Pub Date : 2021-06-01DOI: 10.6066/jtip.2021.32.1.92
Ratna Handayani, Kinkstie Fans, T. S. Mastuti, D. Rosa
Banana (Musa spp.) is mainly grown in the tropical and subtropical countries. Previous study reported that Musa spp. leaves had a potential antioxidant activity, but it was still rarely studied further. In this research, leaves of Musa balbisiana, Musa acuminate, and Musa paradisiaca were extracted using maceration method for 24 hours with three kinds of solvent having different polarities: ethanol (polar), ethyl acetate (semi polar), and hexane (nonpolar). The goal of this research was to compare and determine the stability of the antioxidant activity extracted from different Musa sp. leaves. The highest antioxidant activity is found from Musa balbisiana leaves extract with IC50 value 340.07±22.54 ppm (hexane fraction). Correlation analysis between antioxidant activity, total phenolic content, and total flavonoid of the extracts cannot conclude that the active antioxidant substances in these three banana species leaves were from phenolic or flavonoid groups. This crude extract from Musa balbisiana was then subjected to various pH levels (3.0, 5.0, 7.0, and 9.0) and temperatures (50, 70, and 90°C) to determine the stability of its antioxidant activity. It is found that the best stability condition is at pH 3.0 and temperature of 50°C with an increase of 63.1% in IC50, a decrease of 15.72% in total phenolics, and a decrease of 3.67% in total flavonoids as compared to before treatment.
{"title":"COMPARISON STUDY OF ANTIOXIDANT ACTIVITY FROM THREE BANANA LEAVES EXTRACTS","authors":"Ratna Handayani, Kinkstie Fans, T. S. Mastuti, D. Rosa","doi":"10.6066/jtip.2021.32.1.92","DOIUrl":"https://doi.org/10.6066/jtip.2021.32.1.92","url":null,"abstract":"Banana (Musa spp.) is mainly grown in the tropical and subtropical countries. Previous study reported that Musa spp. leaves had a potential antioxidant activity, but it was still rarely studied further. In this research, leaves of Musa balbisiana, Musa acuminate, and Musa paradisiaca were extracted using maceration method for 24 hours with three kinds of solvent having different polarities: ethanol (polar), ethyl acetate (semi polar), and hexane (nonpolar). The goal of this research was to compare and determine the stability of the antioxidant activity extracted from different Musa sp. leaves. The highest antioxidant activity is found from Musa balbisiana leaves extract with IC50 value 340.07±22.54 ppm (hexane fraction). Correlation analysis between antioxidant activity, total phenolic content, and total flavonoid of the extracts cannot conclude that the active antioxidant substances in these three banana species leaves were from phenolic or flavonoid groups. This crude extract from Musa balbisiana was then subjected to various pH levels (3.0, 5.0, 7.0, and 9.0) and temperatures (50, 70, and 90°C) to determine the stability of its antioxidant activity. It is found that the best stability condition is at pH 3.0 and temperature of 50°C with an increase of 63.1% in IC50, a decrease of 15.72% in total phenolics, and a decrease of 3.67% in total flavonoids as compared to before treatment.","PeriodicalId":17790,"journal":{"name":"Jurnal Teknologi dan Industri Pangan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46569327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01DOI: 10.6066/jtip.2021.32.1.36
Rima Hidayati, N. Andarwulan, Dian Herawati
Color is one of quality parameters that affects consumer intention to purchase ready to drink (RTD) green tea. Consumers expect RTD green tea to have yellow greenish color, however the color becomes brown and darker during the shelf life. This study aimed to evaluate the effect of phosphate mix addition to water prior to green tea leaves extraction on pH, color, and the tannin in tea extract, pre-RTD, and RTD during incubation period at 60°C for 2 days. The pre-RTD contained tea extract, sugar, and ascorbic acid. Addition of sodium bicarbonate was done in pre-RTD to obtain RTD with pH of 6.1±0.2. The type of phos-phate used was sodium acid pyrophosphate (SAPP) and phosphoric acid. The concentrations of SAPP were 650 and 1300 mg/L, while those of phosphoric acid were 125, 250, and 500 mg/L.The total phospho-rous added from the combination of SAPP and phosphoric acid was 221-521 mg/L. Meanwhile, green tea extracted without phosphate was used as a control. The results showed that phosphate addition to water prior to green tea extraction caused decrease in pH of tea extract from 5.83±0.18 to 2.8-3.8, decrease in browning intensity, and reduced tannin degradation during the incubation period. Sugar and ascorbic acid added to the tea extract resulted in pH in all samples <4.0 and maintained the lightness of the pre-RTD. Phosphate application was not able to retain the color of RTD after incubation period. This study showed that addition of phosphorous as a combination of SAPP and phosphoric acid to water at concentrations of 221-521 mg/L prior to green tea extraction had positive impact in reducing browning intensity of RTD green tea with pH of lower than 4.0.
{"title":"APLIKASI FOSFAT PADA PROSES EKSTRAKSI TEH HIJAU UNTUK MINUMAN TEH HIJAU SIAP MINUM","authors":"Rima Hidayati, N. Andarwulan, Dian Herawati","doi":"10.6066/jtip.2021.32.1.36","DOIUrl":"https://doi.org/10.6066/jtip.2021.32.1.36","url":null,"abstract":"Color is one of quality parameters that affects consumer intention to purchase ready to drink (RTD) green tea. Consumers expect RTD green tea to have yellow greenish color, however the color becomes brown and darker during the shelf life. This study aimed to evaluate the effect of phosphate mix addition to water prior to green tea leaves extraction on pH, color, and the tannin in tea extract, pre-RTD, and RTD during incubation period at 60°C for 2 days. The pre-RTD contained tea extract, sugar, and ascorbic acid. Addition of sodium bicarbonate was done in pre-RTD to obtain RTD with pH of 6.1±0.2. The type of phos-phate used was sodium acid pyrophosphate (SAPP) and phosphoric acid. The concentrations of SAPP were 650 and 1300 mg/L, while those of phosphoric acid were 125, 250, and 500 mg/L.The total phospho-rous added from the combination of SAPP and phosphoric acid was 221-521 mg/L. Meanwhile, green tea extracted without phosphate was used as a control. The results showed that phosphate addition to water prior to green tea extraction caused decrease in pH of tea extract from 5.83±0.18 to 2.8-3.8, decrease in browning intensity, and reduced tannin degradation during the incubation period. Sugar and ascorbic acid added to the tea extract resulted in pH in all samples <4.0 and maintained the lightness of the pre-RTD. Phosphate application was not able to retain the color of RTD after incubation period. This study showed that addition of phosphorous as a combination of SAPP and phosphoric acid to water at concentrations of 221-521 mg/L prior to green tea extraction had positive impact in reducing browning intensity of RTD green tea with pH of lower than 4.0.","PeriodicalId":17790,"journal":{"name":"Jurnal Teknologi dan Industri Pangan","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41483711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-29DOI: 10.6066/jtip.2020.31.2.188
D. Lestari, Joshua Evan, Ma. Suhartono
Milk bioactive peptides are derivative of milk protein produced either through enzymatic activity, digestive processes, or fermentation, that give functional properties. The study aimed to obtain bioactive peptides fraction derived from goat’s milk casein through hydrolysis by papain, analyze the profiles of protein and peptides, and also test the antioxidative activity. The casein isolate was hydrolyzed by papain in a ratio of 100: 0.5 (v/v) at pH 7.0 and 50oC. Analysis of protein concentration was carried out by the Bradford method and protein profile by SDS-PAGE. Antioxidant assay was carried out by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. A 1,000 ppm ascorbic acid solution was used as positive control. Peptide fractionation was done by membrane filtration with a cut off of 10 kD and 30 kDa. The protein concentration of casein hydrolysates decreased significantly after hydrolysis process with papain. The electrophoresis results showed six protein bands in casein with molecular weight of 7-33 kDa. After the hydrolysis process, all hydrolysates only contained two protein bands with molecular weights of 8 and 5 kDa. The hydrolysis process increased the antioxidant activity of the casein. P0 and P2 hydrolysates had the highest antioxidant activity, and fractions with the highest antioxidant activity were fraction <10 kDa from P0 hydrolysate at 67.89% and 10-30 kDa from P2 hydrolysate at 73.82%. Molecular weight and hydrolysis time affected the antioxidant activity of the hydrolysates. Peptides below 30 kDa have antioxidant activity, whereas those above 30 kDa do not have any antioxidant activity. The antioxidant activity of the peptides decreases upon hydrolysis for more then 2 minutes.
{"title":"FRAKSI PEPTIDA ANTIOKSIDAN DARI KASEIN SUSU KAMBING","authors":"D. Lestari, Joshua Evan, Ma. Suhartono","doi":"10.6066/jtip.2020.31.2.188","DOIUrl":"https://doi.org/10.6066/jtip.2020.31.2.188","url":null,"abstract":"Milk bioactive peptides are derivative of milk protein produced either through enzymatic activity, digestive processes, or fermentation, that give functional properties. The study aimed to obtain bioactive peptides fraction derived from goat’s milk casein through hydrolysis by papain, analyze the profiles of protein and peptides, and also test the antioxidative activity. The casein isolate was hydrolyzed by papain in a ratio of 100: 0.5 (v/v) at pH 7.0 and 50oC. Analysis of protein concentration was carried out by the Bradford method and protein profile by SDS-PAGE. Antioxidant assay was carried out by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. A 1,000 ppm ascorbic acid solution was used as positive control. Peptide fractionation was done by membrane filtration with a cut off of 10 kD and 30 kDa. The protein concentration of casein hydrolysates decreased significantly after hydrolysis process with papain. The electrophoresis results showed six protein bands in casein with molecular weight of 7-33 kDa. After the hydrolysis process, all hydrolysates only contained two protein bands with molecular weights of 8 and 5 kDa. The hydrolysis process increased the antioxidant activity of the casein. P0 and P2 hydrolysates had the highest antioxidant activity, and fractions with the highest antioxidant activity were fraction <10 kDa from P0 hydrolysate at 67.89% and 10-30 kDa from P2 hydrolysate at 73.82%. Molecular weight and hydrolysis time affected the antioxidant activity of the hydrolysates. Peptides below 30 kDa have antioxidant activity, whereas those above 30 kDa do not have any antioxidant activity. The antioxidant activity of the peptides decreases upon hydrolysis for more then 2 minutes.","PeriodicalId":17790,"journal":{"name":"Jurnal Teknologi dan Industri Pangan","volume":"31 1","pages":"188-196"},"PeriodicalIF":0.0,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43777715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-29DOI: 10.6066/jtip.2020.31.2.138
W. P. Rahayu, Suliantari Suliantari, Umi Kartika Safitri, W. Adhi
Jackfruit seeds (Artocarpus heterophyllus Lam.) contain dietary fiber, thus it is potential as prebiotic to be used in fermented milk drink. This research aimed to obtain the fermented milk composition made from fresh milk and jackfruit seed flour containing active lactic acid bacteria (LAB), preferred hedonic level and to identify the chemical properties of the resulting fermented milk. Variables of this research were the jackfruit seed flour concentrations of 4, 5, 6% (w/v) and two LAB used (Lactobacillus plantarum and Lactobacillus brevis). The composition was selected based on the viable number of LAB, pH value, and sensory quality. The selected composition was the fermented milk made of fresh milk and 4% (w/v) jackfruit seed flour and L. brevis. The viable number of LAB of the fermented milk was 10.59 log CFU/mL. The sensory quality of the fermented milk was neutral until rather preferred for color, flavor, taste, texture, and overall. The chemical contents (%b/b) of product was 78.16% of moisture content, 2.34% of ash content, 2.85% of fat content, 3.15% of protein content, 13.51% of carbohydrate content, and 1.73% of lactic acid content.
{"title":"SUSU FERMENTASI DENGAN BIJI NANGKA SEBAGAI PREBIOTIK","authors":"W. P. Rahayu, Suliantari Suliantari, Umi Kartika Safitri, W. Adhi","doi":"10.6066/jtip.2020.31.2.138","DOIUrl":"https://doi.org/10.6066/jtip.2020.31.2.138","url":null,"abstract":"Jackfruit seeds (Artocarpus heterophyllus Lam.) contain dietary fiber, thus it is potential as prebiotic to be used in fermented milk drink. This research aimed to obtain the fermented milk composition made from fresh milk and jackfruit seed flour containing active lactic acid bacteria (LAB), preferred hedonic level and to identify the chemical properties of the resulting fermented milk. Variables of this research were the jackfruit seed flour concentrations of 4, 5, 6% (w/v) and two LAB used (Lactobacillus plantarum and Lactobacillus brevis). The composition was selected based on the viable number of LAB, pH value, and sensory quality. The selected composition was the fermented milk made of fresh milk and 4% (w/v) jackfruit seed flour and L. brevis. The viable number of LAB of the fermented milk was 10.59 log CFU/mL. The sensory quality of the fermented milk was neutral until rather preferred for color, flavor, taste, texture, and overall. The chemical contents (%b/b) of product was 78.16% of moisture content, 2.34% of ash content, 2.85% of fat content, 3.15% of protein content, 13.51% of carbohydrate content, and 1.73% of lactic acid content.","PeriodicalId":17790,"journal":{"name":"Jurnal Teknologi dan Industri Pangan","volume":"31 1","pages":"138-146"},"PeriodicalIF":0.0,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45304588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.6066/jtip.2020.31.2.171
U. Laila, R. Rochmadi, S. Pudjiraharti, R. Nurhayati, E. Herawati, D. Ariani, Y. Khasanah
Previous study successfully conducted encapsulation of the purple-fleshed sweet potato’s anthocyanin but the study has yet to reveal the stability of encapsulated anthocyanin. Therefore, this research aims to observe the stability of encapsulated anthocyanin regarding the characteristic of low anthocyanin stability, which depends on environmental factors, such as temperature, pH, humidity, and water activity. The kinetic parameters of stability, including kinetic constant (k), reaction order, and half-life (t1/2), were also studied. Stability testing was conducted in high water activity of 0.75 and various in-cubation temperatures at 16, 25, 35, and 45°C. Un-encapsulated anthocyanin extract was also tested for its stability in the same condition in order to be compared with encapsulated anthocyanin. This study re-vealed that the encapsulated anthocyanin had lower stability than un-encapsulated anthocyanin extract. It was proven by higher kinetic constant and lower half-life of encapsulated anthocyanin for every incubation temperature which was induced by higher pH of encapsulated anthocyanin compared with anthocyanin extract. Besides, high water activity reduced glass transition temperature (Tg), in which encapsulated anthocyanin was in rubbery state. Both encapsulated anthocyanin and anthocyanin extract were degraded following the first order kinetic. Using the Arrhenius equation, it was obtained that the degradation kinetic constant of encapsulated anthocyanin was stated as k= 420.44 exp (-23.33/RT). Meanwhile, k= 1.12x106 exp (-46.70/RT) described degradation of kinetic constant of anthocyanin extract. The stability test re-vealed that the application of encapsulated anthocyanin was not suitable for wet-type food product.
{"title":"STABILITY OF CHITOSAN-TRIPOLYPHOSPHATE COMPLEX-ENCAPSULATED ANTHOCYANIN AT HIGH WATER ACTIVITY","authors":"U. Laila, R. Rochmadi, S. Pudjiraharti, R. Nurhayati, E. Herawati, D. Ariani, Y. Khasanah","doi":"10.6066/jtip.2020.31.2.171","DOIUrl":"https://doi.org/10.6066/jtip.2020.31.2.171","url":null,"abstract":"Previous study successfully conducted encapsulation of the purple-fleshed sweet potato’s anthocyanin but the study has yet to reveal the stability of encapsulated anthocyanin. Therefore, this research aims to observe the stability of encapsulated anthocyanin regarding the characteristic of low anthocyanin stability, which depends on environmental factors, such as temperature, pH, humidity, and water activity. The kinetic parameters of stability, including kinetic constant (k), reaction order, and half-life (t1/2), were also studied. Stability testing was conducted in high water activity of 0.75 and various in-cubation temperatures at 16, 25, 35, and 45°C. Un-encapsulated anthocyanin extract was also tested for its stability in the same condition in order to be compared with encapsulated anthocyanin. This study re-vealed that the encapsulated anthocyanin had lower stability than un-encapsulated anthocyanin extract. It was proven by higher kinetic constant and lower half-life of encapsulated anthocyanin for every incubation temperature which was induced by higher pH of encapsulated anthocyanin compared with anthocyanin extract. Besides, high water activity reduced glass transition temperature (Tg), in which encapsulated anthocyanin was in rubbery state. Both encapsulated anthocyanin and anthocyanin extract were degraded following the first order kinetic. Using the Arrhenius equation, it was obtained that the degradation kinetic constant of encapsulated anthocyanin was stated as k= 420.44 exp (-23.33/RT). Meanwhile, k= 1.12x106 exp (-46.70/RT) described degradation of kinetic constant of anthocyanin extract. The stability test re-vealed that the application of encapsulated anthocyanin was not suitable for wet-type food product.","PeriodicalId":17790,"journal":{"name":"Jurnal Teknologi dan Industri Pangan","volume":"31 1","pages":"171-179"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46716114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.6066/jtip.2020.31.2.147
I. Isnaeni, B. S. Zufara, I. Lewa
Bananas are known to contain fiber and vitamins essential for human body. Thus, the ability to detect these of vitamin in bananas is crucial. Information in the vitamin content of can affect procedures for harverst and post-harvest process. Methods to determine the nutrition content of foods are usually carried out using High Performance Liquid Chromatography (HPLC). However, this method requires complex sample preparation and chemical reaction processes. Due to this weakness, alternative techniques are needed to detect vitamin in simple ways. In this study, a simple, easy and fast methods to determine the vitamin content of banana was developed. Using reflectance and photoluminence spectroscopy, the vitamin of bananas from five different species were able to be identified. From the reflectance spectra results, two peaks were observed, the first peak at a wavelength of 325 nm is the absorption peak of vitamin B6 and the second peak at 450 nm is the absorption peak of vitamin B12. From the photoluminence spectra using excitation wavelength at 325 nm, an emission peak was found at wavelength 450 nm which is the peak emission from vitamin B6. These results proved that by using the methods proposed, the detection of vitamins in bananas can be done in an easy and simple ways.
{"title":"ALTERNATIVE OPTICAL METHODS FOR QUALITATIVE DETECTION OF VITAMIN B6 AND B12 OF BANANA","authors":"I. Isnaeni, B. S. Zufara, I. Lewa","doi":"10.6066/jtip.2020.31.2.147","DOIUrl":"https://doi.org/10.6066/jtip.2020.31.2.147","url":null,"abstract":"Bananas are known to contain fiber and vitamins essential for human body. Thus, the ability to detect these of vitamin in bananas is crucial. Information in the vitamin content of can affect procedures for harverst and post-harvest process. Methods to determine the nutrition content of foods are usually carried out using High Performance Liquid Chromatography (HPLC). However, this method requires complex sample preparation and chemical reaction processes. Due to this weakness, alternative techniques are needed to detect vitamin in simple ways. In this study, a simple, easy and fast methods to determine the vitamin content of banana was developed. Using reflectance and photoluminence spectroscopy, the vitamin of bananas from five different species were able to be identified. From the reflectance spectra results, two peaks were observed, the first peak at a wavelength of 325 nm is the absorption peak of vitamin B6 and the second peak at 450 nm is the absorption peak of vitamin B12. From the photoluminence spectra using excitation wavelength at 325 nm, an emission peak was found at wavelength 450 nm which is the peak emission from vitamin B6. These results proved that by using the methods proposed, the detection of vitamins in bananas can be done in an easy and simple ways.","PeriodicalId":17790,"journal":{"name":"Jurnal Teknologi dan Industri Pangan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44556597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.6066/jtip.2020.31.2.95
Lalu Danu Prima Arzani, Tjahja Muhandri, Nancy Dewi Yuliana
Kappaphycus striatum and Kappaphycus alvarezii are kappa carrageenan-producing seaweeds. K. striatum is also a source of iota carrageenan. The study was aimed to evaluate the effects of extraction time and alkali concentration on the characteristics of semi refined carrageenan (SRC) produced from seaweeds K. striatum and K. alvarezii. The SRC was extracted prepared by cooking dried seaweed samples in KOH solution (ratio seaweed:KOH solution= 1:40) with KOH concentrations of 6, 8 and 10% for 60 and 120 minutes at 70°C. The results showed that the best SRC characteristics produced from K. striatum seaweed were obtained from the extraction process at 6% KOH for 60 minutes which yielded 46.05±0.16%, carrageenan with gel strength of 362,07±21,44 g/cm2 and viscosity at 70°C 74 cP. Meanwhile the best characteristics of SRC produced from K. alvarezii seaweed were obtained from extraction in 10% KOH for 60 minutes having the highest yield of 39,03±0.95%, gel strength 1130.67± 16.34 g/cm2 and viscosity at 70°C of 59 cP. FTIR analysis showed that the functional groups which are kappa carrageenan and iota carrageenan characteristics were found in both samples at wave numbers of 846.97-847.09 and 800.53-801.29 cm-1, respectively.
{"title":"KARAKTERISTIK KARAGENAN SEMI-MURNI DARI RUMPUT LAUT Kappaphycus striatum DAN Kappaphycus alvarezii","authors":"Lalu Danu Prima Arzani, Tjahja Muhandri, Nancy Dewi Yuliana","doi":"10.6066/jtip.2020.31.2.95","DOIUrl":"https://doi.org/10.6066/jtip.2020.31.2.95","url":null,"abstract":"Kappaphycus striatum and Kappaphycus alvarezii are kappa carrageenan-producing seaweeds. K. striatum is also a source of iota carrageenan. The study was aimed to evaluate the effects of extraction time and alkali concentration on the characteristics of semi refined carrageenan (SRC) produced from seaweeds K. striatum and K. alvarezii. The SRC was extracted prepared by cooking dried seaweed samples in KOH solution (ratio seaweed:KOH solution= 1:40) with KOH concentrations of 6, 8 and 10% for 60 and 120 minutes at 70°C. The results showed that the best SRC characteristics produced from K. striatum seaweed were obtained from the extraction process at 6% KOH for 60 minutes which yielded 46.05±0.16%, carrageenan with gel strength of 362,07±21,44 g/cm2 and viscosity at 70°C 74 cP. Meanwhile the best characteristics of SRC produced from K. alvarezii seaweed were obtained from extraction in 10% KOH for 60 minutes having the highest yield of 39,03±0.95%, gel strength 1130.67± 16.34 g/cm2 and viscosity at 70°C of 59 cP. FTIR analysis showed that the functional groups which are kappa carrageenan and iota carrageenan characteristics were found in both samples at wave numbers of 846.97-847.09 and 800.53-801.29 cm-1, respectively.","PeriodicalId":17790,"journal":{"name":"Jurnal Teknologi dan Industri Pangan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42364603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.6066/jtip.2020.31.2.180
F. Polnaya, H. Hilda, C. G. C. Lopulalan
Native ihur sago starch is a starch from Maluku and to date there is no report on its physicochemical properties. The objective of this work was to evaluate the effect of acetic acid concentration on the physicochemical properties of the native ihur sago starch. The starch was acetylated at different acetic acid concentrations, i.e., 0, 0.5, 1.5, and 2.5%. The acetylation was carried out by reacting ihur sago starch solution (100 g in 225 mL water) with acetic acid under alkaline condition. The acetyl group, degree of substitution (DS), water solubility, swelling power, paste clarity, and water, ash and amylose contents of the acetylated starch were measured. The study was conducted in three replications of non-factorial experiments using a completely randomized design. Starch modification through acetic acid addition produced ihur sago starch with different physicochemical characteristics from that of its native form. The acetylation caused the hydroxyl group in the starch to be substituted by acetyl group at concentration of 1.336-1.850% and DS range of 0.026-0.046, whilst no acetyl group was detected in its native starch. Acetylation increased the starch ash content from 0.46% to 0.50-0.57%, amylose content from 28.86% to 29.73-31.46%, solubility from 12.83% to 14.20-25.20%, swelling power from 18.51 g/g to 16.74-28.24 g/g and paste clarity from 93.07%T650 to 93.50-94.13%T650. In addition, acetylation at 0.5% increased the water content of the starch while higher concentration of acetylation could decrease its water content.
{"title":"KONSENTRASI ASAM ASETAT MEMENGARUHI KARAKTERISTIK FISIKOKIMIA PATI SAGU IHUR TERASETILASI","authors":"F. Polnaya, H. Hilda, C. G. C. Lopulalan","doi":"10.6066/jtip.2020.31.2.180","DOIUrl":"https://doi.org/10.6066/jtip.2020.31.2.180","url":null,"abstract":"Native ihur sago starch is a starch from Maluku and to date there is no report on its physicochemical properties. The objective of this work was to evaluate the effect of acetic acid concentration on the physicochemical properties of the native ihur sago starch. The starch was acetylated at different acetic acid concentrations, i.e., 0, 0.5, 1.5, and 2.5%. The acetylation was carried out by reacting ihur sago starch solution (100 g in 225 mL water) with acetic acid under alkaline condition. The acetyl group, degree of substitution (DS), water solubility, swelling power, paste clarity, and water, ash and amylose contents of the acetylated starch were measured. The study was conducted in three replications of non-factorial experiments using a completely randomized design. Starch modification through acetic acid addition produced ihur sago starch with different physicochemical characteristics from that of its native form. The acetylation caused the hydroxyl group in the starch to be substituted by acetyl group at concentration of 1.336-1.850% and DS range of 0.026-0.046, whilst no acetyl group was detected in its native starch. Acetylation increased the starch ash content from 0.46% to 0.50-0.57%, amylose content from 28.86% to 29.73-31.46%, solubility from 12.83% to 14.20-25.20%, swelling power from 18.51 g/g to 16.74-28.24 g/g and paste clarity from 93.07%T650 to 93.50-94.13%T650. In addition, acetylation at 0.5% increased the water content of the starch while higher concentration of acetylation could decrease its water content.","PeriodicalId":17790,"journal":{"name":"Jurnal Teknologi dan Industri Pangan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43390314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research aims to study and characterize the effect of the annealing conditions (temperature and heating duration) on the gelatinization profile and antioxidant components of annealing-modified black glutinous rice flour (ABGRF). This experiment used a 2x3 factorial design consisted of temperature factor (54 and 58°C) and heating duration factor (4, 5, and 6 hours) with 2 replications. Research results showed that both factors and their interactions significantly affected all parameters of the gelatinization profile and antioxidant component of ABGRF (except through viscosity). Compared to its native, ABGRF showed an increase in peak viscosity, through viscosity (except treatment 54°C:5 hours), peak time and pasting tem-perature, indicated ABGRF resistance improvement to the heating process. Generally, the temperature treatment increment increased breakdown, setback, and final viscosity, but the heating duration increment decreased those values. The variation of ABGRF gelatinization profiles increased the diversification potential of BGRF-based food products. Annealing caused an overall decrease in ABGRF antioxidant ability. ABGRF produced by 54°C:4 hours treatment had the highest amount of antioxidant components (total anthocyanins contents 103.78±2.24 mg C3GE/100 g, total phenolic compounds 241.65±1.98 mg GAE/100 g, DPPH 267.14± 3.23 mg AAE/100 g, FRAP 473.94±1.43 mg AAE/100 g), thus using it as ingredients in functional food is more recommended, especially as composite flour for bread and cake.
{"title":"PROFIL GELATINISASI DAN KOMPONEN ANTIOKSIDAN TEPUNG KETAN HITAM TERMODIFIKASI DENGAN ANNEALING","authors":"Riezka Zuhriatika Rasyda, Tjahja Muhandri, Slamet Budijanto","doi":"10.6066/jtip.2020.31.2.164","DOIUrl":"https://doi.org/10.6066/jtip.2020.31.2.164","url":null,"abstract":"This research aims to study and characterize the effect of the annealing conditions (temperature and heating duration) on the gelatinization profile and antioxidant components of annealing-modified black glutinous rice flour (ABGRF). This experiment used a 2x3 factorial design consisted of temperature factor (54 and 58°C) and heating duration factor (4, 5, and 6 hours) with 2 replications. Research results showed that both factors and their interactions significantly affected all parameters of the gelatinization profile and antioxidant component of ABGRF (except through viscosity). Compared to its native, ABGRF showed an increase in peak viscosity, through viscosity (except treatment 54°C:5 hours), peak time and pasting tem-perature, indicated ABGRF resistance improvement to the heating process. Generally, the temperature treatment increment increased breakdown, setback, and final viscosity, but the heating duration increment decreased those values. The variation of ABGRF gelatinization profiles increased the diversification potential of BGRF-based food products. Annealing caused an overall decrease in ABGRF antioxidant ability. ABGRF produced by 54°C:4 hours treatment had the highest amount of antioxidant components (total anthocyanins contents 103.78±2.24 mg C3GE/100 g, total phenolic compounds 241.65±1.98 mg GAE/100 g, DPPH 267.14± 3.23 mg AAE/100 g, FRAP 473.94±1.43 mg AAE/100 g), thus using it as ingredients in functional food is more recommended, especially as composite flour for bread and cake.","PeriodicalId":17790,"journal":{"name":"Jurnal Teknologi dan Industri Pangan","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47177864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.6066/jtip.2020.31.2.113
Mutiara Utami, C. H. Wijaya, Darda Efendi, Dede R. Adawiyah
Mangoes of Gedong variety (Mangifera indica L. var. gedong) is one of the exported commodities from Indonesia. Half mature mangoes of this type are called gedong mangoes, whereas the full ripe mangoes are called gedong gincu mango. This research aimed to determine the physicochemical charac-teristics, sensory attributes and volatile compounds of the above two mango types. The results showed that gedong mangoes had a lower pH value, less total soluble solid, harder texture, and the skin color had a lower intensity of lightness, redness, and yellowness as compared to gedong gincu mango. The sensory analysis using rate-all-that-apply (RATA) method showed that attributes of color, fibrous, aroma (fruity, caramel, cooked, green, fermented, floral, sweet), taste (sweet, sour), melting, firmness, juiciness and astringency were significantly different between gedong and gedong gincu mango. The overall sensory of gedong gincu mangoes was more preferred by the panelists with the hedonic score of 6.20±0.09 (6= like) while that of gedong mango was 5.37±0.09 (5= slightly like). The sensory profiles of both mangoes were supported by the analysis of their volatile compounds. The gedong mango had predominantly green type of volatiles aroma while the gedong gincu was dominated by the fruity sweet ones. The sensory acceptability of gedong gincu mango was significantly higher rather than that of gedong mango.
格东芒果(Mangifera indica L. var. Gedong)是印尼出口商品之一。这种半熟的芒果被称为格东芒果,而完全成熟的芒果被称为格东金库芒果。本研究旨在测定上述两种芒果的理化特性、感官属性和挥发性成分。结果表明,葛东芒果的pH值较低,总可溶性固形物较少,质地较硬,果皮的亮、红、黄强度较葛东金库芒果低。用RATA (rate- The -apply)法进行感官分析,结果表明,两种芒果的颜色、纤维、香气(果味、焦糖、熟、青、发酵、花香、甜味)、口感(甜、酸)、融化度、紧致度、多汁性和涩味均存在显著差异。观赏者对葛东银杏芒果的整体感官满意度为6.20±0.09 (6= like),而对葛东芒果的整体感官满意度为5.37±0.09(5=略like)。两种芒果的感官特征都得到了挥发性化合物分析的支持。葛东芒果挥发物香气以绿色型为主,葛东银姑挥发物香气以果味甜味为主。葛东金曲芒果的感官接受度显著高于葛东芒果。
{"title":"KARAKTERISTIK FISIKOKIMIA DAN PROFIL SENSORI MANGGA GEDONG PADA DUA TINGKAT KEMATANGAN","authors":"Mutiara Utami, C. H. Wijaya, Darda Efendi, Dede R. Adawiyah","doi":"10.6066/jtip.2020.31.2.113","DOIUrl":"https://doi.org/10.6066/jtip.2020.31.2.113","url":null,"abstract":"Mangoes of Gedong variety (Mangifera indica L. var. gedong) is one of the exported commodities from Indonesia. Half mature mangoes of this type are called gedong mangoes, whereas the full ripe mangoes are called gedong gincu mango. This research aimed to determine the physicochemical charac-teristics, sensory attributes and volatile compounds of the above two mango types. The results showed that gedong mangoes had a lower pH value, less total soluble solid, harder texture, and the skin color had a lower intensity of lightness, redness, and yellowness as compared to gedong gincu mango. The sensory analysis using rate-all-that-apply (RATA) method showed that attributes of color, fibrous, aroma (fruity, caramel, cooked, green, fermented, floral, sweet), taste (sweet, sour), melting, firmness, juiciness and astringency were significantly different between gedong and gedong gincu mango. The overall sensory of gedong gincu mangoes was more preferred by the panelists with the hedonic score of 6.20±0.09 (6= like) while that of gedong mango was 5.37±0.09 (5= slightly like). The sensory profiles of both mangoes were supported by the analysis of their volatile compounds. The gedong mango had predominantly green type of volatiles aroma while the gedong gincu was dominated by the fruity sweet ones. The sensory acceptability of gedong gincu mango was significantly higher rather than that of gedong mango.","PeriodicalId":17790,"journal":{"name":"Jurnal Teknologi dan Industri Pangan","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42261515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}