH4.
{"title":"Fe3O4@SA MNCs Synthesis, Characterization, and First-time Use in Hydrogen Production by NaBH4 Hydrolysis","authors":"Adil Umaz","doi":"10.18596/jotcsa.1354766","DOIUrl":"https://doi.org/10.18596/jotcsa.1354766","url":null,"abstract":"Hydrogen is a clean energy carrier that will reduce dependence on fossil fuels and contribute to reducing the harmful effects on the environment resulting from using fossil fuels. Hydrogen is produced by the hydrolysis of sodium borohydride (NaBH4), one of the chemical hydrides, using a catalyst. In this study, Fe3O4@Salicylic acid magnetic nano-catalyst (Fe3O4@SA MNCs) was synthesized using the co-precipitation technique. The structural, physical, and chemical properties of the produced Fe3O4@SA MNCs were characterized by FT-IR, XRD, VSM, SEM, and SEM-EDX methods. At room temperature, the effect on hydrogen production performance was examined in the amounts of Fe3O4@SA MNCs (10, 25, 50, 75, and 100 mg), NaOH (0, 10, 20, and 25 mg), and NaBH4 (25, 50, 100, 150 and 200 mg). The highest hydrogen generation rates (HGR) were obtained using 10 mg Fe3O4@SA MNCs, 150 mg NaBH4, and 0 mg NaOH at room temperature. The obtained HGR value was calculated as 400 mL gcat-1.min-1. Fe3O4@SA MNCs were used for hydrogen production for the first time in this study. This study showed that Fe3O4@SA MNCs exhibit catalytic properties and are a promising, efficient catalyst in hydrogen production from NaBH4.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139315109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The objective of this research was to evaluate the feasibility of using orange peels as a low-cost adsorbent to remove methyl orange (MO) from water solutions. The orange peel adsorbent underwent characterization through Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy to determine its properties before and after adsorption. A series of batch adsorption experiments were carried out to investigate the effects of various parameters such as contact time, adsorbent dosage, particle size, and initial dye concentration on the adsorption process. In each case, varying the value of the parameter of interest while keeping all other parameters constant. Results revealed that the highest removal of the dye from the adsorbent was achieved at a contact time of 90 min, the adsorbent dosage of 0.5 g, a particle size of less than 63 µm, and an initial concentration of 300 mg/L. Furthermore, the adsorption rate increased with increasing contact time, adsorbent dosage, and initial concentration, while it decreased with increasing particle size of the adsorbent. Concentrations of methyl orange were analyzed using a UV-Vis spectrophotometer. The experimental equilibrium data was analyzed using Langmuir and Freundlich isotherm models. The Langmuir isotherm provided the best fit for the experimental data with a correlation coefficient value of 0.9964 and a maximum adsorption capacity of 17.69 mg/g.
{"title":"Removal of Methyl Orange from Aqueous Solution Using Orange Peel as a Low Cost Adsorbent","authors":"Ahmed Lawal, Abdulhafeez Abdulsalam","doi":"10.18596/jotcsa.1313059","DOIUrl":"https://doi.org/10.18596/jotcsa.1313059","url":null,"abstract":"The objective of this research was to evaluate the feasibility of using orange peels as a low-cost adsorbent to remove methyl orange (MO) from water solutions. The orange peel adsorbent underwent characterization through Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy to determine its properties before and after adsorption. A series of batch adsorption experiments were carried out to investigate the effects of various parameters such as contact time, adsorbent dosage, particle size, and initial dye concentration on the adsorption process. In each case, varying the value of the parameter of interest while keeping all other parameters constant. Results revealed that the highest removal of the dye from the adsorbent was achieved at a contact time of 90 min, the adsorbent dosage of 0.5 g, a particle size of less than 63 µm, and an initial concentration of 300 mg/L. Furthermore, the adsorption rate increased with increasing contact time, adsorbent dosage, and initial concentration, while it decreased with increasing particle size of the adsorbent. Concentrations of methyl orange were analyzed using a UV-Vis spectrophotometer. The experimental equilibrium data was analyzed using Langmuir and Freundlich isotherm models. The Langmuir isotherm provided the best fit for the experimental data with a correlation coefficient value of 0.9964 and a maximum adsorption capacity of 17.69 mg/g.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139321670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study presents the development of a novel, facile, and overly sensitive spectrophotometric approach for quantifying promethazine hydrochloride (PRO) within its pharmaceutical formulations. The method capitalizes on an oxidative coupling reaction, achieved through the oxidation of the compound in an acidic milieu utilizing ammonium cerium (IV) sulfate dehydrate (Ce+4) solution. This process leads to the creation of a green-colored solution, which, upon conjugation with 5-aminosalicylic acid, exhibits maximum absorption at a wavelength of 598 nm. The methodology investigated several parameters, encompassing oxidation duration, temperature, quantities of oxidizing agent and coupling reagent, and determining the stoichiometric ratio between promethazine hydrochloride and 5-aminosalicylic acid. The established ratio was confirmed to be 1:1. Numerous organic solvents were evaluated, with water emerging as the optimal choice due to its pronounced absorption characteristics at the 598 nm wavelength. The applicability of Beer's law was verified over a concentration range of 2 - 28 μg/mL of promethazine hydrochloride, with a calculated molar absorption coefficient of 1.9606 x 104 L/mol∙cm. The Sandell sensitivity index was determined as 0.0164 μg/cm2, while the relative standard deviation (RSD) ranged from 0.8553- 1.2671%. Notably, recovery percentages were also within the 99.88 – 100.34% range. The efficacy of this technique was effectively demonstrated through its successful application in the analysis of pharmaceutical formulations containing promethazine hydrochloride, employing the standard method as a benchmark.
{"title":"Determination of Micro Amounts of Promethazine Hydrochloride in Pure and Pharmaceutical Samples Using UV- Visible Spectrophotometry","authors":"I. Humei̇dy","doi":"10.18596/jotcsa.1286566","DOIUrl":"https://doi.org/10.18596/jotcsa.1286566","url":null,"abstract":"This study presents the development of a novel, facile, and overly sensitive spectrophotometric approach for quantifying promethazine hydrochloride (PRO) within its pharmaceutical formulations. The method capitalizes on an oxidative coupling reaction, achieved through the oxidation of the compound in an acidic milieu utilizing ammonium cerium (IV) sulfate dehydrate (Ce+4) solution. This process leads to the creation of a green-colored solution, which, upon conjugation with 5-aminosalicylic acid, exhibits maximum absorption at a wavelength of 598 nm. The methodology investigated several parameters, encompassing oxidation duration, temperature, quantities of oxidizing agent and coupling reagent, and determining the stoichiometric ratio between promethazine hydrochloride and 5-aminosalicylic acid. The established ratio was confirmed to be 1:1. Numerous organic solvents were evaluated, with water emerging as the optimal choice due to its pronounced absorption characteristics at the 598 nm wavelength. The applicability of Beer's law was verified over a concentration range of 2 - 28 μg/mL of promethazine hydrochloride, with a calculated molar absorption coefficient of 1.9606 x 104 L/mol∙cm. The Sandell sensitivity index was determined as 0.0164 μg/cm2, while the relative standard deviation (RSD) ranged from 0.8553- 1.2671%. Notably, recovery percentages were also within the 99.88 – 100.34% range. The efficacy of this technique was effectively demonstrated through its successful application in the analysis of pharmaceutical formulations containing promethazine hydrochloride, employing the standard method as a benchmark.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139324129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}