首页 > 最新文献

Geobiology最新文献

英文 中文
Effects of RuBisCO and CO2 concentration on cyanobacterial growth and carbon isotope fractionation RuBisCO和CO2浓度对蓝藻生长和碳同位素分馏的影响
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2023-01-05 DOI: 10.1111/gbi.12543
Amanda K. Garcia, Mateusz K?dzior, Arnaud Taton, Meng Li, Jodi N. Young, Betül Ka?ar

Carbon isotope biosignatures preserved in the Precambrian geologic record are primarily interpreted to reflect ancient cyanobacterial carbon fixation catalyzed by Form I RuBisCO enzymes. The average range of isotopic biosignatures generally follows that produced by extant cyanobacteria. However, this observation is difficult to reconcile with several environmental (e.g., temperature, pH, and CO2 concentrations), molecular, and physiological factors that likely would have differed during the Precambrian and can produce fractionation variability in contemporary organisms that meets or exceeds that observed in the geologic record. To test a specific range of genetic and environmental factors that may impact ancient carbon isotope biosignatures, we engineered a mutant strain of the model cyanobacterium Synechococcus elongatus PCC 7942 that overexpresses RuBisCO across varying atmospheric CO2 concentrations. We hypothesized that changes in RuBisCO expression would impact the net rates of intracellular CO2 fixation versus CO2 supply, and thus whole-cell carbon isotope discrimination. In particular, we investigated the impacts of RuBisCO overexpression under changing CO2 concentrations on both carbon isotope biosignatures and cyanobacterial physiology, including cell growth and oxygen evolution rates. We found that an increased pool of active RuBisCO does not significantly affect the 13C/12C isotopic discrimination (εp) at all tested CO2 concentrations, yielding εp of ≈ 23‰ for both wild-type and mutant strains at elevated CO2. We therefore suggest that expected variation in cyanobacterial RuBisCO expression patterns should not confound carbon isotope biosignature interpretation. A deeper understanding of environmental, evolutionary, and intracellular factors that impact cyanobacterial physiology and isotope discrimination is crucial for reconciling microbially driven carbon biosignatures with those preserved in the geologic record.

前寒武纪地质记录中保存的碳同位素生物特征主要反映了由I型RuBisCO酶催化的古蓝藻固碳。同位素生物特征的平均范围一般遵循由现存蓝藻产生的。然而,这一观测结果很难与环境因素(如温度、pH值和二氧化碳浓度)、分子和生理因素相一致,这些因素可能在前寒武纪期间存在差异,并可能在当代生物中产生符合或超过地质记录中观察到的分异。为了测试可能影响古代碳同位素生物特征的特定遗传和环境因素,我们设计了一种模型蓝藻长聚球菌PCC 7942的突变菌株,该菌株在不同的大气CO2浓度下过表达RuBisCO。我们假设RuBisCO表达的变化会影响细胞内二氧化碳固定相对于二氧化碳供应的净速率,从而影响全细胞碳同位素识别。我们特别研究了二氧化碳浓度变化下RuBisCO过表达对碳同位素生物特征和蓝藻生理的影响,包括细胞生长和氧进化速率。我们发现,在所有测试的CO2浓度下,活性RuBisCO池的增加对13C/12C同位素辨别(εp)没有显著影响,在高CO2浓度下,野生型和突变株的εp均为≈23‰。因此,我们认为蓝藻RuBisCO表达模式的预期变化不应混淆碳同位素生物特征解释。更深入地了解影响蓝藻生理和同位素区分的环境、进化和细胞内因素对于调和微生物驱动的碳生物特征与地质记录中保存的碳生物特征至关重要。
{"title":"Effects of RuBisCO and CO2 concentration on cyanobacterial growth and carbon isotope fractionation","authors":"Amanda K. Garcia,&nbsp;Mateusz K?dzior,&nbsp;Arnaud Taton,&nbsp;Meng Li,&nbsp;Jodi N. Young,&nbsp;Betül Ka?ar","doi":"10.1111/gbi.12543","DOIUrl":"https://doi.org/10.1111/gbi.12543","url":null,"abstract":"<p>Carbon isotope biosignatures preserved in the Precambrian geologic record are primarily interpreted to reflect ancient cyanobacterial carbon fixation catalyzed by Form I RuBisCO enzymes. The average range of isotopic biosignatures generally follows that produced by extant cyanobacteria. However, this observation is difficult to reconcile with several environmental (e.g., temperature, pH, and CO<sub>2</sub> concentrations), molecular, and physiological factors that likely would have differed during the Precambrian and can produce fractionation variability in contemporary organisms that meets or exceeds that observed in the geologic record. To test a specific range of genetic and environmental factors that may impact ancient carbon isotope biosignatures, we engineered a mutant strain of the model cyanobacterium <i>Synechococcus elongatus</i> PCC 7942 that overexpresses RuBisCO across varying atmospheric CO<sub>2</sub> concentrations. We hypothesized that changes in RuBisCO expression would impact the net rates of intracellular CO<sub>2</sub> fixation versus CO<sub>2</sub> supply, and thus whole-cell carbon isotope discrimination. In particular, we investigated the impacts of RuBisCO overexpression under changing CO<sub>2</sub> concentrations on both carbon isotope biosignatures and cyanobacterial physiology, including cell growth and oxygen evolution rates. We found that an increased pool of active RuBisCO does not significantly affect the <sup>13</sup>C/<sup>12</sup>C isotopic discrimination (ε<sub>p</sub>) at all tested CO<sub>2</sub> concentrations, yielding ε<sub>p</sub> of ≈ 23‰ for both wild-type and mutant strains at elevated CO<sub>2</sub>. We therefore suggest that expected variation in cyanobacterial RuBisCO expression patterns should not confound carbon isotope biosignature interpretation. A deeper understanding of environmental, evolutionary, and intracellular factors that impact cyanobacterial physiology and isotope discrimination is crucial for reconciling microbially driven carbon biosignatures with those preserved in the geologic record.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 3","pages":"390-403"},"PeriodicalIF":3.7,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12543","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6134584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Multiple sulphur isotope record of Paleoarchean sedimentary rocks across the Onverwacht Group, Barberton Greenstone Belt, South Africa 南非Barberton绿岩带Onverwacht群古太古代沉积岩的多重硫同位素记录
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-12-26 DOI: 10.1111/gbi.12542
Eugene G. Grosch, Nicola McLoughlin, Martin Whitehouse

This study presents multiple sulphur isotope (32S, 33S, 34S, 36S) data on pyrites from silicified volcano-sedimentary rocks of the Paleoarchean Onverwacht Group of the Barberton greenstone belt, South Africa. These rocks include seafloor cherts and felsic conglomerates that were deposited in shallow marine environments preserving a record of atmospheric and biogeochemical conditions on the early Earth. A strong variation in mass independent sulphur isotope fractionation (MIF-S) anomalies is found in the cherts, with Δ33S ranging between −0.26‰ and 3.42‰. We explore possible depositional and preservational factors that could explain some of this variation seen in MIF-S. Evidence for microbial activity is recorded by the c. 3.45 Ga Hooggenoeg Formation Chert (HC4) preserving a contribution of microbial sulphate reduction (−Δ33S and –δ34S), and a c. 3.33 Ga Kromberg Formation Chert (KC5) recording a possible contribution of microbial elemental sulphur disproportionation (+Δ33S and –δ34S). Pyrites from a rhyo-dacitic conglomerate of the Noisy Formation do not plot along a previously proposed global Felsic Volcanic Array, and this excludes short-lived pulses of intense felsic volcanic gas emissions as the dominant control on Archean MIF-S. Rather, we suggest that the MIF-S signals measured reflect dilution during marine deposition, early diagenetic modification, and mixing with volcanic/hydrothermal S sources. Given the expanded stratigraphic interval (3.47–3.22 Ga) now sampled from across the Barberton Supergroup, we conclude that large MIF-S exceeding >4‰ is atypical of Paleoarchean near-surface environments on the Kaapvaal Craton.

本文研究了南非巴伯顿绿岩带古太古代Onverwacht群硅化火山沉积岩中黄铁矿的多重硫同位素(32S、33S、34S、36S)数据。这些岩石包括海底燧石和长英质砾岩,它们沉积在浅海环境中,保存了早期地球大气和生物地球化学条件的记录。质无关硫同位素分异(MIF-S)异常变化较大,Δ33S变化范围在- 0.26‰~ 3.42‰之间。我们探索了可能的沉积和保存因素,可以解释在MIF-S中看到的一些变化。c. 3.45 Ga hooggeneg组燧石(HC4)记录了微生物活动的证据,保存了微生物硫酸盐还原的贡献(−Δ33S和-δ34S), c. 3.33 Ga Kromberg组燧石(KC5)记录了微生物元素硫的可能贡献(+Δ33S和-δ34S)。来自嘈杂组流纹-英安岩砾岩的黄铁矿不沿先前提出的全球长英质火山阵排列,这排除了长英质火山气体排放的短暂脉冲作为太古宙MIF-S的主要控制因素。相反,我们认为测量到的MIF-S信号反映了海相沉积的稀释、早期成岩改造以及与火山/热液S源的混合。考虑到巴伯顿超群的扩展层间距(3.47 ~ 3.22 Ga),我们认为超过>4‰的大MIF-S是非典型的古太古代卡普瓦尔克拉通近地表环境。
{"title":"Multiple sulphur isotope record of Paleoarchean sedimentary rocks across the Onverwacht Group, Barberton Greenstone Belt, South Africa","authors":"Eugene G. Grosch,&nbsp;Nicola McLoughlin,&nbsp;Martin Whitehouse","doi":"10.1111/gbi.12542","DOIUrl":"https://doi.org/10.1111/gbi.12542","url":null,"abstract":"<p>This study presents multiple sulphur isotope (<sup>32</sup>S, <sup>33</sup>S, <sup>34</sup>S, <sup>36</sup>S) data on pyrites from silicified volcano-sedimentary rocks of the Paleoarchean Onverwacht Group of the Barberton greenstone belt, South Africa. These rocks include seafloor cherts and felsic conglomerates that were deposited in shallow marine environments preserving a record of atmospheric and biogeochemical conditions on the early Earth. A strong variation in mass independent sulphur isotope fractionation (MIF-S) anomalies is found in the cherts, with Δ<sup>33</sup>S ranging between −0.26‰ and 3.42‰. We explore possible depositional and preservational factors that could explain some of this variation seen in MIF-S. Evidence for microbial activity is recorded by the c. 3.45 Ga Hooggenoeg Formation Chert (HC4) preserving a contribution of microbial sulphate reduction (−Δ<sup>33</sup>S and –δ<sup>34</sup>S), and a c. 3.33 Ga Kromberg Formation Chert (KC5) recording a possible contribution of microbial elemental sulphur disproportionation (+Δ<sup>33</sup>S and –δ<sup>34</sup>S). Pyrites from a rhyo-dacitic conglomerate of the Noisy Formation do not plot along a previously proposed global Felsic Volcanic Array, and this excludes short-lived pulses of intense felsic volcanic gas emissions as the dominant control on Archean MIF-S. Rather, we suggest that the MIF-S signals measured reflect dilution during marine deposition, early diagenetic modification, and mixing with volcanic/hydrothermal S sources. Given the expanded stratigraphic interval (3.47–3.22 Ga) now sampled from across the Barberton Supergroup, we conclude that large MIF-S exceeding &gt;4‰ is atypical of Paleoarchean near-surface environments on the Kaapvaal Craton.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 2","pages":"153-167"},"PeriodicalIF":3.7,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6050684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon pump dynamics and limited organic carbon burial during OAE1a 碳泵动力学与OAE1a期有限有机碳埋藏
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-12-25 DOI: 10.1111/gbi.12538
Kohen W. Bauer, N. Ryan McKenzie, Cinzia Bottini, Elisabetta Erba, Sean A. Crowe

Oceanic Anoxic Events (OAEs) are conspicuous intervals in the geologic record that are associated with the deposition of organic carbon (OC)-rich marine sediment, linked to extreme biogeochemical perturbations, and characterized by widespread ocean deoxygenation. Mechanistic links between the marine biological carbon pump (BCP), redox conditions, and organic carbon burial during OAEs, however, remain poorly constrained. In this work we reconstructed the BCP in the western Tethys Ocean across OAE1a (~120 Mya) using sediment geochemistry and OC mass accumulation rates (OCAcc). We find that OCAcc were between 0.006 and 3.3 gC m−2 yr−1, with a mean value of 0.79 ± 0.78 SD gC m−2 yr−1—these rates are low and comparable to oligotrophic regions in the modern oceans. This challenges longstanding assumptions that oceanic anoxic events are intervals of strongly elevated organic carbon burial. Numerical modelling of the BCP, furthermore, reveals that such low OC fluxes are only possible with either or both low to moderate OC export fluxes from ocean surface waters, with rates similar to oligotrophic (nutrient-poor, <30 gC m−2 yr−1) and mesotrophic (moderate-nutrients, ~50–100 gC m−2 yr−1) regions in the modern ocean, and stronger than modern vertical OC attenuation. The low OC fluxes thus reflect a relatively weak BCP. Low to moderate productivity is further supported by palaeoecological and geochemical evidence and was likely maintained through nutrient limitation that developed in response to the burial and sequestration of phosphorus in association with iron minerals under ferruginous (anoxic iron-rich) ocean conditions. Without persistently high productivity, ocean deoxygenation during OAE1a was more likely driven by other physicochemical and biological factors including ocean warming, changes in marine primary producer community composition, and fundamental shifts in the efficiency of the BCP with associated effects and feedbacks.

海洋缺氧事件(oae)是地质记录中与富含有机碳(OC)的海洋沉积物沉积有关的显著间隔,与极端的生物地球化学扰动有关,并以广泛的海洋脱氧为特征。然而,在oae过程中,海洋生物碳泵(BCP)、氧化还原条件和有机碳埋藏之间的机制联系仍不清楚。本文利用沉积物地球化学和OC质量累积率(OCAcc)重建了特提斯洋西部OAE1a (~120 Mya)的BCP。OCAcc在0.006 ~ 3.3 gC m−2 yr−1之间,平均值为0.79±0.78 SD gC m−2 yr−1,其速率较低,可与现代海洋的少营养区相比较。这挑战了长期以来的假设,即海洋缺氧事件是有机碳埋藏强烈升高的间隔。此外,BCP的数值模拟表明,这种低OC通量只有在海洋表层水的低至中等OC输出通量中才有可能,其速率与现代海洋的贫营养(营养不良,<30 gC m−2 yr−1)和中营养(中等营养,~ 50-100 gC m−2 yr−1)区域相似,并且强于现代垂直OC衰减。因此,低OC通量反映了相对较弱的BCP。古生态和地球化学证据进一步支持了低至中等的生产力,并可能通过在含铁(缺氧富铁)海洋条件下与铁矿物相关的磷的埋藏和封存而形成的营养限制来维持。在没有持续高生产力的情况下,OAE1a期间的海洋脱氧更可能是由其他物理化学和生物因素驱动的,包括海洋变暖、海洋初级生产者群落组成的变化以及BCP效率的根本变化及其相关效应和反馈。
{"title":"Carbon pump dynamics and limited organic carbon burial during OAE1a","authors":"Kohen W. Bauer,&nbsp;N. Ryan McKenzie,&nbsp;Cinzia Bottini,&nbsp;Elisabetta Erba,&nbsp;Sean A. Crowe","doi":"10.1111/gbi.12538","DOIUrl":"https://doi.org/10.1111/gbi.12538","url":null,"abstract":"<p>Oceanic Anoxic Events (OAEs) are conspicuous intervals in the geologic record that are associated with the deposition of organic carbon (OC)-rich marine sediment, linked to extreme biogeochemical perturbations, and characterized by widespread ocean deoxygenation. Mechanistic links between the marine biological carbon pump (BCP), redox conditions, and organic carbon burial during OAEs, however, remain poorly constrained. In this work we reconstructed the BCP in the western Tethys Ocean across OAE1a (~120 Mya) using sediment geochemistry and OC mass accumulation rates (<i>OC</i><sub><i>Acc</i></sub>). We find that <i>OC</i><sub><i>Acc</i></sub> were between 0.006 and 3.3 gC m<sup>−2</sup> yr<sup>−1</sup>, with a mean value of 0.79 ± 0.78 SD gC m<sup>−2</sup> yr<sup>−1</sup>—these rates are low and comparable to oligotrophic regions in the modern oceans. This challenges longstanding assumptions that oceanic anoxic events are intervals of strongly elevated organic carbon burial. Numerical modelling of the BCP, furthermore, reveals that such low OC fluxes are only possible with either or both low to moderate OC export fluxes from ocean surface waters, with rates similar to oligotrophic (nutrient-poor, &lt;30 gC m<sup>−2</sup> yr<sup>−1</sup>) and mesotrophic (moderate-nutrients, ~50–100 gC m<sup>−2</sup> yr<sup>−1</sup>) regions in the modern ocean, and stronger than modern vertical OC attenuation. The low OC fluxes thus reflect a relatively weak BCP. Low to moderate productivity is further supported by palaeoecological and geochemical evidence and was likely maintained through nutrient limitation that developed in response to the burial and sequestration of phosphorus in association with iron minerals under ferruginous (anoxic iron-rich) ocean conditions. Without persistently high productivity, ocean deoxygenation during OAE1a was more likely driven by other physicochemical and biological factors including ocean warming, changes in marine primary producer community composition, and fundamental shifts in the efficiency of the BCP with associated effects and feedbacks.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 3","pages":"341-354"},"PeriodicalIF":3.7,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6035498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nickel and zinc micronutrient availability in Phanerozoic oceans 显生宙海洋中微量元素镍和锌的有效性
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-12-19 DOI: 10.1111/gbi.12541
Tim C. Sweere, Alexander J. Dickson, Derek Vance

Nickel and zinc are both bio-essential micronutrients with a nutrient-like distribution in the modern ocean, but show key differences in their biological functions and geochemical behavior. Eukaryotic phytoplankton, and especially diatoms, have high Zn quotas, whereas cyanobacteria generally require relatively more Ni. Secular changes in the relative availability of these micronutrients may, therefore, have affected the evolution and diversification of phytoplankton. In this study, we use a large compilation of Ni and Zn concentration data for Phanerozoic sediments to evaluate long-term changes in Ni and Zn availability and possible links to phytoplankton evolution. Modern data suggest that organic-rich sediments capture the dissolved deep ocean Ni/Zn ratio, regardless of local depositional conditions. We use this observation to constrain Ni/Zn ratios for past oceans, based on data from the sedimentary record. This record highlights long-term changes in the relative availability of these micronutrients that can be linked to the (bio)geochemical conditions on the Earth's surface. Early Palaeozoic oceans were likely relatively Ni rich, with sedimentary Ni/Zn ratios for this interval mostly being around ~1 or higher. A comparison with Phanerozoic strontium-, carbon-, and sulfur-isotopic records suggests that the late Palaeozoic decrease in sulfidic conditions and increase in hydrothermal inputs and organic-carbon burial rates caused a shift towards more Zn-rich conditions. Mesozoic and Cenozoic sediments show relatively Zn-rich oceans for these time intervals, with sedimentary Ni/Zn ratios mostly being around ~1 or lower. These observations imply that the diversification of the dominant groups of modern eukaryotic phytoplankton occurred in relatively Zn-rich oceans and that these organisms still carry this signature in their stoichiometries. However, the Phanerozoic transition to a more Zn-rich ocean pre-dates the origin and diversification of modern eukaryotes and, therefore, this transition was likely not the main direct cause for eukaryotic diversification in the Mesozoic and Cenozoic Eras.

镍和锌都是生物必需微量营养素,在现代海洋中呈营养物状分布,但在生物功能和地球化学行为上存在关键差异。真核浮游植物,尤其是硅藻,具有较高的锌配额,而蓝藻通常需要相对较多的镍。因此,这些微量营养素相对供应的长期变化可能影响了浮游植物的进化和多样化。在这项研究中,我们利用大量显生宙沉积物的Ni和Zn浓度数据来评估Ni和Zn有效性的长期变化及其与浮游植物进化的可能联系。现代数据表明,无论当地沉积条件如何,富含有机物的沉积物都能捕获溶解的深海Ni/Zn比。根据沉积记录的数据,我们利用这一观测结果来限制过去海洋的Ni/Zn比率。这一记录突出了这些微量营养素相对可用性的长期变化,这些微量营养素可能与地球表面的(生物)地球化学条件有关。早古生代海洋可能相对富镍,沉积Ni/Zn比值大多在~1左右或更高。与显生宙锶、碳和硫同位素记录的比较表明,晚古生代硫化物条件的减少和热液输入和有机碳埋藏率的增加导致了向富锌条件的转变。在这些时间间隔内,中新生代沉积物显示出相对富锌的海洋,沉积Ni/Zn比值大多在~1左右或更低。这些观察结果表明,现代真核浮游植物的优势类群的多样化发生在相对富锌的海洋中,并且这些生物在其化学计量学中仍然具有这一特征。然而,显生宙向富锌海洋的转变早于现代真核生物的起源和多样化,因此,这种转变可能不是中生代和新生代真核生物多样化的主要直接原因。
{"title":"Nickel and zinc micronutrient availability in Phanerozoic oceans","authors":"Tim C. Sweere,&nbsp;Alexander J. Dickson,&nbsp;Derek Vance","doi":"10.1111/gbi.12541","DOIUrl":"https://doi.org/10.1111/gbi.12541","url":null,"abstract":"<p>Nickel and zinc are both bio-essential micronutrients with a nutrient-like distribution in the modern ocean, but show key differences in their biological functions and geochemical behavior. Eukaryotic phytoplankton, and especially diatoms, have high Zn quotas, whereas cyanobacteria generally require relatively more Ni. Secular changes in the relative availability of these micronutrients may, therefore, have affected the evolution and diversification of phytoplankton. In this study, we use a large compilation of Ni and Zn concentration data for Phanerozoic sediments to evaluate long-term changes in Ni and Zn availability and possible links to phytoplankton evolution. Modern data suggest that organic-rich sediments capture the dissolved deep ocean Ni/Zn ratio, regardless of local depositional conditions. We use this observation to constrain Ni/Zn ratios for past oceans, based on data from the sedimentary record. This record highlights long-term changes in the relative availability of these micronutrients that can be linked to the (bio)geochemical conditions on the Earth's surface. Early Palaeozoic oceans were likely relatively Ni rich, with sedimentary Ni/Zn ratios for this interval mostly being around ~1 or higher. A comparison with Phanerozoic strontium-, carbon-, and sulfur-isotopic records suggests that the late Palaeozoic decrease in sulfidic conditions and increase in hydrothermal inputs and organic-carbon burial rates caused a shift towards more Zn-rich conditions. Mesozoic and Cenozoic sediments show relatively Zn-rich oceans for these time intervals, with sedimentary Ni/Zn ratios mostly being around ~1 or lower. These observations imply that the diversification of the dominant groups of modern eukaryotic phytoplankton occurred in relatively Zn-rich oceans and that these organisms still carry this signature in their stoichiometries. However, the Phanerozoic transition to a more Zn-rich ocean pre-dates the origin and diversification of modern eukaryotes and, therefore, this transition was likely not the main direct cause for eukaryotic diversification in the Mesozoic and Cenozoic Eras.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 3","pages":"310-322"},"PeriodicalIF":3.7,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12541","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5724619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The diagenetic fate of collagen as revealed by analytical pyrolysis of fossil fish scales from deep time 深层鱼鳞分析热解揭示了胶原蛋白的成岩命运
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-12-18 DOI: 10.1111/gbi.12537
Raman Umamaheswaran, Suryendu Dutta, Guntupalli V. R. Prasad, Mahasin Ali Khan, Sumit Kumar, Subir Bera, Rajeev Patnaik

The mechanism of protein degradation has remained a topic of debate (specifically concerning their preservation in deep time), which has recently been invigorated due to multiple published reports of preservation ranging from Miocene to the Triassic that potentially challenge the convention that protein preservation beyond the Cenozoic is extremely uncommon or is expected to be absent altogether, and thus have attracted skepticism. In this paper, we analyze fossil fish scales from the Cretaceous, Jurassic, and Triassic using comprehensive pyrolysis gas chromatography coupled with time-of-flight mass spectrometry and compare the pyrolytic products so obtained with a well-preserved fish scale from Late Pliocene, in an attempt to better understand the effects of diagenesis on protein degradation at the molecular level through deep time. We find that the Pliocene fish scale displays a large number of N-bearing pyrolytic products, including abundant substituted cyclic 2,5-diketopiperazines (2,5-DKPs) which are diagnostic products of peptide and amino acid pyrolysis. We identify N-bearing compounds in the Mesozoic fish scales—however, among the 2,5-DKPs that were identified in the Pliocene scale, only diketodipyrrole (or cyclo (Pyr-Pyr)) is present in the Mesozoic scales. We discuss the implications of N-bearing pyrolytic products with emphasis on 2,5-DKPs in geological samples and conclude that the discrepancy in abundance and variety of N-bearing products between Pliocene and Mesozoic scales indicates that the protein component in the latter has been extensively diagenetically altered, while a suite of DKPs such as in the former would imply stronger evidence to indicate preservation of protein. We conclude that analytical pyrolysis is an effective tool for detecting preservation of intact proteins, as well as for providing insights into their degradation mechanisms, and can potentially be utilized to assign proteinaceous origin to a fossil sample of unknown affinity.

蛋白质降解的机制一直是一个争论的话题(特别是关于它们在深时间的保存),最近由于从中新世到三叠纪的多个保存报告的发表而活跃起来,这些报告潜在地挑战了传统的观点,即蛋白质在新生代之后的保存非常罕见或预计完全不存在,因此引起了怀疑。本文采用综合热解气相色谱-飞行时间质谱技术对白垩纪、侏罗纪和三叠纪鱼鳞化石进行了分析,并将热解产物与保存完好的上新世鱼鳞化石进行了比较,以期在分子水平上深入了解成岩作用对蛋白质降解的影响。研究发现,上新世鱼鳞中存在大量含氮热解产物,其中含有丰富的取代环2,5-二酮哌嗪(2,5- dkps),是多肽和氨基酸热解的诊断产物。我们在中生代鱼鳞中发现了含氮化合物,然而,在上新世鱼鳞中发现的2,5- dkps中,只有双酮二吡咯(或环吡咯(Pyr-Pyr))存在于中生代鱼鳞中。我们讨论了含氮热解产物的意义,重点讨论了地质样品中的2,5-DKPs,并得出结论,上新世和中生代尺度的含氮产物丰度和种类的差异表明后者的蛋白质成分已经发生了广泛的成岩改变,而前者的一套DKPs将提供更有力的证据表明蛋白质保存。我们的结论是,分析热解是一种有效的工具,用于检测完整蛋白质的保存,以及提供对其降解机制的见解,并有可能用于确定未知亲和的化石样品的蛋白质来源。
{"title":"The diagenetic fate of collagen as revealed by analytical pyrolysis of fossil fish scales from deep time","authors":"Raman Umamaheswaran,&nbsp;Suryendu Dutta,&nbsp;Guntupalli V. R. Prasad,&nbsp;Mahasin Ali Khan,&nbsp;Sumit Kumar,&nbsp;Subir Bera,&nbsp;Rajeev Patnaik","doi":"10.1111/gbi.12537","DOIUrl":"https://doi.org/10.1111/gbi.12537","url":null,"abstract":"<p>The mechanism of protein degradation has remained a topic of debate (specifically concerning their preservation in deep time), which has recently been invigorated due to multiple published reports of preservation ranging from Miocene to the Triassic that potentially challenge the convention that protein preservation beyond the Cenozoic is extremely uncommon or is expected to be absent altogether, and thus have attracted skepticism. In this paper, we analyze fossil fish scales from the Cretaceous, Jurassic, and Triassic using comprehensive pyrolysis gas chromatography coupled with time-of-flight mass spectrometry and compare the pyrolytic products so obtained with a well-preserved fish scale from Late Pliocene, in an attempt to better understand the effects of diagenesis on protein degradation at the molecular level through deep time. We find that the Pliocene fish scale displays a large number of N-bearing pyrolytic products, including abundant substituted cyclic 2,5-diketopiperazines (2,5-DKPs) which are diagnostic products of peptide and amino acid pyrolysis. We identify N-bearing compounds in the Mesozoic fish scales—however, among the 2,5-DKPs that were identified in the Pliocene scale, only diketodipyrrole (or cyclo (Pyr-Pyr)) is present in the Mesozoic scales. We discuss the implications of N-bearing pyrolytic products with emphasis on 2,5-DKPs in geological samples and conclude that the discrepancy in abundance and variety of N-bearing products between Pliocene and Mesozoic scales indicates that the protein component in the latter has been extensively diagenetically altered, while a suite of DKPs such as in the former would imply stronger evidence to indicate preservation of protein. We conclude that analytical pyrolysis is an effective tool for detecting preservation of intact proteins, as well as for providing insights into their degradation mechanisms, and can potentially be utilized to assign proteinaceous origin to a fossil sample of unknown affinity.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 3","pages":"378-389"},"PeriodicalIF":3.7,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5711031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Microbial biosignatures in ancient deep-sea hydrothermal sulfides 古深海热液硫化物的微生物特征
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-12-16 DOI: 10.1111/gbi.12539
Eric Alexander Runge, Muammar Mansor, Andreas Kappler, Jan-Peter Duda

Deep-sea hydrothermal systems provide ideal conditions for prebiotic reactions and ancient metabolic pathways and, therefore, might have played a pivotal role in the emergence of life. To understand this role better, it is paramount to examine fundamental interactions between hydrothermal processes, non-living matter, and microbial life in deep time. However, the distribution and diversity of microbial communities in ancient deep-sea hydrothermal systems are still poorly constrained, so evolutionary, and ecological relationships remain unclear. One important reason is an insufficient understanding of the formation of diagnostic microbial biosignatures in such settings and their preservation through geological time. This contribution centers around microbial biosignatures in Precambrian deep-sea hydrothermal sulfide deposits. Intending to provide a valuable resource for scientists from across the natural sciences whose research is concerned with the origins of life, we first introduce different types of biosignatures that can be preserved over geological timescales (rock fabrics and textures, microfossils, mineral precipitates, carbonaceous matter, trace metal, and isotope geochemical signatures). We then review selected reports of biosignatures from Precambrian deep-sea hydrothermal sulfide deposits and discuss their geobiological significance. Our survey highlights that Precambrian hydrothermal sulfide deposits potentially encode valuable information on environmental conditions, the presence and nature of microbial life, and the complex interactions between fluids, micro-organisms, and minerals. It further emphasizes that the geobiological interpretation of these records is challenging and requires the concerted application of analytical and experimental methods from various fields, including geology, mineralogy, geochemistry, and microbiology. Well-orchestrated multidisciplinary studies allow us to understand the formation and preservation of microbial biosignatures in deep-sea hydrothermal sulfide systems and thus help unravel the fundamental geobiology of ancient settings. This, in turn, is critical for reconstructing life's emergence and early evolution on Earth and the search for life elsewhere in the universe.

深海热液系统为益生元反应和古老的代谢途径提供了理想的条件,因此,可能在生命的出现中发挥了关键作用。为了更好地理解这一作用,研究深海热液过程、非生命物质和微生物生命之间的基本相互作用至关重要。然而,古代深海热液系统中微生物群落的分布和多样性仍然知之甚少,因此进化和生态关系仍然不清楚。一个重要的原因是对这种环境下诊断性微生物生物特征的形成及其在地质时期的保存认识不足。这一贡献集中在前寒武纪深海热液硫化物矿床的微生物生物特征上。为了给研究生命起源的自然科学领域的科学家提供有价值的资源,我们首先介绍了可以在地质时间尺度上保存的不同类型的生物特征(岩石结构和纹理、微化石、矿物沉淀、碳质物质、微量金属和同位素地球化学特征)。然后回顾了前寒武纪深海热液硫化物矿床的生物特征,并讨论了它们的地球生物学意义。我们的调查强调,前寒武纪热液硫化物矿床可能编码有价值的信息,包括环境条件、微生物生命的存在和性质,以及流体、微生物和矿物之间复杂的相互作用。它进一步强调,这些记录的地质生物学解释是具有挑战性的,需要协调应用来自各个领域的分析和实验方法,包括地质学,矿物学,地球化学和微生物学。精心安排的多学科研究使我们能够了解深海热液硫化物系统中微生物生物特征的形成和保存,从而有助于解开古代环境的基本地球生物学。反过来,这对于重建地球上生命的出现和早期进化以及寻找宇宙中其他地方的生命至关重要。
{"title":"Microbial biosignatures in ancient deep-sea hydrothermal sulfides","authors":"Eric Alexander Runge,&nbsp;Muammar Mansor,&nbsp;Andreas Kappler,&nbsp;Jan-Peter Duda","doi":"10.1111/gbi.12539","DOIUrl":"https://doi.org/10.1111/gbi.12539","url":null,"abstract":"<p>Deep-sea hydrothermal systems provide ideal conditions for prebiotic reactions and ancient metabolic pathways and, therefore, might have played a pivotal role in the emergence of life. To understand this role better, it is paramount to examine fundamental interactions between hydrothermal processes, non-living matter, and microbial life in deep time. However, the distribution and diversity of microbial communities in ancient deep-sea hydrothermal systems are still poorly constrained, so evolutionary, and ecological relationships remain unclear. One important reason is an insufficient understanding of the formation of diagnostic microbial biosignatures in such settings and their preservation through geological time. This contribution centers around microbial biosignatures in Precambrian deep-sea hydrothermal sulfide deposits. Intending to provide a valuable resource for scientists from across the natural sciences whose research is concerned with the origins of life, we first introduce different types of biosignatures that can be preserved over geological timescales (rock fabrics and textures, microfossils, mineral precipitates, carbonaceous matter, trace metal, and isotope geochemical signatures). We then review selected reports of biosignatures from Precambrian deep-sea hydrothermal sulfide deposits and discuss their geobiological significance. Our survey highlights that Precambrian hydrothermal sulfide deposits potentially encode valuable information on environmental conditions, the presence and nature of microbial life, and the complex interactions between fluids, micro-organisms, and minerals. It further emphasizes that the geobiological interpretation of these records is challenging and requires the concerted application of analytical and experimental methods from various fields, including geology, mineralogy, geochemistry, and microbiology. Well-orchestrated multidisciplinary studies allow us to understand the formation and preservation of microbial biosignatures in deep-sea hydrothermal sulfide systems and thus help unravel the fundamental geobiology of ancient settings. This, in turn, is critical for reconstructing life's emergence and early evolution on Earth and the search for life elsewhere in the universe.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 3","pages":"355-377"},"PeriodicalIF":3.7,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12539","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5682140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A sedimentary record of the evolution of the global marine phosphorus cycle 全球海洋磷循环演化的沉积记录
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-12-05 DOI: 10.1111/gbi.12536
Noah J. Planavsky, Dan Asael, Alan D. Rooney, Leslie J. Robbins, Benjamin C. Gill, Carol M. Dehler, Devon B. Cole, Susannah M. Porter, Gordon D. Love, Kurt O. Konhauser, Christopher T. Reinhard

Phosphorus (P) is typically considered to be the ultimate limiting nutrient for Earth's biosphere on geologic timescales. As P is monoisotopic, its sedimentary enrichment can provide some insights into how the marine P cycle has changed through time. A previous compilation of shale P enrichments argued for a significant change in P cycling during the Ediacaran Period (635–541 Ma). Here, using an updated P compilation—with more than twice the number of samples—we bolster the case that there was a significant transition in P cycling moving from the Precambrian into the Phanerozoic. However, our analysis suggests this state change may have occurred earlier than previously suggested. Specifically in the updated database, there is evidence for a transition ~35 million years before the onset of the Sturtian Snowball Earth glaciation in the Visingsö Group, potentially divorcing the climatic upheavals of the Neoproterozoic from changes in the Earth's P cycle. We attribute the transition in Earth's sedimentary P record to the onset of a more modern-like Earth system state characterized by less reducing marine conditions, higher marine P concentrations, and a greater predominance of eukaryotic organisms encompassing both primary producers and consumers. This view is consistent with organic biomarker evidence for a significant eukaryotic contribution to the preserved sedimentary organic matter in this succession and other contemporaneous Tonian marine sedimentary rocks. However, we stress that, even with an expanded dataset, we are likely far from pinpointing exactly when this transition occurred or whether Earth's history is characterized by a single or multiple transitions in the P cycle.

磷(P)通常被认为是地球生物圈在地质时间尺度上的最终限制养分。由于磷是单同位素,其沉积富集可以提供一些关于海洋磷循环如何随时间变化的见解。先前的页岩P富集汇编认为,在埃迪卡拉纪(635-541 Ma), P循环发生了重大变化。在这里,我们使用更新的P汇编——样本数量增加了一倍多——来支持P循环从前寒武纪到显生宙的重大转变。然而,我们的分析表明,这种状态变化可能比之前认为的更早发生。具体来说,在更新后的数据库中,有证据表明,在Visingsö组的斯图亚特雪球地球冰期开始前3500万年,有可能将新元古代的气候剧变与地球P循环的变化分离开来。我们将地球沉积P记录的转变归因于一个更现代的地球系统状态的开始,其特征是海洋环境减少,海洋P浓度增加,真核生物占主导地位,包括初级生产者和消费者。这一观点与有机生物标志物证据一致,即真核生物对该演替和其他同时期的托尼海相沉积岩中保存的沉积有机质有重要贡献。然而,我们强调,即使有一个扩展的数据集,我们也可能远远不能准确地确定这种转变发生的时间,或者地球的历史是否以P循环中的单个或多个转变为特征。
{"title":"A sedimentary record of the evolution of the global marine phosphorus cycle","authors":"Noah J. Planavsky,&nbsp;Dan Asael,&nbsp;Alan D. Rooney,&nbsp;Leslie J. Robbins,&nbsp;Benjamin C. Gill,&nbsp;Carol M. Dehler,&nbsp;Devon B. Cole,&nbsp;Susannah M. Porter,&nbsp;Gordon D. Love,&nbsp;Kurt O. Konhauser,&nbsp;Christopher T. Reinhard","doi":"10.1111/gbi.12536","DOIUrl":"https://doi.org/10.1111/gbi.12536","url":null,"abstract":"<p>Phosphorus (P) is typically considered to be the ultimate limiting nutrient for Earth's biosphere on geologic timescales. As P is monoisotopic, its sedimentary enrichment can provide some insights into how the marine P cycle has changed through time. A previous compilation of shale P enrichments argued for a significant change in P cycling during the Ediacaran Period (635–541 Ma). Here, using an updated P compilation—with more than twice the number of samples—we bolster the case that there was a significant transition in P cycling moving from the Precambrian into the Phanerozoic. However, our analysis suggests this state change may have occurred earlier than previously suggested. Specifically in the updated database, there is evidence for a transition ~35 million years before the onset of the Sturtian Snowball Earth glaciation in the Visingsö Group, potentially divorcing the climatic upheavals of the Neoproterozoic from changes in the Earth's P cycle. We attribute the transition in Earth's sedimentary P record to the onset of a more modern-like Earth system state characterized by less reducing marine conditions, higher marine P concentrations, and a greater predominance of eukaryotic organisms encompassing both primary producers and consumers. This view is consistent with organic biomarker evidence for a significant eukaryotic contribution to the preserved sedimentary organic matter in this succession and other contemporaneous Tonian marine sedimentary rocks. However, we stress that, even with an expanded dataset, we are likely far from pinpointing exactly when this transition occurred or whether Earth's history is characterized by a single or multiple transitions in the P cycle.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 2","pages":"168-174"},"PeriodicalIF":3.7,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6099355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Active and dormant microorganisms on glacier surfaces 冰川表面活跃和休眠的微生物
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-11-30 DOI: 10.1111/gbi.12535
James A. Bradley, Christopher B. Trivedi, Matthias Winkel, Rey Mourot, Stefanie Lutz, Catherine Larose, Christoph Keuschnig, Eva Doting, Laura Halbach, Athanasios Zervas, Alexandre M. Anesio, Liane G. Benning

Glacier and ice sheet surfaces host diverse communities of microorganisms whose activity (or inactivity) influences biogeochemical cycles and ice melting. Supraglacial microbes endure various environmental extremes including resource scarcity, frequent temperature fluctuations above and below the freezing point of water, and high UV irradiance during summer followed by months of total darkness during winter. One strategy that enables microbial life to persist through environmental extremes is dormancy, which despite being prevalent among microbial communities in natural settings, has not been directly measured and quantified in glacier surface ecosystems. Here, we use a combination of metabarcoding and metatranscriptomic analyses, as well as cell-specific activity (BONCAT) incubations to assess the diversity and activity of microbial communities from glacial surfaces in Iceland and Greenland. We also present a new ecological model for glacier microorganisms and simulate physiological state-changes in the glacial microbial community under idealized (i) freezing, (ii) thawing, and (iii) freeze–thaw conditions. We show that a high proportion (>50%) of bacterial cells are translationally active in-situ on snow and ice surfaces, with Actinomycetota, Pseudomonadota, and Planctomycetota dominating the total and active community compositions, and that glacier microorganisms, even when frozen, could resume translational activity within 24 h after thawing. Our data suggest that glacial microorganisms respond rapidly to dynamic and changing conditions typical of their natural environment. We deduce that the biology and biogeochemistry of glacier surfaces are shaped by processes occurring over short (i.e., daily) timescales, and thus are susceptible to change following the expected alterations to the melt-regime of glaciers driven by climate change. A better understanding of the activity of microorganisms on glacier surfaces is critical in addressing the growing concern of climate change in Polar regions, as well as for their use as analogues to life in potentially habitable icy worlds.

冰川和冰盖表面有多种微生物群落,它们的活动(或不活动)影响生物地球化学循环和冰融化。冰川上的微生物忍受各种极端环境,包括资源短缺、温度在水的冰点上下波动频繁、夏季紫外线照射强、冬季数月完全黑暗。使微生物生命能够在极端环境中持续存在的一种策略是休眠,尽管在自然环境中微生物群落中普遍存在,但在冰川表面生态系统中尚未直接测量和量化。在这里,我们结合使用元条形码和元转录组学分析,以及细胞特异性活性(BONCAT)孵育来评估冰岛和格陵兰冰川表面微生物群落的多样性和活性。我们还提出了一个新的冰川微生物生态模型,并模拟了理想(i)冻结、(ii)融化和(iii)冻融条件下冰川微生物群落的生理状态变化。我们发现,在冰雪表面上,有很高比例(50%)的细菌细胞具有原位翻译活性,其中放线菌门、假单胞菌门和植菌门在总群落组成和活跃群落组成中占主导地位,冰川微生物即使在冷冻状态下,也能在解冻后24小时内恢复翻译活性。我们的数据表明,冰川微生物对其自然环境典型的动态和变化条件反应迅速。我们推断,冰川表面的生物和生物地球化学是由短期(即每天)时间尺度上发生的过程形成的,因此很容易受到气候变化驱动的冰川融化状态预期变化的影响。更好地了解冰川表面微生物的活动,对于解决人们对极地地区气候变化日益关注的问题至关重要,对于它们在可能适合居住的冰雪世界中作为生命的类比物也至关重要。
{"title":"Active and dormant microorganisms on glacier surfaces","authors":"James A. Bradley,&nbsp;Christopher B. Trivedi,&nbsp;Matthias Winkel,&nbsp;Rey Mourot,&nbsp;Stefanie Lutz,&nbsp;Catherine Larose,&nbsp;Christoph Keuschnig,&nbsp;Eva Doting,&nbsp;Laura Halbach,&nbsp;Athanasios Zervas,&nbsp;Alexandre M. Anesio,&nbsp;Liane G. Benning","doi":"10.1111/gbi.12535","DOIUrl":"https://doi.org/10.1111/gbi.12535","url":null,"abstract":"<p>Glacier and ice sheet surfaces host diverse communities of microorganisms whose activity (or inactivity) influences biogeochemical cycles and ice melting. Supraglacial microbes endure various environmental extremes including resource scarcity, frequent temperature fluctuations above and below the freezing point of water, and high UV irradiance during summer followed by months of total darkness during winter. One strategy that enables microbial life to persist through environmental extremes is dormancy, which despite being prevalent among microbial communities in natural settings, has not been directly measured and quantified in glacier surface ecosystems. Here, we use a combination of metabarcoding and metatranscriptomic analyses, as well as cell-specific activity (BONCAT) incubations to assess the diversity and activity of microbial communities from glacial surfaces in Iceland and Greenland. We also present a new ecological model for glacier microorganisms and simulate physiological state-changes in the glacial microbial community under idealized (i) freezing, (ii) thawing, and (iii) freeze–thaw conditions. We show that a high proportion (&gt;50%) of bacterial cells are translationally active in-situ on snow and ice surfaces, with Actinomycetota, Pseudomonadota, and Planctomycetota dominating the total and active community compositions, and that glacier microorganisms, even when frozen, could resume translational activity within 24 h after thawing. Our data suggest that glacial microorganisms respond rapidly to dynamic and changing conditions typical of their natural environment. We deduce that the biology and biogeochemistry of glacier surfaces are shaped by processes occurring over short (i.e., daily) timescales, and thus are susceptible to change following the expected alterations to the melt-regime of glaciers driven by climate change. A better understanding of the activity of microorganisms on glacier surfaces is critical in addressing the growing concern of climate change in Polar regions, as well as for their use as analogues to life in potentially habitable icy worlds.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 2","pages":"244-261"},"PeriodicalIF":3.7,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12535","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5931439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Using thermodynamics to obtain geochemical information from genomes 利用热力学从基因组中获取地球化学信息
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-11-14 DOI: 10.1111/gbi.12532
Jeffrey M. Dick, Grayson M. Boyer, Peter A. Canovas III, Everett L. Shock

Thermodynamic characterization of the relative stabilities of chemical compounds is a pillar of conceptual models in various fields of geosciences. Analogous models applied to genomes can yield new information about the relationship between genomes and their geochemical environments. In this perspective article, we present a chemical and thermodynamic analysis of prokaryotic lineages that have been the target of previous phylogenomic studies of evolutionary adaptation to varying redox conditions. The thermodynamic model development begins by quantifying the effects of hydrogen activity (aH2) and temperature on the relative stabilities of organic compounds with different carbon oxidation state. When applied to proteins instead of metabolites, the same techniques can be used to identify combinations of aH2 and temperature at which reference proteomes for Class I or Class II methanogens are relatively stable. The calculated aH2 values are compatible with reported measurements for habitats of methanogens ranging from highly reducing submarine hydrothermal systems to less reducing environments including methanogenic sediments. In contrast to the transition between the two classes of methanogenic archaea, that between basal and terrestrial groups of Thaumarchaeota (denoting the origin of ammonia-oxidizing archaea) occurs at a less-reducing redox boundary. These examples reveal the consequences of energy minimization driving evolution and show how geochemical calculations involving biomolecules can be used to quantify and better understand the coevolution of the geosphere and biosphere.

化合物相对稳定性的热力学表征是地球科学各个领域概念模型的支柱。应用于基因组的类似模型可以提供关于基因组与其地球化学环境之间关系的新信息。在这篇前瞻性的文章中,我们提出了原核谱系的化学和热力学分析,这些谱系一直是以前进化适应不同氧化还原条件的系统基因组研究的目标。热力学模型的建立从量化氢活度(aH2)和温度对不同碳氧化态有机化合物相对稳定性的影响开始。当应用于蛋白质而不是代谢物时,同样的技术可以用于鉴定aH2和温度的组合,在这种组合下,I类或II类产甲烷菌的参考蛋白质组相对稳定。计算出的aH2值与报道的产甲烷菌栖息地的测量结果一致,这些栖息地从高还原性海底热液系统到低还原性环境,包括产甲烷沉积物。与两类产甲烷古菌之间的过渡相反,基生古菌群和陆生古菌群(表示氨氧化古菌的起源)之间的过渡发生在还原程度较低的氧化还原边界。这些例子揭示了能量最小化驱动进化的结果,并展示了如何使用涉及生物分子的地球化学计算来量化和更好地理解地圈和生物圈的共同进化。
{"title":"Using thermodynamics to obtain geochemical information from genomes","authors":"Jeffrey M. Dick,&nbsp;Grayson M. Boyer,&nbsp;Peter A. Canovas III,&nbsp;Everett L. Shock","doi":"10.1111/gbi.12532","DOIUrl":"https://doi.org/10.1111/gbi.12532","url":null,"abstract":"<p>Thermodynamic characterization of the relative stabilities of chemical compounds is a pillar of conceptual models in various fields of geosciences. Analogous models applied to genomes can yield new information about the relationship between genomes and their geochemical environments. In this perspective article, we present a chemical and thermodynamic analysis of prokaryotic lineages that have been the target of previous phylogenomic studies of evolutionary adaptation to varying redox conditions. The thermodynamic model development begins by quantifying the effects of hydrogen activity (<i>a</i>H<sub>2</sub>) and temperature on the relative stabilities of organic compounds with different carbon oxidation state. When applied to proteins instead of metabolites, the same techniques can be used to identify combinations of <i>a</i>H<sub>2</sub> and temperature at which reference proteomes for Class I or Class II methanogens are relatively stable. The calculated <i>a</i>H<sub>2</sub> values are compatible with reported measurements for habitats of methanogens ranging from highly reducing submarine hydrothermal systems to less reducing environments including methanogenic sediments. In contrast to the transition between the two classes of methanogenic archaea, that between basal and terrestrial groups of Thaumarchaeota (denoting the origin of ammonia-oxidizing archaea) occurs at a less-reducing redox boundary. These examples reveal the consequences of energy minimization driving evolution and show how geochemical calculations involving biomolecules can be used to quantify and better understand the coevolution of the geosphere and biosphere.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 2","pages":"262-273"},"PeriodicalIF":3.7,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5853364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Reduction in animal abundance and oxygen availability during and after the end-Triassic mass extinction 在三叠纪末大灭绝期间和之后,动物数量和氧气供应减少
IF 3.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2022-11-03 DOI: 10.1111/gbi.12533
Pulkit Singh, Wanyi Lu, Zunli Lu, Adam B. Jost, Kimberly Lau, Aviv Bachan, Bas van de Schootbrugge, Jonathan L. Payne

The end-Triassic biodiversity crisis was one of the most severe mass extinctions in the history of animal life. However, the extent to which the loss of taxonomic diversity was coupled with a reduction in organismal abundance remains to be quantified. Further, the temporal relationship between organismal abundance and local marine redox conditions is lacking in carbonate sections. To address these questions, we measured skeletal grain abundance in shallow-marine limestones by point counting 293 thin sections from four stratigraphic sections across the Triassic/Jurassic boundary in the Lombardy Basin and Apennine Platform of western Tethys. Skeletal abundance decreased abruptly across the Triassic/Jurassic boundary in all stratigraphic sections. The abundance of skeletal organisms remained low throughout the lower-middle Hettangian strata and began to rebound during the late Hettangian and early Sinemurian. A two-way ANOVA indicates that sample age (p < .01, η2 = 0.30) explains more of the variation in skeletal abundance than the depositional environment or paleobathymetry (p < .01, η2 = 0.15). Measured I/Ca ratios, a proxy for local shallow-marine redox conditions, show this same pattern with the lowest I/Ca ratios occurring in the early Hettangian. The close correspondence between oceanic water column oxygen levels and skeletal abundance indicates a connection between redox conditions and benthic organismal abundance across the Triassic/Jurassic boundary. These findings indicate that the end-Triassic mass extinction reduced not only the biodiversity but also the carrying capacity for skeletal organisms in early Hettangian ecosystems, adding to evidence that mass extinction of species generally leads to mass rarity among survivors.

三叠纪末期的生物多样性危机是动物生命历史上最严重的大规模灭绝之一。然而,分类学多样性的丧失与生物丰度的减少相结合的程度仍有待量化。此外,在碳酸盐剖面中缺乏生物丰度与当地海洋氧化还原条件之间的时间关系。为了解决这些问题,我们从伦巴第盆地和特提斯西部亚平宁地台的三叠纪/侏罗纪边界的四个地层剖面中,通过点计数293个薄片,测量了浅海石灰岩的骨骼颗粒丰度。在所有地层剖面上,三叠系/侏罗系界线上的骨骼丰度急剧下降。在中下河唐期地层中,骨骼生物的丰度一直很低,在河唐期晚期和西奈木里期早期开始反弹。双向方差分析表明样本年龄(p <01, η2 = 0.30)比沉积环境或古水深测量更能解释骨骼丰度的变化(p <)0.01, η2 = 0.15)。测量的I/Ca比率(当地浅海氧化还原条件的代表)显示了相同的模式,最低的I/Ca比率出现在河唐期早期。海洋水体氧含量与骨骼丰度之间的密切对应关系表明,氧化还原条件与三叠纪/侏罗纪边界的底栖生物丰度之间存在联系。这些发现表明,三叠纪末期的大灭绝不仅降低了Hettangian早期生态系统中骨骼生物的生物多样性,也降低了它们的承载能力,这进一步证明了物种大灭绝通常会导致幸存者中大量稀有物种。
{"title":"Reduction in animal abundance and oxygen availability during and after the end-Triassic mass extinction","authors":"Pulkit Singh,&nbsp;Wanyi Lu,&nbsp;Zunli Lu,&nbsp;Adam B. Jost,&nbsp;Kimberly Lau,&nbsp;Aviv Bachan,&nbsp;Bas van de Schootbrugge,&nbsp;Jonathan L. Payne","doi":"10.1111/gbi.12533","DOIUrl":"https://doi.org/10.1111/gbi.12533","url":null,"abstract":"<p>The end-Triassic biodiversity crisis was one of the most severe mass extinctions in the history of animal life. However, the extent to which the loss of taxonomic diversity was coupled with a reduction in organismal abundance remains to be quantified. Further, the temporal relationship between organismal abundance and local marine redox conditions is lacking in carbonate sections. To address these questions, we measured skeletal grain abundance in shallow-marine limestones by point counting 293 thin sections from four stratigraphic sections across the Triassic/Jurassic boundary in the Lombardy Basin and Apennine Platform of western Tethys. Skeletal abundance decreased abruptly across the Triassic/Jurassic boundary in all stratigraphic sections. The abundance of skeletal organisms remained low throughout the lower-middle Hettangian strata and began to rebound during the late Hettangian and early Sinemurian. A two-way ANOVA indicates that sample age (<i>p</i> &lt; .01, <i>η</i><sup>2</sup> = 0.30) explains more of the variation in skeletal abundance than the depositional environment or paleobathymetry (<i>p</i> &lt; .01, <i>η</i><sup>2</sup> = 0.15). Measured I/Ca ratios, a proxy for local shallow-marine redox conditions, show this same pattern with the lowest I/Ca ratios occurring in the early Hettangian. The close correspondence between oceanic water column oxygen levels and skeletal abundance indicates a connection between redox conditions and benthic organismal abundance across the Triassic/Jurassic boundary. These findings indicate that the end-Triassic mass extinction reduced not only the biodiversity but also the carrying capacity for skeletal organisms in early Hettangian ecosystems, adding to evidence that mass extinction of species generally leads to mass rarity among survivors.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 2","pages":"175-192"},"PeriodicalIF":3.7,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6054587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Geobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1