Fat is stored in distinct depots with unique features in both mice and humans and B cells reside in all adipose depots. We have shown that B cells modulate cardiometabolic disease through activities in two of these key adipose depots: visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT). VAT refers to the adipose tissue surrounding organs, within the abdomen and thorax, and is comprised predominantly of white adipocytes. This depot has been implicated in mediating obesity-related dysmetabolism. PVAT refers to adipose tissue surrounding major arteries. It had long been thought to exist to provide protection and insulation for the vessel, yet recent work demonstrates an important role for PVAT in harboring immune cells, promoting their function and regulating the biology of the underlying vessel. The role of B-2 cells and adaptive immunity in adipose tissue biology has been nicely reviewed elsewhere. Given that, the predominance of B-1 cells in adipose tissue at homeostasis, and the emerging role of B-1 cells in a variety of disease states, we will focus this review on how B-1 cells function in VAT and PVAT depots to promote homeostasis and limit inflammation linked to cardiometabolic disease and factors that regulate this function.
{"title":"B-1 lymphocytes in adipose tissue as innate modulators of inflammation linked to cardiometabolic disease","authors":"Akshaya K. Meher, Coleen A. McNamara","doi":"10.1111/imr.13342","DOIUrl":"10.1111/imr.13342","url":null,"abstract":"<p>Fat is stored in distinct depots with unique features in both mice and humans and B cells reside in all adipose depots. We have shown that B cells modulate cardiometabolic disease through activities in two of these key adipose depots: visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT). VAT refers to the adipose tissue surrounding organs, within the abdomen and thorax, and is comprised predominantly of white adipocytes. This depot has been implicated in mediating obesity-related dysmetabolism. PVAT refers to adipose tissue surrounding major arteries. It had long been thought to exist to provide protection and insulation for the vessel, yet recent work demonstrates an important role for PVAT in harboring immune cells, promoting their function and regulating the biology of the underlying vessel. The role of B-2 cells and adaptive immunity in adipose tissue biology has been nicely reviewed elsewhere. Given that, the predominance of B-1 cells in adipose tissue at homeostasis, and the emerging role of B-1 cells in a variety of disease states, we will focus this review on how B-1 cells function in VAT and PVAT depots to promote homeostasis and limit inflammation linked to cardiometabolic disease and factors that regulate this function.</p>","PeriodicalId":178,"journal":{"name":"Immunological Reviews","volume":"324 1","pages":"95-103"},"PeriodicalIF":7.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140920808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Well known functions of adipose tissue include energy storage, regulation of thermogenesis, and glucose homeostasis—each of which are associated with the metabolic functions of fat. However, adipose tissues also have important immune functions. In this issue of Immunological Reviews, we present a series of articles that highlight the immune functions of adipose tissue, including the roles of specialized adipose-resident immune cells and fat-associated lymphoid structures. Importantly, immune cell functions in adipose tissues are often linked to the metabolic functions of adipocytes and vice versa. These reciprocal interactions and how they influence both immune and metabolic functions will be discussed in each article. In the first article, Wang et al.,11 discuss adipose-associated macrophages and how obesity and metabolism impact their phenotype and function. Several articles in this issue discuss T cells as either contributors to, or regulators of, inflammatory responses in adipose tissues. Valentine and Nikolajczyk12 provide insights into the role of T cells in obesity-associated inflammation and their contribution to metabolic dysfunction, whereas an article from Kallies and Vasanthakumar13 and another from Elkins and Li14 describe adipose-associated Tregs and how they help prevent inflammation and maintain metabolic homeostasis. Articles from Okabe35 as well as from Daley and Benezech15 discuss the structure and function of fat-associated lymphoid clusters (FALCs) that are prevalent in some adipose tissues and support local immune responses to pathogens, gut-derived microbes and fat-associated antigens. Finally, an article from Meher and McNamara16 describes how innate-like B1 cells in adipose tissues regulate cardiometabolic disease. Importantly, these articles highlight the physical and functional attributes of adipose tissues that are different between mice and humans, the metabolic and immune differences between various adipose depots in the body and the differences in immune cells, adipose tissues and metabolic functions between the sexes. At the end of this preface, we highlight how these differences are critically important for our understanding of anti-tumor immunity to cancers that metastasize to a specific example of visceral adipose tissue, the omentum. Together, these articles identify some unanswered mechanistic questions that will be important to address for a better understanding of immunity in adipose tissues.
{"title":"Immunity in adipose tissues: Cutting through the fat","authors":"Troy D. Randall, Selene Meza-Perez","doi":"10.1111/imr.13344","DOIUrl":"10.1111/imr.13344","url":null,"abstract":"<p>Well known functions of adipose tissue include energy storage, regulation of thermogenesis, and glucose homeostasis—each of which are associated with the metabolic functions of fat. However, adipose tissues also have important immune functions. In this issue of Immunological Reviews, we present a series of articles that highlight the immune functions of adipose tissue, including the roles of specialized adipose-resident immune cells and fat-associated lymphoid structures. Importantly, immune cell functions in adipose tissues are often linked to the metabolic functions of adipocytes and vice versa. These reciprocal interactions and how they influence both immune and metabolic functions will be discussed in each article. In the first article, Wang et al.,<sup>11</sup> discuss adipose-associated macrophages and how obesity and metabolism impact their phenotype and function. Several articles in this issue discuss T cells as either contributors to, or regulators of, inflammatory responses in adipose tissues. Valentine and Nikolajczyk<sup>12</sup> provide insights into the role of T cells in obesity-associated inflammation and their contribution to metabolic dysfunction, whereas an article from Kallies and Vasanthakumar<sup>13</sup> and another from Elkins and Li<sup>14</sup> describe adipose-associated Tregs and how they help prevent inflammation and maintain metabolic homeostasis. Articles from Okabe<sup>35</sup> as well as from Daley and Benezech<sup>15</sup> discuss the structure and function of fat-associated lymphoid clusters (FALCs) that are prevalent in some adipose tissues and support local immune responses to pathogens, gut-derived microbes and fat-associated antigens. Finally, an article from Meher and McNamara<sup>16</sup> describes how innate-like B1 cells in adipose tissues regulate cardiometabolic disease. Importantly, these articles highlight the physical and functional attributes of adipose tissues that are different between mice and humans, the metabolic and immune differences between various adipose depots in the body and the differences in immune cells, adipose tissues and metabolic functions between the sexes. At the end of this preface, we highlight how these differences are critically important for our understanding of anti-tumor immunity to cancers that metastasize to a specific example of visceral adipose tissue, the omentum. Together, these articles identify some unanswered mechanistic questions that will be important to address for a better understanding of immunity in adipose tissues.</p>","PeriodicalId":178,"journal":{"name":"Immunological Reviews","volume":"324 1","pages":"4-10"},"PeriodicalIF":7.5,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262970/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}