Kelsey R. Moore, Theodore M. Present, Antoine Crémière, Manuel Guizar-Sicairos, Mirko Holler, Andrew Barnett, Kristin Bergmann, Joachim Amthor, John Grotzinger
Silicification of microfossils is an important taphonomic process that provides a record of microbial life across a range of environments throughout Earth history. However, questions remain regarding the mechanism(s) by which silica precipitated and preserved delicate organic material and detailed cellular morphologies. Constraining the different mechanisms of silica precipitation and identifying the common factors that allow for microfossil preservation is the key to understanding ancient microbial communities and fossil-preserving mechanisms. Here, we use synchrotron ptychographic X-ray computed tomography (PXCT) as a novel technique to analyze microfossils from the Cretaceous Barra Velha Formation and better characterize their diverse morphologies and preservation styles. Through this technique, we generate 2D and 3D reconstructions that illustrate the microfossils and silica-organic textures at nanometer resolution. At this resolution, we identify previously uncharacterized silica textures and organic-silica relationships that help us relate findings from modern silicifying environments and experimental work to the fossil record. Additionally, we identify primary morphological differences among the microfossils as well as preservational variability that may have been driven by physiological and/or biochemical differences between the different organisms that inhabited the Cretaceous pre-salt basin. These findings help us to better characterize the diversity and complexity of the microbiota in this ancient basin as well as taphonomic processes and biases that may have driven microfossil preservation in this and other silicifying environments throughout Earth history.
{"title":"Cretaceous Chert-Hosted Microfossils Visualized With Synchrotron Ptychographic X-Ray Computed Tomography (PXCT)","authors":"Kelsey R. Moore, Theodore M. Present, Antoine Crémière, Manuel Guizar-Sicairos, Mirko Holler, Andrew Barnett, Kristin Bergmann, Joachim Amthor, John Grotzinger","doi":"10.1111/gbi.70019","DOIUrl":"https://doi.org/10.1111/gbi.70019","url":null,"abstract":"<p>Silicification of microfossils is an important taphonomic process that provides a record of microbial life across a range of environments throughout Earth history. However, questions remain regarding the mechanism(s) by which silica precipitated and preserved delicate organic material and detailed cellular morphologies. Constraining the different mechanisms of silica precipitation and identifying the common factors that allow for microfossil preservation is the key to understanding ancient microbial communities and fossil-preserving mechanisms. Here, we use synchrotron ptychographic X-ray computed tomography (PXCT) as a novel technique to analyze microfossils from the Cretaceous Barra Velha Formation and better characterize their diverse morphologies and preservation styles. Through this technique, we generate 2D and 3D reconstructions that illustrate the microfossils and silica-organic textures at nanometer resolution. At this resolution, we identify previously uncharacterized silica textures and organic-silica relationships that help us relate findings from modern silicifying environments and experimental work to the fossil record. Additionally, we identify primary morphological differences among the microfossils as well as preservational variability that may have been driven by physiological and/or biochemical differences between the different organisms that inhabited the Cretaceous pre-salt basin. These findings help us to better characterize the diversity and complexity of the microbiota in this ancient basin as well as taphonomic processes and biases that may have driven microfossil preservation in this and other silicifying environments throughout Earth history.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.70019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143938810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sebastian Reimann, Martin Homann, Deon J. Janse van Rensburg, Michael Wiedenbeck, Christian Hallmann, Runa Antony, Christoph Heubeck
Shallow-marine environments are thought to have been pivotal to the spreading, perhaps even the origin, of early life on Earth. The shallow-marine Archean sedimentary record of early life, however, is biased towards carbonates; nearshore siliciclastic environments have not received proportional attention. Here we describe densely laminated, silicified and dolomitized fossil calcareous mounds in tidal-facies sandstones of the Archean Moodies Group (ca. 3.22 Ga) in the Barberton Greenstone Belt, Eswatini. They vary between (1) cm- to dm-scale, isolated, club- to pedestal-shaped, nodular mounds on top of and within the conduits of fluid-escape structures, and (2) mm- to cm-scale, undulatory and wavily laminated structures, interbedded with well-bedded silt- and sandstones. Geochemical indicators of a possible biogenic origin were largely obliterated by local hydrothermal alteration and regional lower-greenschist-facies metamorphism: In situ SIMS δ13Ccarb isotope analyses from several traverses across the best-preserved laminae of a mound and δ34SVCDT values from diagenetic rims of nearby detrital pyrite grains yield ambiguous isotopic evidence about biologic processing; TOC of putative laminae is too low to measure δ13Corg, and Raman spectroscopy of finely dispersed carbonaceous particles and of kerogenous laminae indicate mean maximum metamorphic temperature of ca. 500°C. Textural and regional evidence, however, suggests that the carbonate laminae represent metabolic products of microbial communities that took advantage of sand volcanoes from which nutrient-rich fluids erupted episodically. We base this inference on the habitable depositional setting on a wave- or current-swept photic-zone tidal platform, the stromatolitic morphologies in two and three dimensions, the occurrence of in-situ kerogen, the carbonate mineralogy, and the presence of comparable mound structures elsewhere in the Moodies Group. Although the metabolic strategies utilized by the microorganisms remain unknown, this occurrence places a novel ecologic niche in the Paleoarchean microbial colonization of coastal regions.
{"title":"Stromatolitic Mounds in Tidal-Facies Sandstones of the Paleoarchean Moodies Group (Barberton Greenstone Belt, Eswatini)","authors":"Sebastian Reimann, Martin Homann, Deon J. Janse van Rensburg, Michael Wiedenbeck, Christian Hallmann, Runa Antony, Christoph Heubeck","doi":"10.1111/gbi.70020","DOIUrl":"https://doi.org/10.1111/gbi.70020","url":null,"abstract":"<p>Shallow-marine environments are thought to have been pivotal to the spreading, perhaps even the origin, of early life on Earth. The shallow-marine Archean sedimentary record of early life, however, is biased towards carbonates; nearshore siliciclastic environments have not received proportional attention. Here we describe densely laminated, silicified and dolomitized fossil calcareous mounds in tidal-facies sandstones of the Archean Moodies Group (ca. 3.22 Ga) in the Barberton Greenstone Belt, Eswatini. They vary between (1) cm- to dm-scale, isolated, club- to pedestal-shaped, nodular mounds on top of and within the conduits of fluid-escape structures, and (2) mm- to cm-scale, undulatory and wavily laminated structures, interbedded with well-bedded silt- and sandstones. Geochemical indicators of a possible biogenic origin were largely obliterated by local hydrothermal alteration and regional lower-greenschist-facies metamorphism: In situ SIMS δ<sup>13</sup>C<sub>carb</sub> isotope analyses from several traverses across the best-preserved laminae of a mound and δ<sup>34</sup>S<sub>VCDT</sub> values from diagenetic rims of nearby detrital pyrite grains yield ambiguous isotopic evidence about biologic processing; TOC of putative laminae is too low to measure δ<sup>13</sup>C<sub>org</sub>, and Raman spectroscopy of finely dispersed carbonaceous particles and of kerogenous laminae indicate mean maximum metamorphic temperature of ca. 500°C. Textural and regional evidence, however, suggests that the carbonate laminae represent metabolic products of microbial communities that took advantage of sand volcanoes from which nutrient-rich fluids erupted episodically. We base this inference on the habitable depositional setting on a wave- or current-swept photic-zone tidal platform, the stromatolitic morphologies in two and three dimensions, the occurrence of in-situ kerogen, the carbonate mineralogy, and the presence of comparable mound structures elsewhere in the Moodies Group. Although the metabolic strategies utilized by the microorganisms remain unknown, this occurrence places a novel ecologic niche in the Paleoarchean microbial colonization of coastal regions.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.70020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143896891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher J. Tino, Eva E. Stüeken, Daniel D. Gregory, Timothy W. Lyons
Alkaline lakes are among the most bioproductive aquatic ecosystems on Earth. The factors that ultimately limit productivity in these systems can vary, but nitrogen (N) cycling in particular has been shown to be adversely affected by high salinity, evidently due to the inhibition of nitrifying bacteria (i.e., those that convert ammonic species to nitrogen oxides). The coastal plain of Coorong National Park in South Australia, which hosts several alkaline lakes along 130 km of coastline, provides an ideal natural laboratory for examining how fine-scale differences in the geochemistry of such environments can lead to broad variations in nitrogen cycling through time, as manifest in sedimentary δ15N. Moreover, the lakes provide a gradient of aqueous conditions that allows us to assess the effects of pH, salinity, and carbonate chemistry on the sedimentary record. We report a wide range of δ15N values (3.8‰–18.6‰) measured in the sediments (0–35 cm depth) of five lakes of the Coorong region. Additional data include major element abundances, carbonate δ13C and δ18O values, and the results of principal component analyses. Stable nitrogen isotopes and wt% sodium (Na) display positive correlation (R2 = 0.59, p < 0.001) across all lake systems. Principal component analyses further support the notion that salinity has historically impacted nitrogen cycling. We propose that the inhibition of nitrification at elevated salinity may lead to the accumulation of ammonic species, which, when exposed to the water column, are prone to ammonia volatilization facilitated by intervals of elevated pH. This process is accompanied by a significant isotope fractionation effect, isotopically enriching the nitrogen that remains in the lake water. This nitrogen is eventually buried in the sediments, preserving a record of these combined processes. Analogous enrichments in the rock record may provide important constraints on past chemical conditions and their associated microbial ecologies. Specifically, ancient terrestrial aquatic systems with high δ15N values attributed to denitrification and thus oxygen deficiency may warrant re-evaluation within the framework of this alternative. Constraints on pH as provided by elevated δ15N via ammonia volatilization may also inform critical aspects of closed-basin paleoenvironments and their suitability for a de novo origin of life.
碱性湖泊是地球上最具生物生产力的水生生态系统之一。在这些系统中,最终限制生产力的因素可能会有所不同,但氮(N)循环尤其受到高盐度的不利影响,这显然是由于硝化细菌(即那些将氨类转化为氮氧化物的细菌)的抑制。南澳大利亚库荣国家公园的海岸平原上有几个碱性湖泊,沿着130公里的海岸线,为研究这种环境的地球化学的细微差异如何导致氮循环随时间的广泛变化提供了理想的自然实验室,正如沉积δ15N所表现的那样。此外,湖泊提供了一个梯度的水环境,使我们能够评估pH值、盐度和碳酸盐化学对沉积记录的影响。本文报道了在库容地区5个湖泊沉积物(0 ~ 35 cm深度)中测量到的δ15N值(3.8‰~ 18.6‰)的大范围变化。附加数据包括主元素丰度、碳酸盐δ13C和δ18O值以及主成分分析结果。稳定氮同位素与wt%钠(Na)呈显著正相关(R2 = 0.59, p < 0.001)。主成分分析进一步支持了盐度在历史上影响氮循环的观点。我们认为,盐度升高对硝化作用的抑制可能导致氨类物质的积累,这些氨类物质暴露于水柱后,容易因ph升高而挥发。这一过程伴随着显著的同位素分馏效应,同位素富集了残留在湖水中的氮。这些氮最终被埋在沉积物中,保存了这些综合过程的记录。岩石记录中类似的富集可能对过去的化学条件及其相关的微生物生态提供重要的限制。具体来说,古陆生水生系统的高δ15N值归因于反硝化和缺氧,可能需要在这一替代方案的框架内重新评估。氨挥发引起的δ15N升高对pH的限制也可能为封闭盆地古环境的关键方面及其是否适合生命的重新起源提供信息。
{"title":"Elevated δ15N Linked to Inhibited Nitrification Coupled to Ammonia Volatilization in Sediments of Shallow Alkaline-Hypersaline Lakes","authors":"Christopher J. Tino, Eva E. Stüeken, Daniel D. Gregory, Timothy W. Lyons","doi":"10.1111/gbi.70018","DOIUrl":"https://doi.org/10.1111/gbi.70018","url":null,"abstract":"<p>Alkaline lakes are among the most bioproductive aquatic ecosystems on Earth. The factors that ultimately limit productivity in these systems can vary, but nitrogen (N) cycling in particular has been shown to be adversely affected by high salinity, evidently due to the inhibition of nitrifying bacteria (i.e., those that convert ammonic species to nitrogen oxides). The coastal plain of Coorong National Park in South Australia, which hosts several alkaline lakes along 130 km of coastline, provides an ideal natural laboratory for examining how fine-scale differences in the geochemistry of such environments can lead to broad variations in nitrogen cycling through time, as manifest in sedimentary δ<sup>15</sup>N. Moreover, the lakes provide a gradient of aqueous conditions that allows us to assess the effects of pH, salinity, and carbonate chemistry on the sedimentary record. We report a wide range of δ<sup>15</sup>N values (3.8‰–18.6‰) measured in the sediments (0–35 cm depth) of five lakes of the Coorong region. Additional data include major element abundances, carbonate δ<sup>13</sup>C and δ<sup>18</sup>O values, and the results of principal component analyses. Stable nitrogen isotopes and wt% sodium (Na) display positive correlation (<i>R</i><sup>2</sup> = 0.59, <i>p</i> < 0.001) across all lake systems. Principal component analyses further support the notion that salinity has historically impacted nitrogen cycling. We propose that the inhibition of nitrification at elevated salinity may lead to the accumulation of ammonic species, which, when exposed to the water column, are prone to ammonia volatilization facilitated by intervals of elevated pH. This process is accompanied by a significant isotope fractionation effect, isotopically enriching the nitrogen that remains in the lake water. This nitrogen is eventually buried in the sediments, preserving a record of these combined processes. Analogous enrichments in the rock record may provide important constraints on past chemical conditions and their associated microbial ecologies. Specifically, ancient terrestrial aquatic systems with high δ<sup>15</sup>N values attributed to denitrification and thus oxygen deficiency may warrant re-evaluation within the framework of this alternative. Constraints on pH as provided by elevated δ<sup>15</sup>N via ammonia volatilization may also inform critical aspects of closed-basin paleoenvironments and their suitability for a de novo origin of life.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.70018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143770126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}