The objectives of the present study were to determine the nutrient digestibility of fish meal, defatted black soldier fly larvae (BSFL), and adult flies and to develop equations for estimating in vitro nutrient digestibility of BSFL for pigs. in vitro digestion procedures were employed to mimic the digestion and absorption of nutrients in the pig intestine. Correlation coefficients between chemical composition and in vitro nutrient digestibility of BSFL were calculated. In Exp. 1, in vitro ileal digestibility (IVID) of dry matter (DM) and crude protein (CP) and in vitro total tract digestibility (IVTTD) of DM and organic matter in defatted BSFL meal were less (p < 0.05) than those in fish meal but were greater (p < 0.05) than those in adult flies. In Exp. 2, CP concentrations in BSFL were negatively correlated with ether extract (r = -0.91) concentration but positively correlated with acid detergent fiber (ADF; r = 0.98) and chitin (r = 0.95) concentrations. ADF and chitin concentrations in BSFL were negatively correlated with IVID of DM (r = -0.98 and -0.88) and IVTTD of DM (r = -1.00 and -0.94) and organic matter (r = -0.99 and -0.98). Prediction equations for in vitro nutrient digestibility of BSFL were developed: IVID of CP (%) = -0.95 × ADF (% DM) + 95 (r2 = 0.75 and p = 0.058) and IVTTD of DM (%) = -2.09 × ADF + 113 (r2 = 0.99 and p < 0.001). The present in vitro experiments suggest that defatted BSFL meal was less digestible than fish meal but was more digestible than adult flies, and nutrient digestibility of BSFL can be predicted using ADF as an independent variable.
Background: Coronary artery fistulas (CAFs) are abnormal communications between the coronary arteries and the heart chambers, arteries, or veins, potentially leading to significant shunting, myocardial ischaemia and heart failure. Computed tomographic (CT) angiography or conventional invasive angiography is the reference standard for the diagnosis of coronary fistulas. The fistula anatomy can become very complex, which makes surgical or interventional planning challenging.
Case summary: We report two cases of hugely dilated and tortuous coronary circumflex artery fistulas draining into the coronary sinus. Both patients were followed up for more than 10 years because of very complex coronary fistula anatomy and mild symptoms. From two-dimensional (2D) sliced CT images alone it, was uncertain whether surgery was feasible. However, since both patients had symptom progression (Patient 1 developed heart failure, and Patient 2 had recurrent pericardial effusions), three-dimensional (3D) heart models were printed for better understanding of the complex fistula anatomy and improved surgical planning. Both patients had successful surgery and symptomatic relief at follow-up.
Discussion: The delay in surgery, until clinical deterioration, may partly be a consequence of a general reluctance in performing complex surgery in patients with CAFs. As of now, CT-based 3D printing has primarily been used in isolated cases. However, 3D printing is evolving rapidly and supplementing 2D sliced CT images with a physical 3D heart model may improve the anatomical understanding and pre-surgical planning that could lead to better surgical outcome.