Pub Date : 2022-03-31DOI: 10.5338/kjea.2022.41.1.08
Yeong Ju Jo, J. Choi, H. Ham, J. Hur
BACKGROUND: This study was conducted to evaluate the residual characteristics and safety assessment of αcypermethrin and deltamethrin in minor crops, chives and spring onion cultivated in greenhouse. METHODS AND RESULTS: The insecticides α-cypermethrin 2% EC and deltamethrin 1% EC used in the experiment were diluted 1,000 times and then sprayed on chives and spring onion twice with 1-week intervals at 0, 7, 14, and 21 days before harvest. The residual insecticides were extracted from the minor crops using QuEchERS method and analyzed by GC-MS/MS. The average initial residues of α-cypermethrin and deltamethrin in chives after 21 days decreased from 2.74 to 0.82 mg/kg and 1.12 to 0.16 mg/kg, respectively. Similarly, in spring onion the residues after the same periods decreased from 0.26 to <0.01 mg/kg for α-cypermethrin and from 0.07 to <0.01 mg/kg for deltamethrin. CONCLUSION(S): The PHIs (pre-harvest intervals) for α-cypermethrin and deltamethrin in chives are recommended as 14 days before harvest with twice applications of the pesticides, whereas for α-cypermethrin in spring onion PHI of 7 days before harvest is recommended with 3 times of applications and PHI of 21 days for deltamethrin. The theoretical maximum daily intakes of cypermethrin and deltamethrin were 68.8% and 64.2%, respectively, indicating that residues of both compounds did not pose considerable health risks to consumers.
{"title":"Study on Residual Properties and Risk Assessment of α-Cypermethrin and Deltamethrin in the Chives (Allium tuberosum R.) and Spring onion (Allium wakegi Araki)","authors":"Yeong Ju Jo, J. Choi, H. Ham, J. Hur","doi":"10.5338/kjea.2022.41.1.08","DOIUrl":"https://doi.org/10.5338/kjea.2022.41.1.08","url":null,"abstract":"BACKGROUND: This study was conducted to evaluate the residual characteristics and safety assessment of αcypermethrin and deltamethrin in minor crops, chives and spring onion cultivated in greenhouse. METHODS AND RESULTS: The insecticides α-cypermethrin 2% EC and deltamethrin 1% EC used in the experiment were diluted 1,000 times and then sprayed on chives and spring onion twice with 1-week intervals at 0, 7, 14, and 21 days before harvest. The residual insecticides were extracted from the minor crops using QuEchERS method and analyzed by GC-MS/MS. The average initial residues of α-cypermethrin and deltamethrin in chives after 21 days decreased from 2.74 to 0.82 mg/kg and 1.12 to 0.16 mg/kg, respectively. Similarly, in spring onion the residues after the same periods decreased from 0.26 to <0.01 mg/kg for α-cypermethrin and from 0.07 to <0.01 mg/kg for deltamethrin. CONCLUSION(S): The PHIs (pre-harvest intervals) for α-cypermethrin and deltamethrin in chives are recommended as 14 days before harvest with twice applications of the pesticides, whereas for α-cypermethrin in spring onion PHI of 7 days before harvest is recommended with 3 times of applications and PHI of 21 days for deltamethrin. The theoretical maximum daily intakes of cypermethrin and deltamethrin were 68.8% and 64.2%, respectively, indicating that residues of both compounds did not pose considerable health risks to consumers.","PeriodicalId":17872,"journal":{"name":"Korean Journal of Environmental Agriculture","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77275134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-31DOI: 10.5338/kjea.2022.41.1.06
Su-Lim Lee, Jae-Hoon Lee, Jun-Suk Rho, Yu-Jin Park, Ah-Young Choi, Sin-Sil Kim, Seul Lee, Jong-Hwan Park, D. Seo
BACKGROUND: The main source of ammonia in soils, South Korea is agricultural emissions (e.g., fertilizer application and livestock manure), with the recent emission inventories reporting them to be approximately 80% of the total emissions. Ammonia as a pollutant is originated largely from agricultural activity and is an important con-tributor to air quality issues in South Korea. The im-portance of ammonia in agricultural land is also emer-ging. In this study, the characteristics of ammonia emission from Chinese cabbage cultivation fields with application rates of urea sere were evaluated. METHODS AND RESULTS: The ammonia emission characteristics were investigated at the different urea application rates (0, 160, 320, and 640 kg ha -1 ) and the ammonia emission factor in the Chinese cabbage cultivation field was calculated. As application rate of urea application increased, ammonia emissions increased propor-tionally. In 2020 and 2021, cumulative ammonia emissions with urea 320 kg ha -1 treatment were 39.3 and 35.2 kg ha -1 , respectively for 2020 and 2021. When urea fertilizer was applied, the ammonia emission factors were 0.1217 and 0.1358 NH 4+ -N kg N kg -1 in 2020 and 2021, respectively. CONCLUSION(S): Ammonia emissions increased as application rate of urea increased, and the average ammonia emission factor of the Chinese cabbage cultivation field for two years was 0.129 NH 4+ -N kg N kg -1 .
背景:韩国土壤中氨的主要来源是农业排放(例如,施肥和畜禽粪便),最近的排放清单报告它们约占总排放量的80%。作为一种污染物,氨主要来自农业活动,是韩国空气质量问题的一个重要因素。氨在农业用地中的重要性也逐渐显现出来。研究了不同尿素施用量下大白菜田氨排放特征。方法与结果:研究不同尿素施用量(0、160、320和640 kg ha -1)下大白菜田氨排放特性,计算大白菜田氨排放因子。随着尿素施用量的增加,氨排放量成比例增加。2020年和2021年,尿素处理320 kg ha -1的累积氨排放量分别为39.3和35.2 kg ha -1。施尿素时,2020年和2021年氨排放因子分别为0.1217和0.1358 NH 4+ -N kg N kg -1。结论(S):氨排放量随尿素施用量的增加而增加,2年大白菜田平均氨排放因子为0.129 nh4 + -N kg N kg -1。
{"title":"Ammonia Gas Emission Factor at different Application Rate of Urea in Chinese Cabbage Cultivation","authors":"Su-Lim Lee, Jae-Hoon Lee, Jun-Suk Rho, Yu-Jin Park, Ah-Young Choi, Sin-Sil Kim, Seul Lee, Jong-Hwan Park, D. Seo","doi":"10.5338/kjea.2022.41.1.06","DOIUrl":"https://doi.org/10.5338/kjea.2022.41.1.06","url":null,"abstract":"BACKGROUND: The main source of ammonia in soils, South Korea is agricultural emissions (e.g., fertilizer application and livestock manure), with the recent emission inventories reporting them to be approximately 80% of the total emissions. Ammonia as a pollutant is originated largely from agricultural activity and is an important con-tributor to air quality issues in South Korea. The im-portance of ammonia in agricultural land is also emer-ging. In this study, the characteristics of ammonia emission from Chinese cabbage cultivation fields with application rates of urea sere were evaluated. METHODS AND RESULTS: The ammonia emission characteristics were investigated at the different urea application rates (0, 160, 320, and 640 kg ha -1 ) and the ammonia emission factor in the Chinese cabbage cultivation field was calculated. As application rate of urea application increased, ammonia emissions increased propor-tionally. In 2020 and 2021, cumulative ammonia emissions with urea 320 kg ha -1 treatment were 39.3 and 35.2 kg ha -1 , respectively for 2020 and 2021. When urea fertilizer was applied, the ammonia emission factors were 0.1217 and 0.1358 NH 4+ -N kg N kg -1 in 2020 and 2021, respectively. CONCLUSION(S): Ammonia emissions increased as application rate of urea increased, and the average ammonia emission factor of the Chinese cabbage cultivation field for two years was 0.129 NH 4+ -N kg N kg -1 .","PeriodicalId":17872,"journal":{"name":"Korean Journal of Environmental Agriculture","volume":"86 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73557133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-31DOI: 10.5338/kjea.2021.40.4.30
I. Cho, Won-Il Kim, Hae-Ryong Yang, J. Seol, Young Goun Oh, Dong-gi Lee, J. Moon, Woo Young Cho, Kil‐Yong Kim
BACKGROUND: Diquat dibromide is a fast-acting nonselective herbicide and plant growth regulator. In this study, in order to understand the possibility of unintentional pesticide contamination in the following crops, the phytotoxicity and transition of diquat dibromide residue in soil into the following crops such as pepper, radish, lettuce and corn have been assessed through phytotoxicity trial and residual evaluation in the unintentional contamination of the higher residual diquat dibromide. METHODS AND RESULTS: The pepper, radish, lettuce and corn were cultivated in the sandy soil and loam soil where the 35 mg/kg and 90 mg/kg diquat dibromide were applied, respectively. Mild growth inhibition symptoms were observed in radish, lettuce and corn crops at the 90 mg/kgdiquat dibromide treatment on the 30 day of cultivation. Diquat dibromide was analyzed using liquid chromatography QTRAP (LC-MS/MS). The recovery rates of diquat dibromide from soil and crop were determined within range from 89.1 to 116.4% with relative standard deviation less than 14.7%. Diquat dibromide residues in soil were found to be 23.90-30.22 and 69.59-82.57 mg/kg from the 35 mg/kg and 90 mg/kg of diquat dibromide-treated soil, respectively after 30 days of crop cultivation. This result implicates that diquat dibromide did not convert to metabolites and remained mostly in the soil, even though it was partially decomposed during crop cultivation. In addition, the diquat dibromide in pepper and radish that were grown for 47 days, and lettuce and corn that were cultivated for 30 days were detected to be These authors equally contributed to this paper as first authors. *Corresponding author: Il Kyu Cho Phone: +82-62-530-5312, Fax: +82-62-530-5311 E-mail: ilkyucho@naver.com Korean Journal of Environmental Agriculture Korean J Environ Agric. 2021;40(4):260-269, https://doi.org/10.5338/KJEA.2021.40.4.30 Online ISSN: 2233-4173 Published online 2021 November 23, Printed 2021 December 31 Print ISSN: 1225-3537 Phytotoxicity and Translocation of Residual Diquat Dibromide from Sandy Loam and Loam Soil to Following Crops Cultivating in the Soils Il Kyu Cho, Won-Il Kim, Hae-Ryong Yang, Jae Ung Seol, Young Goun Oh, Dong-gi Lee, Joon-Kwan Moon, Woo Young Cho and Kil Yong Kim Eco-Friendly Agri-Bio Research Center, Jeonnam Bioindustry Foundation, Gokseong, 57510, Korea, Korea Bio-Safety Institute Co., LTD, Eumseong 27600, Korea, School of Applied Science in Natural Resources and Environment, Hankyong National University, Anseong 17579, Korea, Department of Agriculture and Biological Chemistry, Chonnam National University, Gwangju 61186, Korea, Hyunnong Co. LTD, Gwangju, 62286, Korea Received: 15 August 2021/ Revised: 3 September 2021/ Accepted: 16 November 2021 Copyright c 2021 The Korean Society of Environmental Agriculture This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which pe
{"title":"Phytotoxicity and Translocation of Residual Diquat Dibromide from Sandy Loam and Loam Soil to Following Crops Cultivating in the Soils","authors":"I. Cho, Won-Il Kim, Hae-Ryong Yang, J. Seol, Young Goun Oh, Dong-gi Lee, J. Moon, Woo Young Cho, Kil‐Yong Kim","doi":"10.5338/kjea.2021.40.4.30","DOIUrl":"https://doi.org/10.5338/kjea.2021.40.4.30","url":null,"abstract":"BACKGROUND: Diquat dibromide is a fast-acting nonselective herbicide and plant growth regulator. In this study, in order to understand the possibility of unintentional pesticide contamination in the following crops, the phytotoxicity and transition of diquat dibromide residue in soil into the following crops such as pepper, radish, lettuce and corn have been assessed through phytotoxicity trial and residual evaluation in the unintentional contamination of the higher residual diquat dibromide. METHODS AND RESULTS: The pepper, radish, lettuce and corn were cultivated in the sandy soil and loam soil where the 35 mg/kg and 90 mg/kg diquat dibromide were applied, respectively. Mild growth inhibition symptoms were observed in radish, lettuce and corn crops at the 90 mg/kgdiquat dibromide treatment on the 30 day of cultivation. Diquat dibromide was analyzed using liquid chromatography QTRAP (LC-MS/MS). The recovery rates of diquat dibromide from soil and crop were determined within range from 89.1 to 116.4% with relative standard deviation less than 14.7%. Diquat dibromide residues in soil were found to be 23.90-30.22 and 69.59-82.57 mg/kg from the 35 mg/kg and 90 mg/kg of diquat dibromide-treated soil, respectively after 30 days of crop cultivation. This result implicates that diquat dibromide did not convert to metabolites and remained mostly in the soil, even though it was partially decomposed during crop cultivation. In addition, the diquat dibromide in pepper and radish that were grown for 47 days, and lettuce and corn that were cultivated for 30 days were detected to be These authors equally contributed to this paper as first authors. *Corresponding author: Il Kyu Cho Phone: +82-62-530-5312, Fax: +82-62-530-5311 E-mail: ilkyucho@naver.com Korean Journal of Environmental Agriculture Korean J Environ Agric. 2021;40(4):260-269, https://doi.org/10.5338/KJEA.2021.40.4.30 Online ISSN: 2233-4173 Published online 2021 November 23, Printed 2021 December 31 Print ISSN: 1225-3537 Phytotoxicity and Translocation of Residual Diquat Dibromide from Sandy Loam and Loam Soil to Following Crops Cultivating in the Soils Il Kyu Cho, Won-Il Kim, Hae-Ryong Yang, Jae Ung Seol, Young Goun Oh, Dong-gi Lee, Joon-Kwan Moon, Woo Young Cho and Kil Yong Kim Eco-Friendly Agri-Bio Research Center, Jeonnam Bioindustry Foundation, Gokseong, 57510, Korea, Korea Bio-Safety Institute Co., LTD, Eumseong 27600, Korea, School of Applied Science in Natural Resources and Environment, Hankyong National University, Anseong 17579, Korea, Department of Agriculture and Biological Chemistry, Chonnam National University, Gwangju 61186, Korea, Hyunnong Co. LTD, Gwangju, 62286, Korea Received: 15 August 2021/ Revised: 3 September 2021/ Accepted: 16 November 2021 Copyright c 2021 The Korean Society of Environmental Agriculture This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which pe","PeriodicalId":17872,"journal":{"name":"Korean Journal of Environmental Agriculture","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73509632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BACKGROUND: Prochloraz has been widely used as an imidazole fungicide on fruits and vegetables in Korea. Analytical approaches to evaluate prochloraz residues in herbal medicine are required for their safety management. In this study, we developed a GC-ECD method for quantitative determination of prochloraz in Platycodi Radix. The metabolite 2,4,6-trichlorophenol (2,4,6-T) was used as a target compound to evaluate total prochloraz residues as it is categorized to a representative residue definition of prochloraz. All residues containing 2,4,6-T were converted to 2,4,6-T and subjected to GC-ECD. METHODS AND RESULTS: In order to verify the applicability, the method was optimized for determining prochloraz and it metabolite 2,4,6-T in Platycodi Radix. Prochloraz and its metabolite 2,4,6-T residuals were extracted using acetone. The extract was diluted with and partitioned directly into dichloromethane to remove polar co-extractives in the aqueous phase. The extract was decomposed to 2,4,6-T, and then the partitioned ion-associate was finally purified by optimized aminopropyl solid-phase extraction (SPE). The limits of quantitation of the method (MLOQs) were 0.04 mg/kg and 0.02 mg/kg, respectively for prochloraz and 2,4,6-T, considering the maximum residue level (MRL) of prochloraz as 0.05 mg/kg in Platycodi Radix. Recovery tests were carried out at two levels of concentration (MLOQ, 10 MLOQ) and resulted in good recoveries (82.1-89.7%). Good reproducibilities were obtained (coefficient of variation < 2.8%), and the linearities of calibration curves were reasonable (r2 > 0.9986) in the range of 0.005-0.5 μg/mL. CONCLUSION(S): The method developed in this study was successfully validated to meet the guidelines required for quantitative determination of pesticides in herbal medicine. Thus, the method could be useful to monitor prochloraz institutionally in herbal medicine.
{"title":"Analysis of Fungicide Prochloraz in Platycodi Radix by GC-ECD","authors":"Gyeong-Seok Oh, Myung-sub Yoon Myung-sub Yoon, Seung-Hyun Yang, Hoon Choi","doi":"10.5338/kjea.2021.40.4.40","DOIUrl":"https://doi.org/10.5338/kjea.2021.40.4.40","url":null,"abstract":"BACKGROUND: Prochloraz has been widely used as an imidazole fungicide on fruits and vegetables in Korea. Analytical approaches to evaluate prochloraz residues in herbal medicine are required for their safety management. In this study, we developed a GC-ECD method for quantitative determination of prochloraz in Platycodi Radix. The metabolite 2,4,6-trichlorophenol (2,4,6-T) was used as a target compound to evaluate total prochloraz residues as it is categorized to a representative residue definition of prochloraz. All residues containing 2,4,6-T were converted to 2,4,6-T and subjected to GC-ECD. METHODS AND RESULTS: In order to verify the applicability, the method was optimized for determining prochloraz and it metabolite 2,4,6-T in Platycodi Radix. Prochloraz and its metabolite 2,4,6-T residuals were extracted using acetone. The extract was diluted with and partitioned directly into dichloromethane to remove polar co-extractives in the aqueous phase. The extract was decomposed to 2,4,6-T, and then the partitioned ion-associate was finally purified by optimized aminopropyl solid-phase extraction (SPE). The limits of quantitation of the method (MLOQs) were 0.04 mg/kg and 0.02 mg/kg, respectively for prochloraz and 2,4,6-T, considering the maximum residue level (MRL) of prochloraz as 0.05 mg/kg in Platycodi Radix. Recovery tests were carried out at two levels of concentration (MLOQ, 10 MLOQ) and resulted in good recoveries (82.1-89.7%). Good reproducibilities were obtained (coefficient of variation < 2.8%), and the linearities of calibration curves were reasonable (r2 > 0.9986) in the range of 0.005-0.5 μg/mL. CONCLUSION(S): The method developed in this study was successfully validated to meet the guidelines required for quantitative determination of pesticides in herbal medicine. Thus, the method could be useful to monitor prochloraz institutionally in herbal medicine.","PeriodicalId":17872,"journal":{"name":"Korean Journal of Environmental Agriculture","volume":"111 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79654238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-31DOI: 10.5338/kjea.2021.40.4.32
I. Shin, Young-Woong Byeon, Byung-Mo Lee, J. Kim, H. Yoon, Ji-young Yoon, Young-Mi Lee, Eun-Jung Han, Sang-Gu Park, Y. Kuk, D. Choi, I. Cho, Sung-Jun Hong
BACKGROUND: Recently, the golden apple snail, Pomacea canaliculata has been used as an environmentally-friendly weed-control agent in rice farming. Although effective for this particular style of farming, P. canaliculata can be destructive to other crops. The objective of this study was to identify overwintering as well as regional and seasonal distribution characteristics of P. canaliculata. Notably, winter is typically fatal for P. canaliculata. However, owing to increasing average global temperatures, we assessed the ability of P. canaliculata to survive through uncharacteristically warm winters. METHODS AND RESULTS: To examine the distribution and overwintering regions of P. canaliculata, We conducted a survey from April 2020 to May 2021 on environmentally-friendly rice fields, agricultural waterways, and streams in 23 cities belonging to 8 provinces. In addition, because air temperature may influence the distribution density of P. canaliculata, we analyzed the winter temperature data (http://weather.rda.go.kr). CONCLUSION(S): In 2021, overwintering of P. canaliculata (1-3 individuals/m2) was observed in the Goheung and Yeongam regions in Jeonnam. Overwintering of P. canaliculata was observed in fewer regions in 2021 than in 2020; this fact may be attributed to the lower minimum temperatures measured in 2021 (approximately 8°C lower) than those in 2020. Our results suggest that overwintering occurs as long as overnight temperatures are ≥ -15°C, but can take place if temperatures are as low as -19°C.
{"title":"Distribution Characteristics and Overwintering of Golden apple snails, Pomacea canaliculata (Gastropoda:Ampullariidae) at the Environment-friendly complex in Korea","authors":"I. Shin, Young-Woong Byeon, Byung-Mo Lee, J. Kim, H. Yoon, Ji-young Yoon, Young-Mi Lee, Eun-Jung Han, Sang-Gu Park, Y. Kuk, D. Choi, I. Cho, Sung-Jun Hong","doi":"10.5338/kjea.2021.40.4.32","DOIUrl":"https://doi.org/10.5338/kjea.2021.40.4.32","url":null,"abstract":"BACKGROUND: Recently, the golden apple snail, Pomacea canaliculata has been used as an environmentally-friendly weed-control agent in rice farming. Although effective for this particular style of farming, P. canaliculata can be destructive to other crops. The objective of this study was to identify overwintering as well as regional and seasonal distribution characteristics of P. canaliculata. Notably, winter is typically fatal for P. canaliculata. However, owing to increasing average global temperatures, we assessed the ability of P. canaliculata to survive through uncharacteristically warm winters. METHODS AND RESULTS: To examine the distribution and overwintering regions of P. canaliculata, We conducted a survey from April 2020 to May 2021 on environmentally-friendly rice fields, agricultural waterways, and streams in 23 cities belonging to 8 provinces. In addition, because air temperature may influence the distribution density of P. canaliculata, we analyzed the winter temperature data (http://weather.rda.go.kr). CONCLUSION(S): In 2021, overwintering of P. canaliculata (1-3 individuals/m2) was observed in the Goheung and Yeongam regions in Jeonnam. Overwintering of P. canaliculata was observed in fewer regions in 2021 than in 2020; this fact may be attributed to the lower minimum temperatures measured in 2021 (approximately 8°C lower) than those in 2020. Our results suggest that overwintering occurs as long as overnight temperatures are ≥ -15°C, but can take place if temperatures are as low as -19°C.","PeriodicalId":17872,"journal":{"name":"Korean Journal of Environmental Agriculture","volume":"110 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87669149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-31DOI: 10.5338/kjea.2021.40.4.37
Sung-Chang Hong, Min-Wook Kim, Jin-Ho Kim
BACKGROUND: More recently, it has been shown that atmospheric ammonia (NH3) plays a primary role in the formation of secondary particulate matter by reacting with the acidic species, e.g. SO2, NOx, to form PM2.5 aerosols in the atmosphere. The Jeonbuk region is an area with high concentration of particulate matter. Due to environmental changes in the Saemangeum reclaimed land with an area of 219 km2, it is necessary to evaluate the impact of the particulate matter and atmospheric ammonia in the Jeonbuk region. METHODS AND RESULTS: Atmospheric ammonia concentrations were measured from June 2020 to May 2021 using a passive sampler and CRDS analyzer. Seasonal and annual atmospheric ammonia concentration measured using passive sampler was significantly lower in Jangjado (background concentration), and the concentration ranged from 11.4 μg/m3 to 18.2 μg/m3. Atmospheric ammonia concentrations in Buan, Gimje, Gunsan, and Wanju regions did not show a significant difference, although there was a slight seasonal difference. The maximum atmospheric ammonia concentration measured using the CRDS analyzer installed in the IAMS near the Saemangeum reclaimed land was 51.5 μg/m3 in autumn, 48.0 μg/m3 in summer, 37.6 μg /m3 in winter, and 32.7 μg/m3 in spring. The minimum concentration was 4.9 μg/m3 in spring, 4.2 μg/m3 in summer, and 3.5 μg/m3 in autumn and winter. The annual average concentration was 14.6 μg/m3. CONCLUSION(S): Long term monitoring of atmospheric ammonia in agricultural areas is required to evaluate the formation of fine particulate matter and its impact on the environment. In addition, continuous technology development is needed to reduce ammonia emitted from farmland.
{"title":"Annual Distribution of Atmospheric Ammonia Concentration in Saemangum Reclaimed Land Area","authors":"Sung-Chang Hong, Min-Wook Kim, Jin-Ho Kim","doi":"10.5338/kjea.2021.40.4.37","DOIUrl":"https://doi.org/10.5338/kjea.2021.40.4.37","url":null,"abstract":"BACKGROUND: More recently, it has been shown that atmospheric ammonia (NH3) plays a primary role in the formation of secondary particulate matter by reacting with the acidic species, e.g. SO2, NOx, to form PM2.5 aerosols in the atmosphere. The Jeonbuk region is an area with high concentration of particulate matter. Due to environmental changes in the Saemangeum reclaimed land with an area of 219 km2, it is necessary to evaluate the impact of the particulate matter and atmospheric ammonia in the Jeonbuk region. METHODS AND RESULTS: Atmospheric ammonia concentrations were measured from June 2020 to May 2021 using a passive sampler and CRDS analyzer. Seasonal and annual atmospheric ammonia concentration measured using passive sampler was significantly lower in Jangjado (background concentration), and the concentration ranged from 11.4 μg/m3 to 18.2 μg/m3. Atmospheric ammonia concentrations in Buan, Gimje, Gunsan, and Wanju regions did not show a significant difference, although there was a slight seasonal difference. The maximum atmospheric ammonia concentration measured using the CRDS analyzer installed in the IAMS near the Saemangeum reclaimed land was 51.5 μg/m3 in autumn, 48.0 μg/m3 in summer, 37.6 μg /m3 in winter, and 32.7 μg/m3 in spring. The minimum concentration was 4.9 μg/m3 in spring, 4.2 μg/m3 in summer, and 3.5 μg/m3 in autumn and winter. The annual average concentration was 14.6 μg/m3. CONCLUSION(S): Long term monitoring of atmospheric ammonia in agricultural areas is required to evaluate the formation of fine particulate matter and its impact on the environment. In addition, continuous technology development is needed to reduce ammonia emitted from farmland.","PeriodicalId":17872,"journal":{"name":"Korean Journal of Environmental Agriculture","volume":"9 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91441997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-31DOI: 10.5338/kjea.2021.40.4.35
Young-Ji Moon, B. Moon, Min-Wook Kim
BACKGROUND: Ammonia is a causative substance for the fine particulate matters (PM2.5) and generates dust through atmospheric reactions. Agricultural sector accounts for 79.3% of ammonia emissions in Korea. Urea and composted organic fertilizer (COF) are used in the soil for the purpose of supplying nutrients in grapevine orchards. This study was conducted to investigate estimates of ammonia emission and examine fruit quality from the rain proof cultivation of the ‘Beni Balad’, applied by urea and COF to the soil. METHODS AND RESULTS: Urea, COF1, and COF2 were applied at the rates of 119, 135, and 271 kg ha-1 respectively. Ammonia emissionwas measured using a dynamic flow-through method. CONCLUSION: Ammonia emissions by urea and COF treatments to ‘Beni Balad’ soils under rain proof cultivation were calculated to be 2.63, 12.95, 2.05, and 3.97 kg NH3-N ha -1 day-1, respectively for the control, urea, COF1, and COF2. Urea soil application increased soluble solids, firmness, and anthocyanin content in fruits at harvest, and COF1 application increased the soluble solids and anthocyanin content. For all the treatments, acidity increased in the harvested fruits
背景:氨是细颗粒物(PM2.5)的致病物质,通过大气反应产生粉尘。农业部门的氨排放量占韩国总排放量的79.3%。在葡萄园土壤中施用尿素和有机肥(COF)来补充养分。本研究旨在研究“贝尼巴拉德”(Beni Balad)在土壤中施用尿素和COF的防雨栽培过程中氨排放的估算值和果实品质。方法与结果:尿素、COF1和COF2的施用量分别为119、135和271 kg ha-1。氨排放采用动态流量法测量。结论:在防雨栽培条件下,对照、尿素、COF1和COF2处理下,尿素和COF对“贝尼巴拉德”土壤的氨排放量分别为2.63、12.95、2.05和3.97 kg NH3-N ha -1 d -1。尿素土壤处理提高了收获期果实可溶性固形物、硬度和花青素含量,COF1土壤处理提高了果实可溶性固形物和花青素含量。在所有处理下,果实的酸度都有所增加
{"title":"Effects of Composted Organic Fertilizer and Urea Application to Soil on the Ammonia Emissions and Fruit Quality of 'Beni Balad' Grapevine in Rain Proof Cultivation","authors":"Young-Ji Moon, B. Moon, Min-Wook Kim","doi":"10.5338/kjea.2021.40.4.35","DOIUrl":"https://doi.org/10.5338/kjea.2021.40.4.35","url":null,"abstract":"BACKGROUND: Ammonia is a causative substance for the fine particulate matters (PM2.5) and generates dust through atmospheric reactions. Agricultural sector accounts for 79.3% of ammonia emissions in Korea. Urea and composted organic fertilizer (COF) are used in the soil for the purpose of supplying nutrients in grapevine orchards. This study was conducted to investigate estimates of ammonia emission and examine fruit quality from the rain proof cultivation of the ‘Beni Balad’, applied by urea and COF to the soil. METHODS AND RESULTS: Urea, COF1, and COF2 were applied at the rates of 119, 135, and 271 kg ha-1 respectively. Ammonia emissionwas measured using a dynamic flow-through method. CONCLUSION: Ammonia emissions by urea and COF treatments to ‘Beni Balad’ soils under rain proof cultivation were calculated to be 2.63, 12.95, 2.05, and 3.97 kg NH3-N ha -1 day-1, respectively for the control, urea, COF1, and COF2. Urea soil application increased soluble solids, firmness, and anthocyanin content in fruits at harvest, and COF1 application increased the soluble solids and anthocyanin content. For all the treatments, acidity increased in the harvested fruits","PeriodicalId":17872,"journal":{"name":"Korean Journal of Environmental Agriculture","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77897782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-31DOI: 10.5338/kjea.2021.40.4.38
J. Yoon, Seung Won Lee, D. Lim, Seon Wook Kim, I. Kim
BACKGROUND: Cyantraniliprole is a systemic diamide insecticide that has been used to control lepidopteran pests in agriculture. Cyantraniliprole has become an issue due to its potentiality of unexpectable contamination in rotational crop cultivation. Thus, studies on the evaluation of cyantraniliprole translocated from soil into rotational crops are required. METHODS AND RESULTS: Cyantraniliprole was treated at a yearly maximum application level onto bare soil under greenhouse conditions in two geographically different regions. Lettuce was transplanted and spinach and radish were sown onto the soil 30 and 60 days-plant back intervals (PBIs) after cyantraniliprole treatment. The QuEChERS method was modified and coupled with LC/MS/MS analysis to determine the residues of cyantraniliprole in soil and plant samples. The methods for sample preparation and instrumental conditions were validated to meet the criteria of Codex guidelines and were successful to determine cyantraniliprole quantitatively and qualitatively in the samples. Cyantraniliprole residues in lettuce samples were 0.01 mg/kg for PBI 60 and 0.02 mg/kg for PBI 30, respectively. The residues in spinach samples were 0.01 mg/kg for PBI 60 and 0.01~0.02 mg/kg for PBI 30, respectively. Less than limit of the quantitation (LOQ) level (0.01 mg/kg) of cyantraniliprole was observed in radish samples. The residues in the plant samples were found as the levels less than maximum residue limit (MRL) for leafy and root vegetables. CONCLUSION(S): This study suggests PBI 30~60 days for rotational cultivation of lettuce, spinach and radish in greenhouse soil treated with cyantraniliprole at a yearly maximum application level.
{"title":"Evaluation of Cyantraniliprole Residues Translocated by Lettuce, Spinach and Radish","authors":"J. Yoon, Seung Won Lee, D. Lim, Seon Wook Kim, I. Kim","doi":"10.5338/kjea.2021.40.4.38","DOIUrl":"https://doi.org/10.5338/kjea.2021.40.4.38","url":null,"abstract":"BACKGROUND: Cyantraniliprole is a systemic diamide insecticide that has been used to control lepidopteran pests in agriculture. Cyantraniliprole has become an issue due to its potentiality of unexpectable contamination in rotational crop cultivation. Thus, studies on the evaluation of cyantraniliprole translocated from soil into rotational crops are required. METHODS AND RESULTS: Cyantraniliprole was treated at a yearly maximum application level onto bare soil under greenhouse conditions in two geographically different regions. Lettuce was transplanted and spinach and radish were sown onto the soil 30 and 60 days-plant back intervals (PBIs) after cyantraniliprole treatment. The QuEChERS method was modified and coupled with LC/MS/MS analysis to determine the residues of cyantraniliprole in soil and plant samples. The methods for sample preparation and instrumental conditions were validated to meet the criteria of Codex guidelines and were successful to determine cyantraniliprole quantitatively and qualitatively in the samples. Cyantraniliprole residues in lettuce samples were 0.01 mg/kg for PBI 60 and 0.02 mg/kg for PBI 30, respectively. The residues in spinach samples were 0.01 mg/kg for PBI 60 and 0.01~0.02 mg/kg for PBI 30, respectively. Less than limit of the quantitation (LOQ) level (0.01 mg/kg) of cyantraniliprole was observed in radish samples. The residues in the plant samples were found as the levels less than maximum residue limit (MRL) for leafy and root vegetables. CONCLUSION(S): This study suggests PBI 30~60 days for rotational cultivation of lettuce, spinach and radish in greenhouse soil treated with cyantraniliprole at a yearly maximum application level.","PeriodicalId":17872,"journal":{"name":"Korean Journal of Environmental Agriculture","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83670541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-31DOI: 10.5338/kjea.2021.40.4.29
Injun Hwang, T. Lee, Daesoo Park, Eunsun Kim, Song-Yi Choi, Jeong-Eun Hyun, N. Rajalingam, Se-Ri Kim, M. Cho
BACKGROUND: Contaminated water was a major source of food-borne pathogens in various recent fresh producerelated outbreaks. This study was conducted to investigate the microbial contamination level and correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water by logistic regression analysis. METHODS AND RESULTS: Agricultural water was collected from 457 sites including surface water (n=300 sites) and groundwater (n=157 sites) in South Korea from 2018 to 2020. Sanitary indicator bacteria (total coliform, fecal coliform, and Escherichia coli) and food-borne pathogens (pathogenic E. coli, E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were analyzed. In surface water, the coliform, fecal coliform, and E. coli were 3.27±0.89 log CFU/100 mL, 1.90±1.19 log CFU/100 mL, and 1.39±1.26 log CFU/100 mL, respectively. For groundwater, three kinds of sanitary indicators ranged in the level from 0.09 0.57 log CFU/100 mL. Pathogenic E. coli, Salmonella and Listeria monocytogenes were detected from 3%-site, 1.5%site, and 0.6%-site water samples, respectively. According to the results of correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens by logistic regression analysis, the probability of pathogen detection increased individually by 1.45 and 1.34 times as each total coliform and E. coli concentration increased by 1 log CFU/100mL. The accuracy of the model was 70.4%, and sensitivity and specificity were 81.5% and 51.7%, respectively. CONCLUSION(S): The results indicate the need to manage the microbial risk of agricultural water to enhance the safety of fresh produce. In addition, logistic regression analysis is useful to analyze the correlation between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water.
{"title":"Investigation of Microbial Safety and Correlations Between the Level of Sanitary Indicator Bacteria and the Detection Ratio of Pathogens in Agricultural Water","authors":"Injun Hwang, T. Lee, Daesoo Park, Eunsun Kim, Song-Yi Choi, Jeong-Eun Hyun, N. Rajalingam, Se-Ri Kim, M. Cho","doi":"10.5338/kjea.2021.40.4.29","DOIUrl":"https://doi.org/10.5338/kjea.2021.40.4.29","url":null,"abstract":"BACKGROUND: Contaminated water was a major source of food-borne pathogens in various recent fresh producerelated outbreaks. This study was conducted to investigate the microbial contamination level and correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water by logistic regression analysis. METHODS AND RESULTS: Agricultural water was collected from 457 sites including surface water (n=300 sites) and groundwater (n=157 sites) in South Korea from 2018 to 2020. Sanitary indicator bacteria (total coliform, fecal coliform, and Escherichia coli) and food-borne pathogens (pathogenic E. coli, E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were analyzed. In surface water, the coliform, fecal coliform, and E. coli were 3.27±0.89 log CFU/100 mL, 1.90±1.19 log CFU/100 mL, and 1.39±1.26 log CFU/100 mL, respectively. For groundwater, three kinds of sanitary indicators ranged in the level from 0.09 0.57 log CFU/100 mL. Pathogenic E. coli, Salmonella and Listeria monocytogenes were detected from 3%-site, 1.5%site, and 0.6%-site water samples, respectively. According to the results of correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens by logistic regression analysis, the probability of pathogen detection increased individually by 1.45 and 1.34 times as each total coliform and E. coli concentration increased by 1 log CFU/100mL. The accuracy of the model was 70.4%, and sensitivity and specificity were 81.5% and 51.7%, respectively. CONCLUSION(S): The results indicate the need to manage the microbial risk of agricultural water to enhance the safety of fresh produce. In addition, logistic regression analysis is useful to analyze the correlation between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water.","PeriodicalId":17872,"journal":{"name":"Korean Journal of Environmental Agriculture","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79754326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-31DOI: 10.5338/kjea.2021.40.4.34
C. Kim, Denver I. Walitang, T. Sa
BACKGROUND: Global warming is one of the most pressing environmental issues which concomitantly complicates global climate change. Methane emission is a balance between methanogenesis and methane consumption, both of which are driven by microbial actions in different ecosystems producing methane, one of the major greenhouse gases. Paddy fields are major sources of anthropogenic methane emissions and could be compounded by organic fertilization. METHODS AND RESULTS: Literature reviews were conducted to give an overview of the global warming conditions and to present the relationship of carbon and methane to greenhouse gas emissions, and the need to understand the underlying processes of methane emission. A more extensive review was done from studies on methane emission in paddy fields under organic fertilization with greater emphasis on long term amendments. Changes in paddy soils due to organic fertilization include alterations of the physicochemical properties and changes in biological components. There are diverse phylogenetic groups of methanogens and methane oxidizing bacteria involved in methane emission. Also, multiple factors influence methanogenesis and methane oxidation in rice paddy fields under organic fertilization and they should be greatly considered when developing mitigating steps in methane emission in paddy fields especially under long term organic fertilization. CONCLUSION(S): This review showed that organic fertilization, particularly for long term management practices, influenced both physicochemical and biological components of the paddy fields which could ultimately affect methanogenesis, methane oxidation, and methane emission. Understanding interrelated factors affecting methane emission helps create ways to mitigate their impact on global warming and climate change.
{"title":"Methanogenesis and Methane Oxidation in Paddy Fields under Organic Fertilization","authors":"C. Kim, Denver I. Walitang, T. Sa","doi":"10.5338/kjea.2021.40.4.34","DOIUrl":"https://doi.org/10.5338/kjea.2021.40.4.34","url":null,"abstract":"BACKGROUND: Global warming is one of the most pressing environmental issues which concomitantly complicates global climate change. Methane emission is a balance between methanogenesis and methane consumption, both of which are driven by microbial actions in different ecosystems producing methane, one of the major greenhouse gases. Paddy fields are major sources of anthropogenic methane emissions and could be compounded by organic fertilization. METHODS AND RESULTS: Literature reviews were conducted to give an overview of the global warming conditions and to present the relationship of carbon and methane to greenhouse gas emissions, and the need to understand the underlying processes of methane emission. A more extensive review was done from studies on methane emission in paddy fields under organic fertilization with greater emphasis on long term amendments. Changes in paddy soils due to organic fertilization include alterations of the physicochemical properties and changes in biological components. There are diverse phylogenetic groups of methanogens and methane oxidizing bacteria involved in methane emission. Also, multiple factors influence methanogenesis and methane oxidation in rice paddy fields under organic fertilization and they should be greatly considered when developing mitigating steps in methane emission in paddy fields especially under long term organic fertilization. CONCLUSION(S): This review showed that organic fertilization, particularly for long term management practices, influenced both physicochemical and biological components of the paddy fields which could ultimately affect methanogenesis, methane oxidation, and methane emission. Understanding interrelated factors affecting methane emission helps create ways to mitigate their impact on global warming and climate change.","PeriodicalId":17872,"journal":{"name":"Korean Journal of Environmental Agriculture","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83730501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}