首页 > 最新文献

Geobiology最新文献

英文 中文
A re-examination of the mechanism of whiting events: A new role for diatoms in Fayetteville Green Lake (New York, USA) 白化事件机制的重新研究:硅藻在费耶特维尔绿湖(纽约,美国)中的新作用
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-11-03 DOI: 10.1111/gbi.12534
Chloe Stanton, Ben Davis Barnes, Lee R. Kump, Julie Cosmidis

Whiting events—the episodic precipitation of fine-grained suspended calcium carbonates in the water column—have been documented across a variety of marine and lacustrine environments. Whitings likely are a major source of carbonate muds, a constituent of limestones, and important archives for geochemical proxies of Earth history. While several biological and physical mechanisms have been proposed to explain the onset of these precipitation events, no consensus has been reached thus far. Fayetteville Green Lake (New York, USA) is a meromictic lake that experiences annual whitings. Materials suspended in the water column collected through the whiting season were characterized using scanning electron microscopy and scanning transmission X-ray microscopy. Whitings in Fayetteville Green Lake are initiated in the spring within the top few meters of the water column, by precipitation of fine amorphous calcium carbonate (ACC) phases nucleating on microbial cells, as well as on abundant extracellular polymeric substances (EPS) frequently associated with centric diatoms. Whiting particles found in the summer consist of 5–7 μm calcite grains forming aggregates with diatoms and EPS. Simple calculations demonstrate that calcite particles continuously grow over several days, then sink quickly through the water column. In the late summer, partial calcium carbonate dissolution is observed deeper in the water column. Settling whiting particles, however, reach the bottom of the lake, where they form a major constituent of the sediment, along with diatom frustules. The role of diatoms and associated EPS acting as nucleation surfaces for calcium carbonates is described for the first time here as a potential mechanism participating in whitings at Fayetteville Green Lake. This mechanism may have been largely overlooked in other whiting events in modern and ancient environments.

白化事件——细颗粒悬浮碳酸钙在水柱中的偶发性降水——在各种海洋和湖泊环境中都有记录。惠廷岩可能是碳酸盐岩泥的主要来源,是石灰石的组成部分,也是地球历史地球化学代用物的重要档案。虽然已经提出了几种生物和物理机制来解释这些降水事件的发生,但迄今为止尚未达成共识。费耶特维尔绿湖(美国纽约)是一个每年都有白化的湖泊。利用扫描电子显微镜和扫描透射x射线显微镜对捕鲸季节收集的水柱悬浮物质进行了表征。在费耶特维尔绿湖,白化是在春天开始的,在水柱的顶部几米内,由微生物细胞上形成核的精细无定形碳酸钙(ACC)相的沉淀,以及通常与中心硅藻相关的丰富的细胞外聚合物(EPS)。夏季白垩颗粒为5 ~ 7 μm方解石颗粒,与硅藻和EPS形成聚集体。简单的计算表明,方解石颗粒在几天内连续生长,然后迅速沉入水柱。在夏末,部分碳酸钙在水柱深处溶解。然而,沉淀的白色颗粒到达湖底,在那里它们与硅藻体一起形成沉积物的主要组成部分。硅藻和相关的EPS作为碳酸钙成核表面的作用首次被描述为参与费耶特维尔绿湖白化的潜在机制。在现代和古代环境中的其他白化事件中,这一机制可能在很大程度上被忽视了。
{"title":"A re-examination of the mechanism of whiting events: A new role for diatoms in Fayetteville Green Lake (New York, USA)","authors":"Chloe Stanton,&nbsp;Ben Davis Barnes,&nbsp;Lee R. Kump,&nbsp;Julie Cosmidis","doi":"10.1111/gbi.12534","DOIUrl":"https://doi.org/10.1111/gbi.12534","url":null,"abstract":"<p>Whiting events—the episodic precipitation of fine-grained suspended calcium carbonates in the water column—have been documented across a variety of marine and lacustrine environments. Whitings likely are a major source of carbonate muds, a constituent of limestones, and important archives for geochemical proxies of Earth history. While several biological and physical mechanisms have been proposed to explain the onset of these precipitation events, no consensus has been reached thus far. Fayetteville Green Lake (New York, USA) is a meromictic lake that experiences annual whitings. Materials suspended in the water column collected through the whiting season were characterized using scanning electron microscopy and scanning transmission X-ray microscopy. Whitings in Fayetteville Green Lake are initiated in the spring within the top few meters of the water column, by precipitation of fine amorphous calcium carbonate (ACC) phases nucleating on microbial cells, as well as on abundant extracellular polymeric substances (EPS) frequently associated with centric diatoms. Whiting particles found in the summer consist of 5–7 μm calcite grains forming aggregates with diatoms and EPS. Simple calculations demonstrate that calcite particles continuously grow over several days, then sink quickly through the water column. In the late summer, partial calcium carbonate dissolution is observed deeper in the water column. Settling whiting particles, however, reach the bottom of the lake, where they form a major constituent of the sediment, along with diatom frustules. The role of diatoms and associated EPS acting as nucleation surfaces for calcium carbonates is described for the first time here as a potential mechanism participating in whitings at Fayetteville Green Lake. This mechanism may have been largely overlooked in other whiting events in modern and ancient environments.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 2","pages":"210-228"},"PeriodicalIF":3.7,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12534","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5687396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A review of microbial-environmental interactions recorded in Proterozoic carbonate-hosted chert 元古代碳酸盐岩中微生物与环境相互作用的研究进展
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-10-21 DOI: 10.1111/gbi.12527
Kelsey R. Moore, Mirna Daye, Jian Gong, Kenneth Williford, Kurt Konhauser, Tanja Bosak

The record of life during the Proterozoic is preserved by several different lithologies, but two in particular are linked both spatially and temporally: chert and carbonate. These lithologies capture a snapshot of dominantly peritidal environments during the Proterozoic. Early diagenetic chert preserves some of the most exceptional Proterozoic biosignatures in the form of microbial body fossils and mat textures. This fossiliferous and kerogenous chert formed in shallow marine environments, where chert nodules, layers, and lenses are often surrounded by and encased within carbonate deposits that themselves often contain kerogen and evidence of former microbial mats. Here, we review the record of biosignatures preserved in peritidal Proterozoic chert and chert-hosting carbonate and discuss this record in the context of experimental and environmental studies that have begun to shed light on the roles that microbes and organic compounds may have played in the formation of these deposits. Insights gained from these studies suggest temporal trends in microbial-environmental interactions and place new constraints on past environmental conditions, such as the concentration of silica in Proterozoic seawater, interactions among organic compounds and cations in seawater, and the influence of microbial physiology and biochemistry on selective preservation by silicification.

元古代的生命记录由几种不同的岩性保存下来,但有两种岩性在空间和时间上都有特别的联系:燧石岩和碳酸盐。这些岩性反映了元古代主要的潮外环境。早成岩燧石以微生物体化石和岩垫结构的形式保留了一些最独特的元古代生物特征。这种化石和干酪根的燧石形成于浅海环境,在那里,燧石结核、层和透镜通常被碳酸盐沉积物包围和包裹,碳酸盐沉积物本身通常含有干酪根和前微生物席的证据。在这里,我们回顾了保存在潮周元古代燧石岩和含燧石碳酸盐中的生物特征记录,并在实验和环境研究的背景下讨论了这些记录,这些研究已经开始阐明微生物和有机化合物可能在这些矿床的形成中发挥的作用。从这些研究中获得的见解表明了微生物与环境相互作用的时间趋势,并对过去的环境条件提出了新的限制,例如元古宙海水中二氧化硅的浓度,海水中有机化合物和阳离子之间的相互作用,以及微生物生理和生物化学对硅化选择性保存的影响。
{"title":"A review of microbial-environmental interactions recorded in Proterozoic carbonate-hosted chert","authors":"Kelsey R. Moore,&nbsp;Mirna Daye,&nbsp;Jian Gong,&nbsp;Kenneth Williford,&nbsp;Kurt Konhauser,&nbsp;Tanja Bosak","doi":"10.1111/gbi.12527","DOIUrl":"https://doi.org/10.1111/gbi.12527","url":null,"abstract":"<p>The record of life during the Proterozoic is preserved by several different lithologies, but two in particular are linked both spatially and temporally: chert and carbonate. These lithologies capture a snapshot of dominantly peritidal environments during the Proterozoic. Early diagenetic chert preserves some of the most exceptional Proterozoic biosignatures in the form of microbial body fossils and mat textures. This fossiliferous and kerogenous chert formed in shallow marine environments, where chert nodules, layers, and lenses are often surrounded by and encased within carbonate deposits that themselves often contain kerogen and evidence of former microbial mats. Here, we review the record of biosignatures preserved in peritidal Proterozoic chert and chert-hosting carbonate and discuss this record in the context of experimental and environmental studies that have begun to shed light on the roles that microbes and organic compounds may have played in the formation of these deposits. Insights gained from these studies suggest temporal trends in microbial-environmental interactions and place new constraints on past environmental conditions, such as the concentration of silica in Proterozoic seawater, interactions among organic compounds and cations in seawater, and the influence of microbial physiology and biochemistry on selective preservation by silicification.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 1","pages":"3-27"},"PeriodicalIF":3.7,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12527","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5796586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Metabarcoding reveals high diversity of benthic foraminifera linked to water masses circulation at coastal Svalbard 元条形码揭示了与斯瓦尔巴群岛沿海水团循环有关的底栖有孔虫的高度多样性
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-10-19 DOI: 10.1111/gbi.12530
Ngoc-Loi Nguyen, Joanna Paw?owska, Inès Barrenechea Angeles, Marek Zajaczkowski, Jan Paw?owski

Arctic marine biodiversity is undergoing rapid changes due to global warming and modifications of oceanic water masses circulation. These changes have been demonstrated in the case of mega- and macrofauna, but much less is known about their impact on the biodiversity of smaller size organisms, such as foraminifera that represent a main component of meiofauna in the Arctic. Several studies analyzed the distribution and diversity of Arctic foraminifera. However, all these studies are based exclusively on the morphological identification of specimens sorted from sediment samples. Here, we present the first assessment of Arctic foraminifera diversity based on metabarcoding of sediment DNA samples collected in fjords and open sea areas in the Svalbard Archipelago. We obtained a total of 5,968,786 reads that represented 1384 amplicon sequence variants (ASVs). More than half of the ASVs (51.7%) could not be assigned to any group in the reference database suggesting a high genetic novelty of Svalbard foraminifera. The sieved and unsieved samples resolved comparable communities, sharing 1023 ASVs, comprising over 97% of reads. Our analyses show that the foraminiferal assemblage differs between the localities, with communities distinctly separated between fjord and open sea stations. Each locality was characterized by a specific assemblage, with only a small overlap in the case of open sea areas. Our study demonstrates a clear pattern of the influence of water masses on the structure of foraminiferal communities. The stations situated on the western coast of Svalbard that are strongly influenced by warm and salty Atlantic water (AW) are characterized by much higher diversity than stations in the northern and eastern part, where the impact of AW is less pronounced. This high diversity and specificity of Svalbard foraminifera associated with water mass distribution indicate that the foraminiferal metabarcoding data can be very useful for inferring present and past environmental conditions in the Arctic.

由于全球变暖和海洋水团环流的改变,北极海洋生物多样性正在发生快速变化。这些变化已经在大型和大型动物群中得到证实,但对于它们对小型生物的生物多样性的影响知之甚少,例如有孔虫,它是北极小型动物群的主要组成部分。一些研究分析了北极有孔虫的分布和多样性。然而,所有这些研究都完全基于从沉积物样品中分类的标本的形态学鉴定。在这里,我们提出了基于收集在斯瓦尔巴群岛峡湾和开阔海域的沉积物DNA样本的元条形码的北极有孔虫多样性的首次评估。我们总共获得了5,968,786个reads,代表了1384个扩增子序列变异(asv)。超过一半的asv(51.7%)不能分配给参考数据库中的任何组,这表明斯瓦尔巴有孔虫具有很高的遗传新颖性。经过筛选和未筛选的样本分析了可比较的群落,共有1023个asv,包含超过97%的reads。我们的分析表明,有孔虫组合在不同的地点之间存在差异,在峡湾和公海站之间存在明显的群落分离。每个地方的特点是有一种特定的组合,只有在开放海域的情况下有少量重叠。我们的研究显示了水团对有孔虫群落结构影响的清晰模式。位于斯瓦尔巴群岛西海岸的监测站受大西洋暖水和咸水的强烈影响,其多样性远高于受大西洋暖水和咸水影响不那么明显的北部和东部监测站。斯瓦尔巴群岛有孔虫与水质量分布的高度多样性和特异性表明,有孔虫元条形码数据对于推断北极地区现在和过去的环境条件非常有用。
{"title":"Metabarcoding reveals high diversity of benthic foraminifera linked to water masses circulation at coastal Svalbard","authors":"Ngoc-Loi Nguyen,&nbsp;Joanna Paw?owska,&nbsp;Inès Barrenechea Angeles,&nbsp;Marek Zajaczkowski,&nbsp;Jan Paw?owski","doi":"10.1111/gbi.12530","DOIUrl":"https://doi.org/10.1111/gbi.12530","url":null,"abstract":"<p>Arctic marine biodiversity is undergoing rapid changes due to global warming and modifications of oceanic water masses circulation. These changes have been demonstrated in the case of mega- and macrofauna, but much less is known about their impact on the biodiversity of smaller size organisms, such as foraminifera that represent a main component of meiofauna in the Arctic. Several studies analyzed the distribution and diversity of Arctic foraminifera. However, all these studies are based exclusively on the morphological identification of specimens sorted from sediment samples. Here, we present the first assessment of Arctic foraminifera diversity based on metabarcoding of sediment DNA samples collected in fjords and open sea areas in the Svalbard Archipelago. We obtained a total of 5,968,786 reads that represented 1384 amplicon sequence variants (ASVs). More than half of the ASVs (51.7%) could not be assigned to any group in the reference database suggesting a high genetic novelty of Svalbard foraminifera. The sieved and unsieved samples resolved comparable communities, sharing 1023 ASVs, comprising over 97% of reads. Our analyses show that the foraminiferal assemblage differs between the localities, with communities distinctly separated between fjord and open sea stations. Each locality was characterized by a specific assemblage, with only a small overlap in the case of open sea areas. Our study demonstrates a clear pattern of the influence of water masses on the structure of foraminiferal communities. The stations situated on the western coast of Svalbard that are strongly influenced by warm and salty Atlantic water (AW) are characterized by much higher diversity than stations in the northern and eastern part, where the impact of AW is less pronounced. This high diversity and specificity of Svalbard foraminifera associated with water mass distribution indicate that the foraminiferal metabarcoding data can be very useful for inferring present and past environmental conditions in the Arctic.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 1","pages":"133-150"},"PeriodicalIF":3.7,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12530","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5722776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Featured Cover 特色介绍
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-10-17 DOI: 10.1111/gbi.12531
Kuan Cheng, Han Li, Xiu Yuan, Yunlu Yin, Dandan Chen, Ying Wang, Xiaomin Li, Guojun Chen, Fangbai Li, Chao Peng, Yundang Wu, Tongxu Liu

Cover Caption: The cover image is based on the Research Article Hematite-promoted nitrate-reducing Fe(II) oxidation by Acidovorax sp. strain BoFeN1: Roles of mineral catalysis and cell encrustation by Kuan Cheng et al., https://doi.org/10.1111/gbi.12510

封面说明:封面图片基于研究文章《赤铁矿促进硝酸盐还原Fe(II)氧化由Acidovorax sps .菌株BoFeN1:矿物催化和细胞结壳的作用》(Kuan Cheng et al., https://doi.org/10.1111/gbi.12510)
{"title":"Featured Cover","authors":"Kuan Cheng,&nbsp;Han Li,&nbsp;Xiu Yuan,&nbsp;Yunlu Yin,&nbsp;Dandan Chen,&nbsp;Ying Wang,&nbsp;Xiaomin Li,&nbsp;Guojun Chen,&nbsp;Fangbai Li,&nbsp;Chao Peng,&nbsp;Yundang Wu,&nbsp;Tongxu Liu","doi":"10.1111/gbi.12531","DOIUrl":"https://doi.org/10.1111/gbi.12531","url":null,"abstract":"<p>Cover Caption: The cover image is based on the Research Article <i>Hematite-promoted nitrate-reducing Fe(II) oxidation by Acidovorax sp. strain BoFeN1: Roles of mineral catalysis and cell encrustation</i> by Kuan Cheng et al., https://doi.org/10.1111/gbi.12510\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"20 6","pages":"i"},"PeriodicalIF":3.7,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12531","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5705789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An experimental study on post-mortem dissolution and overgrowth processes affecting coccolith assemblages: A rapid and complex process 死后溶出和过度生长过程对球岩石组合影响的实验研究:一个快速而复杂的过程
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-10-11 DOI: 10.1111/gbi.12528
Katarína Holcová, Filip Scheiner

Coccolith dissolution together with post-mortem morphological features are immensely important phenomena that can affect assemblage compositions, complicate taxonomic identification as well as provide valuable palaeoenvironmental insights. This study summarizes the effects of pH oscillations on post-mortem coccolith morphologies and the abundances and compositions of calcareous nannoplankton assemblages in three distinct types of material—(i) Cretaceous chalk, (ii) Miocene marls, and (iii) late Holocene calcareous ooze. Two independent experimental runs within a semi-enclosed system setting were realized to observe assemblage alterations. One experiment was realized with the presence of bacteria and, in contrast, the second one inhibited their potential effect on the studied system. The pH was gradually decreased within the range of 8.3–6.4 using a reaction of CO2 with H2O forming weak carbonic acid (H2CO3), thereby affecting [CO32]. Further, a subsequent overgrowth study was carried out during spontaneous degassing accompanied by a gradual pH rise. The experiment revealed that the process and intensity of coccolith corrosion and subsequent overgrowth build-ups are influenced by a plethora of different factors such as (i) pH and associated seawater chemistry, (ii) mineral composition of the sediment, (iii) the presence of coccoliths within a protective substrate (faecal pellets, pores, pits), and (iv) the presence/absence of bacteria. Nannoplankton assemblages with corroded coccoliths or with coccoliths with overgrowth build-ups showed that the observed relative abundances of taxa experienced alteration from the original compositions. Additionally, extreme pH oscillations may result in enhanced morphological changes that make coccoliths unidentifiable structures, and might even evoke the absence of coccoliths in the fossil record.

球粒溶蚀与死后形态特征是非常重要的现象,可以影响组合组成,使分类鉴定复杂化,并提供有价值的古环境见解。本研究总结了pH振荡对三种不同类型物质(1)白垩纪白垩、2)中新世泥灰岩和3)晚全新世钙质软泥中死后球粒岩形态和钙质纳米浮游生物组合丰度和组成的影响。两个独立的实验运行在一个半封闭的系统设置中,以观察装配的变化。一个实验是在细菌存在的情况下进行的,相反,第二个实验抑制了细菌对所研究系统的潜在影响。在8.3-6.4范围内,CO2与H2O反应生成弱碳酸(H2CO3), pH逐渐降低,从而影响[CO 32−]。此外,随后的过度生长研究是在自发脱气过程中进行的,同时pH值逐渐上升。实验表明,球粒石腐蚀的过程和强度以及随后的过度生长积聚受到多种不同因素的影响,例如(i) pH值和相关的海水化学,(ii)沉积物的矿物组成,(iii)保护基质(粪便颗粒、孔隙、坑)内的球粒石的存在,以及(iv)细菌的存在/不存在。球粒岩被腐蚀或球粒岩过度生长的纳米浮游生物组合表明,观测到的分类群相对丰度与原始组成发生了变化。此外,极端的pH振荡可能导致增强的形态变化,使球粒岩的结构无法识别,甚至可能引起化石记录中没有球粒岩的现象。
{"title":"An experimental study on post-mortem dissolution and overgrowth processes affecting coccolith assemblages: A rapid and complex process","authors":"Katarína Holcová,&nbsp;Filip Scheiner","doi":"10.1111/gbi.12528","DOIUrl":"https://doi.org/10.1111/gbi.12528","url":null,"abstract":"<p>Coccolith dissolution together with post-mortem morphological features are immensely important phenomena that can affect assemblage compositions, complicate taxonomic identification as well as provide valuable palaeoenvironmental insights. This study summarizes the effects of pH oscillations on post-mortem coccolith morphologies and the abundances and compositions of calcareous nannoplankton assemblages in three distinct types of material—(i) Cretaceous chalk, (ii) Miocene marls, and (iii) late Holocene calcareous ooze. Two independent experimental runs within a semi-enclosed system setting were realized to observe assemblage alterations. One experiment was realized with the presence of bacteria and, in contrast, the second one inhibited their potential effect on the studied system. The pH was gradually decreased within the range of 8.3–6.4 using a reaction of CO<sub>2</sub> with H<sub>2</sub>O forming weak carbonic acid (H<sub>2</sub>CO<sub>3</sub>), thereby affecting [<math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>CO</mi>\u0000 <mn>3</mn>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mo>−</mo>\u0000 </mrow>\u0000 </msubsup>\u0000 </mrow>\u0000 </semantics></math>]. Further, a subsequent overgrowth study was carried out during spontaneous degassing accompanied by a gradual pH rise. The experiment revealed that the process and intensity of coccolith corrosion and subsequent overgrowth build-ups are influenced by a plethora of different factors such as (i) pH and associated seawater chemistry, (ii) mineral composition of the sediment, (iii) the presence of coccoliths within a protective substrate (faecal pellets, pores, pits), and (iv) the presence/absence of bacteria. Nannoplankton assemblages with corroded coccoliths or with coccoliths with overgrowth build-ups showed that the observed relative abundances of taxa experienced alteration from the original compositions. Additionally, extreme pH oscillations may result in enhanced morphological changes that make coccoliths unidentifiable structures, and might even evoke the absence of coccoliths in the fossil record.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 2","pages":"193-209"},"PeriodicalIF":3.7,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5810260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Geospatial insights into the controls of microbialite formation at Laguna Negra, Argentina 阿根廷Laguna Negra地区微生物岩形成控制的地理空间研究
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-10-02 DOI: 10.1111/gbi.12529
Scott R. Beeler, Fernando J. Gomez, Alexander S. Bradley

Microbialites provide a record of the interaction of microorganisms with their environment constituting a record of microbial life and environments through geologic time. Our capacity to interpret this record is limited by an incomplete understanding of the microbial, geochemical, and physical processes that influence microbialite formation and morphogenesis. The modern system Laguna Negra in Catamarca Province, Argentina contains microbialites in a zone of carbonate precipitation associated with physico-chemical gradients and variable microbial community structure, making it an ideal location to study how these processes interact to drive microbialite formation. In this study, we investigated the geospatial relationships between carbonate morphology, geochemistry, and microbial community at the macro- (decimeter) to mega- (meter) scale by combining high-resolution imagery with field observations. We mapped the distribution of carbonate morphologies and allochtonously-derived volcaniclasts and correlated these with sedimentary matrices and geochemical parameters. Our work shows that the macroscale distribution of different carbonate morphologies spatially correlates with microbial mat distributions—a result consistent with previous microscale observations. Specifically, microbialitic carbonate morphologies more commonly occur associated with microbial mats while abiotically derived carbonate morphologies were less commonly associated with microbial mats. Spatial variability in the size and abundance of mineralized structures was also observed, however, the processes controlling this variability remains unclear and likely represent a combination of microbial, geochemical, and physical processes. Likewise, the processes controlling the spatial distribution of microbial mats at Laguna Negra are also unresolved. Our results suggest that in addition to the physical drivers observed in other modern environments, variability in the spatial distribution of microbialites and other carbonate morphologies at the macro- to megascale can be controlled by microbial processes. Overall, this study provides insight into the interpretation of microbialite occurrence and distributions in the geologic record and highlights the utility of geospatial statistics to probe the controls of microbialite formation in other environments.

微生物岩提供了微生物与其环境相互作用的记录,构成了地质时期微生物生命和环境的记录。我们解释这一记录的能力受到对微生物、地球化学和影响微生物岩形成和形态发生的物理过程的不完全理解的限制。位于阿根廷卡塔马卡省的现代系统Laguna Negra在与物理化学梯度和可变微生物群落结构相关的碳酸盐沉淀带中含有微生物岩,使其成为研究这些过程如何相互作用以驱动微生物岩形成的理想地点。在这项研究中,我们将高分辨率图像与野外观测相结合,研究了宏观(分米)到百万(米)尺度上碳酸盐形态、地球化学和微生物群落之间的地理空间关系。我们绘制了碳酸盐岩形态分布图和异源性火山碎屑岩分布图,并将其与沉积基质和地球化学参数进行了对比。我们的工作表明,不同碳酸盐形态的宏观分布在空间上与微生物席分布相关,这一结果与之前的微观观测结果一致。具体来说,微生物碳酸盐形态更常与微生物垫相关联,而非生物来源的碳酸盐形态较少与微生物垫相关联。矿化结构的大小和丰度的空间变异性也被观察到,然而,控制这种变异性的过程仍然不清楚,可能是微生物、地球化学和物理过程的结合。同样,控制Laguna Negra微生物席空间分布的过程也未得到解决。我们的研究结果表明,除了在其他现代环境中观察到的物理驱动因素外,微生物岩和其他碳酸盐形态在宏观到大尺度上的空间分布变异性可以由微生物过程控制。总的来说,这项研究提供了对微生物岩在地质记录中的产状和分布的解释,并强调了地理空间统计在探索其他环境中微生物岩形成控制的实用性。
{"title":"Geospatial insights into the controls of microbialite formation at Laguna Negra, Argentina","authors":"Scott R. Beeler,&nbsp;Fernando J. Gomez,&nbsp;Alexander S. Bradley","doi":"10.1111/gbi.12529","DOIUrl":"https://doi.org/10.1111/gbi.12529","url":null,"abstract":"<p>Microbialites provide a record of the interaction of microorganisms with their environment constituting a record of microbial life and environments through geologic time. Our capacity to interpret this record is limited by an incomplete understanding of the microbial, geochemical, and physical processes that influence microbialite formation and morphogenesis. The modern system Laguna Negra in Catamarca Province, Argentina contains microbialites in a zone of carbonate precipitation associated with physico-chemical gradients and variable microbial community structure, making it an ideal location to study how these processes interact to drive microbialite formation. In this study, we investigated the geospatial relationships between carbonate morphology, geochemistry, and microbial community at the macro- (decimeter) to mega- (meter) scale by combining high-resolution imagery with field observations. We mapped the distribution of carbonate morphologies and allochtonously-derived volcaniclasts and correlated these with sedimentary matrices and geochemical parameters. Our work shows that the macroscale distribution of different carbonate morphologies spatially correlates with microbial mat distributions—a result consistent with previous microscale observations. Specifically, microbialitic carbonate morphologies more commonly occur associated with microbial mats while abiotically derived carbonate morphologies were less commonly associated with microbial mats. Spatial variability in the size and abundance of mineralized structures was also observed, however, the processes controlling this variability remains unclear and likely represent a combination of microbial, geochemical, and physical processes. Likewise, the processes controlling the spatial distribution of microbial mats at Laguna Negra are also unresolved. Our results suggest that in addition to the physical drivers observed in other modern environments, variability in the spatial distribution of microbialites and other carbonate morphologies at the macro- to megascale can be controlled by microbial processes. Overall, this study provides insight into the interpretation of microbialite occurrence and distributions in the geologic record and highlights the utility of geospatial statistics to probe the controls of microbialite formation in other environments.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 2","pages":"229-243"},"PeriodicalIF":3.7,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6063293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoproterozoic surface oxygenation accompanied major sedimentary manganese deposition at 1.4 and 1.1 Ga 1.4和1.1 Ga时,中元古代地表氧合作用伴随锰的主要沉积
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-09-27 DOI: 10.1111/gbi.12524
Sam C. Spinks, Erik A. Sperling, Robert L. Thorne, Felicity LaFountain, Alistair J. R. White, Joseph Armstrong, Martijn Woltering, Ian M. Tyler

Manganese (Mn) oxidation in marine environments requires oxygen (O2) or other reactive oxygen species in the water column, and widespread Mn oxide deposition in ancient sedimentary rocks has long been used as a proxy for oxidation. The oxygenation of Earth's atmosphere and oceans across the Archean-Proterozoic boundary are associated with massive Mn deposits, whereas the interval from 1.8–1.0 Ga is generally believed to be a time of low atmospheric oxygen with an apparent hiatus in sedimentary Mn deposition. Here, we report geochemical and mineralogical analyses from 1.1 Ga manganiferous marine-shelf siltstones from the Bangemall Supergroup, Western Australia, which underlie recently discovered economically significant manganese deposits. Layers bearing Mn carbonate microspheres, comparable with major global Mn deposits, reveal that intense periods of sedimentary Mn deposition occurred in the late Mesoproterozoic. Iron geochemical data suggest anoxic-ferruginous seafloor conditions at the onset of Mn deposition, followed by oxic conditions in the water column as Mn deposition persisted and eventually ceased. These data imply there was spatially widespread surface oxygenation ~1.1 Ga with sufficiently oxic conditions in shelf environments to oxidize marine Mn(II). Comparable large stratiform Mn carbonate deposits also occur in ~1.4 Ga marine siltstones hosted in underlying sedimentary units. These deposits are greater or at least commensurate in scale (tonnage) to those that followed the major oxygenation transitions from the Neoproterozoic. Such a period of sedimentary manganogenesis is inconsistent with a model of persistently low O2 throughout the entirety of the Mesoproterozoic and provides robust evidence for dynamic redox changes in the mid to late Mesoproterozoic.

海洋环境中锰(Mn)的氧化需要水柱中的氧(O2)或其他活性氧,而古代沉积岩中广泛存在的锰氧化物沉积一直被用作氧化的代表。太古宙-元古代边界的地球大气和海洋的氧合作用与大量的Mn矿床有关,而1.8-1.0 Ga的间隔通常被认为是一个低大气氧的时期,沉积Mn沉积有明显的中断。在这里,我们报告了来自澳大利亚西部Bangemall超群的1.1 Ga含锰海洋陆架粉砂岩的地球化学和矿物学分析,这些粉砂岩是最近发现的具有经济意义的锰矿床的基础。碳酸锰微球层与全球主要锰矿床相比较,表明中元古代晚期发生了强烈的沉积期。铁地球化学数据表明,在Mn沉积开始时,海底处于缺氧-含铁状态,随后随着Mn沉积持续并最终停止,水柱处于缺氧状态。这些数据表明,在陆架环境中存在广泛的表面氧化~1.1 Ga,具有足够的氧化条件来氧化海洋Mn(II)。下伏沉积单元中~1.4 Ga海相粉砂岩中也有类似的大型层状碳酸锰矿床。这些矿床在规模(吨位)上大于或至少与新元古代主要氧合转变后的那些矿床相当。这一沉积造锰期与贯穿整个中元古代的持续低氧模式不一致,为中元古代中晚期的动态氧化还原变化提供了有力的证据。
{"title":"Mesoproterozoic surface oxygenation accompanied major sedimentary manganese deposition at 1.4 and 1.1 Ga","authors":"Sam C. Spinks,&nbsp;Erik A. Sperling,&nbsp;Robert L. Thorne,&nbsp;Felicity LaFountain,&nbsp;Alistair J. R. White,&nbsp;Joseph Armstrong,&nbsp;Martijn Woltering,&nbsp;Ian M. Tyler","doi":"10.1111/gbi.12524","DOIUrl":"https://doi.org/10.1111/gbi.12524","url":null,"abstract":"<p>Manganese (Mn) oxidation in marine environments requires oxygen (O<sub>2</sub>) or other reactive oxygen species in the water column, and widespread Mn oxide deposition in ancient sedimentary rocks has long been used as a proxy for oxidation. The oxygenation of Earth's atmosphere and oceans across the Archean-Proterozoic boundary are associated with massive Mn deposits, whereas the interval from 1.8–1.0 Ga is generally believed to be a time of low atmospheric oxygen with an apparent hiatus in sedimentary Mn deposition. Here, we report geochemical and mineralogical analyses from 1.1 Ga manganiferous marine-shelf siltstones from the Bangemall Supergroup, Western Australia, which underlie recently discovered economically significant manganese deposits. Layers bearing Mn carbonate microspheres, comparable with major global Mn deposits, reveal that intense periods of sedimentary Mn deposition occurred in the late Mesoproterozoic. Iron geochemical data suggest anoxic-ferruginous seafloor conditions at the onset of Mn deposition, followed by oxic conditions in the water column as Mn deposition persisted and eventually ceased. These data imply there was spatially widespread surface oxygenation ~1.1 Ga with sufficiently oxic conditions in shelf environments to oxidize marine Mn(II). Comparable large stratiform Mn carbonate deposits also occur in ~1.4 Ga marine siltstones hosted in underlying sedimentary units. These deposits are greater or at least commensurate in scale (tonnage) to those that followed the major oxygenation transitions from the Neoproterozoic. Such a period of sedimentary manganogenesis is inconsistent with a model of persistently low O<sub>2</sub> throughout the entirety of the Mesoproterozoic and provides robust evidence for dynamic redox changes in the mid to late Mesoproterozoic.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 1","pages":"28-43"},"PeriodicalIF":3.7,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12524","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5856305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Oxygen and carbon isotope variations in Chamelea gallina shells: Environmental influences and vital effects 变色龙壳中氧和碳同位素的变化:环境影响和生命效应
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-09-26 DOI: 10.1111/gbi.12526
Arianna Mancuso, Ruth Yam, Fiorella Prada, Marco Stagioni, Stefano Goffredo, Aldo Shemesh

Stable isotopes in mollusc shells, together with variable growth rates and other geochemical properties, can register different environmental clues, including seawater temperature, salinity and primary productivity. However, the strict biological control over the construction of biominerals exerted by many calcifying organisms can constrain the use of these organisms for paleoenvironmental reconstructions. Biologically controlled calcification is responsible for the so called vital effects that cause a departure from isotopic equilibrium during shell formation, resulting in lower shell oxygen and carbon compared to the equilibrium value. We investigated shell oxygen and carbon isotopic composition of the bivalve Chamelea gallina in six sites along with a latitudinal gradient on the Adriatic Sea (NE Mediterranean Sea). Seawater δ18O and δ13CDIC varied from North to South, reflecting variations in seawater temperature, salinity, and chlorophyll concentration among sites. Shell δ18O and δ13C differed among sites and exhibited a wide range of values along with the ~400 km latitudinal gradient, away from isotopic equilibrium for both isotopes. These results hampered the utilization of this bivalve as a proxy for environmental reconstructions, in spite of C. gallina showing promise as a warm temperature proxy. Rigorous calibration studies with a precise insight of environment and shell growth are crucial prior to considering this bivalve as a reliable paleoclimatic archive.

软体动物壳中稳定的同位素与不同的生长速率和其他地球化学性质一起,可以记录不同的环境线索,包括海水温度、盐度和初级生产力。然而,许多钙化生物对生物矿物构造的严格控制限制了这些生物在古环境重建中的应用。生物控制的钙化是导致壳形成过程中偏离同位素平衡的所谓重要效应的原因,导致壳的氧和碳含量低于平衡值。研究了亚得里亚海(地中海东北部)6个不同纬度梯度的双壳类变色龙(Chamelea gallina)壳氧和碳同位素组成。海水δ18O和δ13CDIC从北向南变化,反映了不同地点海水温度、盐度和叶绿素浓度的变化。壳层δ18O和δ13C在各测点之间存在差异,沿~400 km的纬度梯度变化范围较大,偏离同位素平衡。这些结果阻碍了这种双壳类动物作为环境重建代理的利用,尽管鸡尾鳍有希望作为温暖温度的代理。严格的校准研究与环境和壳生长的精确洞察力是至关重要的,之前考虑这种双壳类作为一个可靠的古气候档案。
{"title":"Oxygen and carbon isotope variations in Chamelea gallina shells: Environmental influences and vital effects","authors":"Arianna Mancuso,&nbsp;Ruth Yam,&nbsp;Fiorella Prada,&nbsp;Marco Stagioni,&nbsp;Stefano Goffredo,&nbsp;Aldo Shemesh","doi":"10.1111/gbi.12526","DOIUrl":"https://doi.org/10.1111/gbi.12526","url":null,"abstract":"<p>Stable isotopes in mollusc shells, together with variable growth rates and other geochemical properties, can register different environmental clues, including seawater temperature, salinity and primary productivity. However, the strict biological control over the construction of biominerals exerted by many calcifying organisms can constrain the use of these organisms for paleoenvironmental reconstructions. Biologically controlled calcification is responsible for the so called vital effects that cause a departure from isotopic equilibrium during shell formation, resulting in lower shell oxygen and carbon compared to the equilibrium value. We investigated shell oxygen and carbon isotopic composition of the bivalve <i>Chamelea gallina</i> in six sites along with a latitudinal gradient on the Adriatic Sea (NE Mediterranean Sea). Seawater δ<sup>18</sup>O and δ<sup>13</sup>C<sub>DIC</sub> varied from North to South, reflecting variations in seawater temperature, salinity, and chlorophyll concentration among sites. Shell δ<sup>18</sup>O and δ<sup>13</sup>C differed among sites and exhibited a wide range of values along with the ~400 km latitudinal gradient, away from isotopic equilibrium for both isotopes. These results hampered the utilization of this bivalve as a proxy for environmental reconstructions, in spite of <i>C. gallina</i> showing promise as a warm temperature proxy. Rigorous calibration studies with a precise insight of environment and shell growth are crucial prior to considering this bivalve as a reliable paleoclimatic archive.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 1","pages":"119-132"},"PeriodicalIF":3.7,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12526","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5871427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of diverse brGDGTs by Acidobacterium Solibacter usitatus in response to temperature, pH, and O2 provides a culturing perspective on brGDGT proxies and biosynthesis 单一酸杆菌对温度、pH和O2的响应产生多种brGDGT,为brGDGT的代用物和生物合成提供了培养视角
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-09-23 DOI: 10.1111/gbi.12525
Toby A. Halamka, Jonathan H. Raberg, Jamie M. McFarlin, Adam D. Younkin, Christopher Mulligan, Xiao-Lei Liu, Sebastian H. Kopf

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that are frequently employed as paleoenvironmental proxies because of the strong empirical correlations between their relative abundances and environmental temperature and pH. Despite the ubiquity of brGDGTs in modern and paleoenvironments, the source organisms of these enigmatic compounds have remained elusive, requiring paleoenvironmental applications to rely solely on observed environmental correlations. Previous laboratory and environmental studies have suggested that the globally abundant bacterial phylum of the Acidobacteria may be an important brGDGT producer in nature. Here, we report on experiments with a cultured Acidobacterium, Solibacter usitatus, that makes a large portion of its cellular membrane (24 ± 9% across all experiments) out of a structurally diverse set of tetraethers including the common brGDGTs Ia, IIa, IIIa, Ib, and IIb. Solibacter usitatus was grown across a range of conditions including temperatures from 15 to 30°C, pH from 5.0 to 6.5, and O2 from 1% to 21%, and demonstrated pronounced shifts in the degree of brGDGT methylation across these growth conditions. The temperature response in culture was in close agreement with trends observed in published environmental datasets, supporting a physiological basis for the empirical relationship between brGDGT methylation number and temperature. However, brGDGT methylation at lower temperatures (15 and 20°C) was modulated by culture pH with higher pH systematically increasing the degree of methylation. In contrast, pH had little effect on brGDGT cyclization, supporting the hypothesis that changes in bacterial community composition may underlie the link between cyclization number and pH observed in environmental samples. Oxygen concentration likewise affected brGDGT methylation highlighting the potential for this environmental parameter to impact paleotemperature reconstruction. Low O2 culture conditions further resulted in the production of uncommon brGDGT isomers that could be indicators of O2 limitation. Finally, the production of brGTGTs (trialkyl tetraethers) in addition to the previously discovered iso-C15-based mono- and diethers in S. usitatus suggests a potential biosynthetic pathway for brGDGTs that uses homologs of the archaeal tetraether synthase (Tes) enzyme for tetraether synthesis from diethers.

支链甘油二烷基甘油四醚(brGDGTs)是一种细菌膜脂,由于其相对丰度与环境温度和ph之间存在很强的经验相关性,因此经常被用作古环境指标。尽管brGDGTs在现代和古环境中无处不在,但这些神秘化合物的来源生物仍然难以捉摸,要求古环境应用仅依赖于观察到的环境相关性。以往的实验室和环境研究表明,全球丰富的酸杆菌门可能是自然界中重要的brdgt产生菌。在这里,我们报告了一种培养的酸杆菌,孤杆菌的实验,它的细胞膜的很大一部分(在所有实验中占24±9%)是由一组结构多样的四醚组成的,包括常见的brdgts Ia, IIa, IIIa, Ib和IIb。在温度为15至30°C、pH为5.0至6.5、O2为1%至21%的条件下培养孤杆菌,并在这些生长条件下显示出brGDGT甲基化程度的显著变化。培养中的温度响应与发表的环境数据集中观察到的趋势密切一致,为brGDGT甲基化数与温度之间的经验关系提供了生理基础。然而,brGDGT在较低温度(15°C和20°C)下的甲基化受到培养pH的调节,pH越高甲基化程度越高。相比之下,pH对brGDGT环化几乎没有影响,这支持了细菌群落组成的变化可能是环境样品中观察到的环化数量与pH之间联系的基础。氧浓度同样影响brGDGT甲基化,突出了该环境参数影响古温度重建的潜力。低氧培养条件进一步导致产生罕见的brGDGT异构体,这可能是O2限制的指标。最后,除了先前发现的基于isoc15的单醚和二醚外,在S. usitatus中还产生了brGTGTs(三烷基四醚),这表明brGTGTs的潜在生物合成途径是利用古菌四醚合成酶(Tes)酶的同源物从二醚合成四醚。
{"title":"Production of diverse brGDGTs by Acidobacterium Solibacter usitatus in response to temperature, pH, and O2 provides a culturing perspective on brGDGT proxies and biosynthesis","authors":"Toby A. Halamka,&nbsp;Jonathan H. Raberg,&nbsp;Jamie M. McFarlin,&nbsp;Adam D. Younkin,&nbsp;Christopher Mulligan,&nbsp;Xiao-Lei Liu,&nbsp;Sebastian H. Kopf","doi":"10.1111/gbi.12525","DOIUrl":"https://doi.org/10.1111/gbi.12525","url":null,"abstract":"<p>Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that are frequently employed as paleoenvironmental proxies because of the strong empirical correlations between their relative abundances and environmental temperature and pH. Despite the ubiquity of brGDGTs in modern and paleoenvironments, the source organisms of these enigmatic compounds have remained elusive, requiring paleoenvironmental applications to rely solely on observed environmental correlations. Previous laboratory and environmental studies have suggested that the globally abundant bacterial phylum of the Acidobacteria may be an important brGDGT producer in nature. Here, we report on experiments with a cultured Acidobacterium, <i>Solibacter usitatus</i>, that makes a large portion of its cellular membrane (24 ± 9% across all experiments) out of a structurally diverse set of tetraethers including the common brGDGTs Ia, IIa, IIIa, Ib, and IIb. <i>Solibacter usitatus</i> was grown across a range of conditions including temperatures from 15 to 30°C, pH from 5.0 to 6.5, and O<sub>2</sub> from 1% to 21%, and demonstrated pronounced shifts in the degree of brGDGT methylation across these growth conditions. The temperature response in culture was in close agreement with trends observed in published environmental datasets, supporting a physiological basis for the empirical relationship between brGDGT methylation number and temperature. However, brGDGT methylation at lower temperatures (15 and 20°C) was modulated by culture pH with higher pH systematically increasing the degree of methylation. In contrast, pH had little effect on brGDGT cyclization, supporting the hypothesis that changes in bacterial community composition may underlie the link between cyclization number and pH observed in environmental samples. Oxygen concentration likewise affected brGDGT methylation highlighting the potential for this environmental parameter to impact paleotemperature reconstruction. Low O<sub>2</sub> culture conditions further resulted in the production of uncommon brGDGT isomers that could be indicators of O<sub>2</sub> limitation. Finally, the production of brGTGTs (trialkyl tetraethers) in addition to the previously discovered iso-C15-based mono- and diethers in <i>S. usitatus</i> suggests a potential biosynthetic pathway for brGDGTs that uses homologs of the archaeal tetraether synthase (Tes) enzyme for tetraether synthesis from diethers.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 1","pages":"102-118"},"PeriodicalIF":3.7,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12525","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6012816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Exploring the secondary mineral products generated by microbial iron respiration in Archean ocean simulations 太古宙海洋模拟中微生物铁呼吸产生的次生矿物的探索
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-09-10 DOI: 10.1111/gbi.12523
Christine Nims, Jena E. Johnson

Marine chemical sedimentary deposits known as Banded Iron Formations (BIFs) archive Archean ocean chemistry and, potentially, signs of ancient microbial life. BIFs contain a diversity of iron- and silica-rich minerals in disequilibrium, and thus many interpretations of these phases suggest they formed secondarily during early diagenetic processes. One such hypothesis posits that the early diagenetic microbial respiration of primary iron(III) oxides in BIFs resulted in the formation of other iron phases, including the iron-rich silicates, carbonates, and magnetite common in BIF assemblages. Here, we simulated this proposed pathway in laboratory incubations combining a model dissimilatory iron-reducing (DIR) bacterium, Shewanella putrefaciens CN32, and the ferric oxyhydroxide mineral ferrihydrite under conditions mimicking the predicted Archean seawater geochemistry. We assessed the impact of dissolved silica, calcium, and magnesium on the bioreduced precipitates. After harvesting the solid products from these experiments, we analyzed the reduced mineral phases using Raman spectroscopy, electron microscopy, powder x-ray diffraction, and spectrophotometric techniques to identify mineral precipitates and track the bulk distributions of Fe(II) and Fe(III). These techniques detected a diverse range of calcium carbonate morphologies and polymorphism in incubations with calcium, as well as secondary ferric oxide phases like goethite in silica-free experiments. We also identified aggregates of curling, iron- and silica-rich amorphous precipitates in all incubations amended with silica. Although ferric oxides persist even in our electron acceptor-limited incubations, our observations indicate that microbial iron reduction of ferrihydrite is a viable pathway for the formation of early iron silicate phases. This finding allows us to draw parallels between our experimental proto-silicates and the recently characterized iron silicate nanoinclusions in BIF chert deposits, suggesting that early iron silicates could possibly be signatures of iron-reducing metabolisms on early Earth.

被称为带状铁地层(BIFs)的海洋化学沉积沉积记录了太古代海洋化学,并可能是古代微生物生命的迹象。bif含有多种不平衡的富铁和富硅矿物,因此对这些阶段的许多解释表明它们是在早期成岩过程中次生形成的。其中一种假设认为,BIF中原生铁氧化物的早期成岩微生物呼吸作用导致了其他铁相的形成,包括BIF组合中常见的富铁硅酸盐、碳酸盐和磁铁矿。在这里,我们在模拟太古宙海水地球化学的条件下,结合模型异化铁还原(DIR)细菌、腐烂希瓦氏菌CN32和氧化铁矿物铁水合铁,在实验室培养中模拟了这一提出的途径。我们评估了溶解二氧化硅、钙和镁对生物还原沉淀物的影响。在从这些实验中收获固体产物后,我们使用拉曼光谱、电子显微镜、粉末x射线衍射和分光光度技术分析了还原矿相,以识别矿物沉淀并跟踪Fe(II)和Fe(III)的体积分布。这些技术在与钙孵育的过程中检测到不同范围的碳酸钙形态和多态性,以及在无硅实验中检测到二级氧化铁相,如针铁矿。我们还确定了卷曲,铁和富硅的无定形沉淀的聚集物在所有的培养与二氧化硅修正。虽然氧化铁在我们的电子受体有限的孵育中仍然存在,但我们的观察表明,水合铁的微生物铁还原是形成早期硅酸铁相的可行途径。这一发现使我们能够在我们的实验原始硅酸盐和最近在BIF燧石矿床中表征的硅酸铁纳米包裹体之间建立相似之处,这表明早期硅酸铁可能是早期地球上铁还原代谢的标志。
{"title":"Exploring the secondary mineral products generated by microbial iron respiration in Archean ocean simulations","authors":"Christine Nims,&nbsp;Jena E. Johnson","doi":"10.1111/gbi.12523","DOIUrl":"https://doi.org/10.1111/gbi.12523","url":null,"abstract":"<p>Marine chemical sedimentary deposits known as Banded Iron Formations (BIFs) archive Archean ocean chemistry and, potentially, signs of ancient microbial life. BIFs contain a diversity of iron- and silica-rich minerals in disequilibrium, and thus many interpretations of these phases suggest they formed secondarily during early diagenetic processes. One such hypothesis posits that the early diagenetic microbial respiration of primary iron(III) oxides in BIFs resulted in the formation of other iron phases, including the iron-rich silicates, carbonates, and magnetite common in BIF assemblages. Here, we simulated this proposed pathway in laboratory incubations combining a model dissimilatory iron-reducing (DIR) bacterium, <i>Shewanella putrefaciens</i> CN32, and the ferric oxyhydroxide mineral ferrihydrite under conditions mimicking the predicted Archean seawater geochemistry. We assessed the impact of dissolved silica, calcium, and magnesium on the bioreduced precipitates. After harvesting the solid products from these experiments, we analyzed the reduced mineral phases using Raman spectroscopy, electron microscopy, powder x-ray diffraction, and spectrophotometric techniques to identify mineral precipitates and track the bulk distributions of Fe(II) and Fe(III). These techniques detected a diverse range of calcium carbonate morphologies and polymorphism in incubations with calcium, as well as secondary ferric oxide phases like goethite in silica-free experiments. We also identified aggregates of curling, iron- and silica-rich amorphous precipitates in all incubations amended with silica. Although ferric oxides persist even in our electron acceptor-limited incubations, our observations indicate that microbial iron reduction of ferrihydrite is a viable pathway for the formation of early iron silicate phases. This finding allows us to draw parallels between our experimental proto-silicates and the recently characterized iron silicate nanoinclusions in BIF chert deposits, suggesting that early iron silicates could possibly be signatures of iron-reducing metabolisms on early Earth.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"20 6","pages":"743-763"},"PeriodicalIF":3.7,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6182599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Geobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1