This study investigates the paleobiological significance of pyritic stromatolites from the 3.48 billion-year-old Dresser Formation, Pilbara Craton. By combining paleoenvironmental analyses with observations from well-preserved stromatolites in newly obtained drill cores, the research reveals stratiform and columnar to domal pyritic structures with wavy to wrinkly laminations and crest thickening, hosted within facies variably influenced by syn-depositional hydrothermal activity. The columnar and domal stromatolites occur in strata with clearly distinguishable primary depositional textures. Mineralogical variability and fine-scale interference textures between the microbialites and the enclosing sediment highlight interplays between microbial and depositional processes. The stromatolites consist of organomineralization – nanoporous pyrite and microspherulitic barite – hosting significant thermally mature organic matter (OM). This includes filamentous organic microstructures encased within nanoporous pyrite, resembling the extracellular polymeric substance (EPS) of microbes. These findings imply biogenicity and support the activity of microbial life in a volcano-sedimentary environment with hydrothermal activity and evaporative cycles. Coupled changes in stromatolite morphology and host facies suggest growth in diverse niches, from dynamic, hydrothermally influenced shallow-water environments to restricted brine pools strongly enriched in