Pub Date : 2018-06-21DOI: 10.15517/LANKE.V18I2.33673
Ernesto Testé, Alejandro Palmarola, L. González-Torres
La distribución de las plantas epífitas está influenciada por las características de su forófito, que provee el sustrato necesario para el establecimiento. Encyclia pyriformis (Lindl.) Schltr. es una especie característica de las arenas blancas del Occidente de Cuba, con una distribución restringida, lo cual es un elemento clave para el manejo y mantenimiento de la población en el tiempo. El objetivo del trabajo es caracterizar el uso del microhábitat de E. pyriformis y analizar la relación entre las variables ambientales y morfológicas. El estudio se realizó en 39 parcelas (25 m2), en la Reserva Ecológica Los Pretiles. Se identificaron a los individuos de E. pyriformis, en los cuales se midieron seis variables ambientales y cuatro morfológicas. Los valores promedios de las variables ambientales fue de 9.42 cm de diámetro del tronco, 66.58% de cobertura vegetal, 373 m de distancia a la costa, 0.84 m de altura sobre el suelo y 2.37 m de altura del forófito. Para las variables morfológicas los valores promedios fueron de 24.9 cm para altura del individuo, 1.87 cm de diámetro del pseudobulbo, 13.62 cm y 2.06 cm de largo y ancho de la hoja, respectivamente. No se encontró correlación entre las variables ambientales y morfológicas. La ausencia de correlación entre los dos grupos de variables parece indicar que la combinación de variables ambientales analizadas no tienen un efecto evidente sobre la morfología de los individuos de E. pyriformis. Entender los factores ambientales que limitan y afectan la distribución de las especies es crítico para el mantenimiento de la diversidad. Identificar los factores que limitan el potencial de colonización de las orquídeas permitiría predicciones certeras ante cambios futuros en la comunidad y el ecosistema, lo cual puede influir en las estrategias de manejo de la especie.
{"title":"Uso del microhábitat por Encyclia pyriformis (Orchidaceae) en la Reserva Ecológica Los Pretiles, Cuba","authors":"Ernesto Testé, Alejandro Palmarola, L. González-Torres","doi":"10.15517/LANKE.V18I2.33673","DOIUrl":"https://doi.org/10.15517/LANKE.V18I2.33673","url":null,"abstract":"La distribución de las plantas epífitas está influenciada por las características de su forófito, que provee el sustrato necesario para el establecimiento. Encyclia pyriformis (Lindl.) Schltr. es una especie característica de las arenas blancas del Occidente de Cuba, con una distribución restringida, lo cual es un elemento clave para el manejo y mantenimiento de la población en el tiempo. El objetivo del trabajo es caracterizar el uso del microhábitat de E. pyriformis y analizar la relación entre las variables ambientales y morfológicas. El estudio se realizó en 39 parcelas (25 m2), en la Reserva Ecológica Los Pretiles. Se identificaron a los individuos de E. pyriformis, en los cuales se midieron seis variables ambientales y cuatro morfológicas. Los valores promedios de las variables ambientales fue de 9.42 cm de diámetro del tronco, 66.58% de cobertura vegetal, 373 m de distancia a la costa, 0.84 m de altura sobre el suelo y 2.37 m de altura del forófito. Para las variables morfológicas los valores promedios fueron de 24.9 cm para altura del individuo, 1.87 cm de diámetro del pseudobulbo, 13.62 cm y 2.06 cm de largo y ancho de la hoja, respectivamente. No se encontró correlación entre las variables ambientales y morfológicas. La ausencia de correlación entre los dos grupos de variables parece indicar que la combinación de variables ambientales analizadas no tienen un efecto evidente sobre la morfología de los individuos de E. pyriformis. Entender los factores ambientales que limitan y afectan la distribución de las especies es crítico para el mantenimiento de la diversidad. Identificar los factores que limitan el potencial de colonización de las orquídeas permitiría predicciones certeras ante cambios futuros en la comunidad y el ecosistema, lo cual puede influir en las estrategias de manejo de la especie. ","PeriodicalId":18023,"journal":{"name":"Lankesteriana","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46213125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-30DOI: 10.15517/LANK.V16I2.26012
F. Pupulin
Taxonomic work has been historically regarded as a two-fold discipline. The first, which is basically aimed at answering the question about the diversity in whatever group under study, includes most of the “biological” questions of the research. Understanding of genetic and morphological variation, structure of populations and life cycles, biogeography and phylogeography, ecological modeling, pollination and other biological components is required to define the relationships among the taxa of the group and eventually to describe their diversity. The second part of the work consists in applying a correct name to all of the organisms as they result from the biological work. This second step is usually interpreted as the documentary component of the research, and in fact it mostly deals with the document sources and the rules of biological nomenclature (such as protologues, types and other historical materials associated with the type collections, etc.). However, the use of nomenclatural sources with little or no consideration for the biological aspects of the concerned organisms can be misleading, and the same concept of “type” can be hardly understood if not framed in a rich biological context. Type specimens are just random, individual samples that must be interpreted in the context of the geographical and biological integrity of any given species, and this requires at least some direct knowledge of the organisms and their biology. When the geographical origin of type specimens lies outside the political boundaries of a given study area, taxonomic research is seriously hampered by the impossibility to visualize and understand them in a biological framework. A specific case from the research intended to complete the treatment of the Orchidaceae for the flora of Costa Rica will exemplify how a cooperative approach based on a shared methodology may be the only way to resolve the taxonomy of complex species.
{"title":"Why we have no serious alternatives but cooperative taxonomy","authors":"F. Pupulin","doi":"10.15517/LANK.V16I2.26012","DOIUrl":"https://doi.org/10.15517/LANK.V16I2.26012","url":null,"abstract":"Taxonomic work has been historically regarded as a two-fold discipline. The first, which is basically aimed at answering the question about the diversity in whatever group under study, includes most of the “biological” questions of the research. Understanding of genetic and morphological variation, structure of populations and life cycles, biogeography and phylogeography, ecological modeling, pollination and other biological components is required to define the relationships among the taxa of the group and eventually to describe their diversity. The second part of the work consists in applying a correct name to all of the organisms as they result from the biological work. This second step is usually interpreted as the documentary component of the research, and in fact it mostly deals with the document sources and the rules of biological nomenclature (such as protologues, types and other historical materials associated with the type collections, etc.). However, the use of nomenclatural sources with little or no consideration for the biological aspects of the concerned organisms can be misleading, and the same concept of “type” can be hardly understood if not framed in a rich biological context. Type specimens are just random, individual samples that must be interpreted in the context of the geographical and biological integrity of any given species, and this requires at least some direct knowledge of the organisms and their biology. When the geographical origin of type specimens lies outside the political boundaries of a given study area, taxonomic research is seriously hampered by the impossibility to visualize and understand them in a biological framework. A specific case from the research intended to complete the treatment of the Orchidaceae for the flora of Costa Rica will exemplify how a cooperative approach based on a shared methodology may be the only way to resolve the taxonomy of complex species.","PeriodicalId":18023,"journal":{"name":"Lankesteriana","volume":"17 1","pages":"279-291"},"PeriodicalIF":0.0,"publicationDate":"2016-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72878908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-30DOI: 10.15517/LANK.V16I2.26010
E. Pansarin
Vanilloideae as currently circumscribed comprises nine genera and two tribes: Vanilleae and Pogonieae. The pantropical genus Vanilla has been frequently assumed to be natural on the basis of its climbing habit and lateral inflorescences. However, the inclusion of the rare Dictyophyllaria dietschiana in phylogenetic analyses makes the genus Vanilla paraphyletic. Within Pogonieae, phylogenetic analyses show that inclusion of Pogoniopsis turns the tribe paraphyletic. All analyses reveal that Pogoniopsis is closely related to members of Epidendroideae. Members of Pogonieae are pollinated by several groups of solitary and social bees, two pollination systems being recognized: reward-producing and deceptive. Molecular phylogeny suggests that the common ancestor to Pogonieae gave rise to two evolutionary lineages: one tropical with a condition of reward production; and one predominantly temperate-invading line with deceptive flowers. Reward-producing flowers characterize South and Central American clade (= Cleistes), while deceptive pollination is prominent in the clade including North American-Asiatic taxa plus Amazonian Duckeella . Species of “orchid bees” have been recorded as pollinators of the genus Vanilla ( V. planifolia group and V. pompona group) in the Neotropics. In species of the V. pompona group, these bees are attracted by the fragrance of the flowers. Hummingbirds have been reported to pollinate some species of Vanilla . Vanilla insignis, V. odorata and V. planifolia are known to be pollinated through generalized food deception. Some species of Vanilla yield fruits through spontaneous self-pollination. This form of autogamy has been reported for V. griffithii, V. palmarum, V. planifolia, V. savannarum and V. bicolor . In Brazil, data on the pollination biology of Vanilla are scarce, but conclusive data are available for V. edwallii , which is pollinated by Epicharis (Apidae: Centridini). This species is rewardless, but male Epicharis are attracted to its flowers by their fragrance. Additionally, the Brazilian V. dubia and E. sclerophyllum are pollinated by bees. The mentum region of V. dubia and V. edwallii is dry, whereas that of E. sclerophyllum presents a small quantity of nectar. Flowers of E. sclerophyllum are scentless, while those of V. dubia are odoriferous. Vanilla dubia and V. edwallii are self-compatible and need a pollinator to yield fruits. In contrast, Epistephium sclerophyllum sets fruits through spontaneous self-pollination, but biotic pollination also occurs. Both species are primarily adapted to pollination by euglossine bees. Pollination by Euglossini seems to have evolved at least twice along the evolution of Vanilleae. Furthermore, shifts between rewarding and rewardless flowers and between autogamous and allogamous species have been reported among vanillas.
目前限定的香兰科包括9属和2个科:香兰科和香兰科。泛热带香草属经常被认为是自然的基础上,它的攀缘习惯和横向花序。然而,在系统发育分析中包含了罕见的双叶茶树,使香草属成为副葡萄属。在Pogonieae中,系统发育分析表明,Pogoniopsis的包含使部落成为副球菌。所有的分析表明,Pogoniopsis与附着物科成员有密切的关系。Pogonieae的成员由几组独居和群居蜜蜂授粉,两种授粉系统被认可:报偿和欺骗。分子系统发育表明,Pogonieae的共同祖先产生了两个进化谱系:一个是热带的,具有奖励生产的条件;还有一条主要是温带入侵线,上面有欺骗性的花。南美洲和中美洲分支(= Cleistes)的特征是产生报赏花,而在包括北美-亚洲分类群和亚马逊Duckeella的分支中,欺骗性授粉是突出的。在新热带地区,“兰花蜂”已被记录为香草属(V. planifolia组和V. pompona组)的传粉者。在pompona组的物种中,这些蜜蜂被花的香味所吸引。据报道,蜂鸟为一些香草授粉。众所周知,香草、香草和planifolia都是通过普遍的食物欺骗来授粉的。一些种类的香草通过自发自花授粉结果。据报道,这种形式的自交交配在V. griffithii, V. palmarum, V. planifolia, V. savannarum和V. bicolor。在巴西,关于香草的传粉生物学的数据很少,但关于香草的传粉生物学有确凿的数据,这是由Epicharis (Apidae: Centridini)传粉的。这个物种是没有回报的,但雄性伊壁查里斯被其花朵的香味所吸引。此外,巴西V. dubia和E. scleroophyllum是由蜜蜂授粉的。dubia和edwalli的动力区是干燥的,而E. sclerophyllum的动力区则有少量的花蜜。硬叶莲的花是无味的,而杜鹃的花是有气味的。dubia香草和V. edwalli香草是自交的,需要传粉者才能结出果实。与此相反,硬叶Epistephium sclerophyllum通过自发自花授粉结果,但也发生生物授粉。这两个物种都主要适应由真丝蜂授粉。Euglossini的授粉似乎在香草科的进化过程中至少进化了两次。此外,据报道,在香草中,有酬花和无酬花之间以及自交和异交物种之间的转变。
{"title":"RECENT ADVANCES ON EVOLUTION OF POLLINATION SYSTEMS AND REPRODUCTIVE BIOLOGY OF VANILLOIDEAE (ORCHIDACEAE)","authors":"E. Pansarin","doi":"10.15517/LANK.V16I2.26010","DOIUrl":"https://doi.org/10.15517/LANK.V16I2.26010","url":null,"abstract":"Vanilloideae as currently circumscribed comprises nine genera and two tribes: Vanilleae and Pogonieae. The pantropical genus Vanilla has been frequently assumed to be natural on the basis of its climbing habit and lateral inflorescences. However, the inclusion of the rare Dictyophyllaria dietschiana in phylogenetic analyses makes the genus Vanilla paraphyletic. Within Pogonieae, phylogenetic analyses show that inclusion of Pogoniopsis turns the tribe paraphyletic. All analyses reveal that Pogoniopsis is closely related to members of Epidendroideae. Members of Pogonieae are pollinated by several groups of solitary and social bees, two pollination systems being recognized: reward-producing and deceptive. Molecular phylogeny suggests that the common ancestor to Pogonieae gave rise to two evolutionary lineages: one tropical with a condition of reward production; and one predominantly temperate-invading line with deceptive flowers. Reward-producing flowers characterize South and Central American clade (= Cleistes), while deceptive pollination is prominent in the clade including North American-Asiatic taxa plus Amazonian Duckeella . Species of “orchid bees” have been recorded as pollinators of the genus Vanilla ( V. planifolia group and V. pompona group) in the Neotropics. In species of the V. pompona group, these bees are attracted by the fragrance of the flowers. Hummingbirds have been reported to pollinate some species of Vanilla . Vanilla insignis, V. odorata and V. planifolia are known to be pollinated through generalized food deception. Some species of Vanilla yield fruits through spontaneous self-pollination. This form of autogamy has been reported for V. griffithii, V. palmarum, V. planifolia, V. savannarum and V. bicolor . In Brazil, data on the pollination biology of Vanilla are scarce, but conclusive data are available for V. edwallii , which is pollinated by Epicharis (Apidae: Centridini). This species is rewardless, but male Epicharis are attracted to its flowers by their fragrance. Additionally, the Brazilian V. dubia and E. sclerophyllum are pollinated by bees. The mentum region of V. dubia and V. edwallii is dry, whereas that of E. sclerophyllum presents a small quantity of nectar. Flowers of E. sclerophyllum are scentless, while those of V. dubia are odoriferous. Vanilla dubia and V. edwallii are self-compatible and need a pollinator to yield fruits. In contrast, Epistephium sclerophyllum sets fruits through spontaneous self-pollination, but biotic pollination also occurs. Both species are primarily adapted to pollination by euglossine bees. Pollination by Euglossini seems to have evolved at least twice along the evolution of Vanilleae. Furthermore, shifts between rewarding and rewardless flowers and between autogamous and allogamous species have been reported among vanillas.","PeriodicalId":18023,"journal":{"name":"Lankesteriana","volume":"160 1","pages":"255-267"},"PeriodicalIF":0.0,"publicationDate":"2016-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86071576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-30DOI: 10.15517/LANK.V16I2.26005
D. Bogarín, F. Pupulin, E. Smets, B. Gravendeel
Historically, the isthmus of Costa Rica and Panama has been a source of fascination for its strategic position linking North America to South America. In terms of biodiversity, the isthmus is considered one of the richest regions in the world. Orchidaceae is the most diverse plant family in the area, and the number of species is triple that of other well-represented angiosperm families such as Rubiaceae, Fabaceae and Poaceae. Though we are still far from knowing the exact number of orchid species occurring extant in both countries nowadays, at present the orchid flora reported for Costa Rica (1574 spp.) and Panama (1372 spp.) summarise together about 2010 species; which represents 6.5-8.0% of all orchid species on just about 1% of the Earth’s land surface. Pleurothallidinae and Laeliinae are the most species rich groups and contain the largest genera: Lepanthes, Pleurothallis, Stelis and Epidendrum . These groups significantly outnumber the other genera recorded in terms of species richness. Some factors explaining this regional taxonomic diversity of orchids are the natural land bridge uniting three of the 25 recognized hotspots worldwide (Mesoamerica, Choco/Darien/Western Ecuador and tropical Andes), the climatic influence of the Pacific and Atlantic oceans, and the recent lifting of the Cordillera de Talamanca and the formation of foothills of Maje, Darien and San Blas in Panama and western Colombia. Although these factors can explain the high diversity in general terms, detailed information is needed to understand species diversification as well as the evolution of the floristic composition. Updated floristic inventories (yielding a rate of 25 new species/year) and the study of biological mechanisms that have led to the evolutionary diversification of Lepanthes (one of the major groups of orchids) are the main ongoing research projects to elucidate the evolution of Orchidaceae in Costa Rica and Panama. Towards this end, we present some preliminary results of the research conducted in this direction including the integration of phylogenetics, pollination ecology, taxonomy and biogeography.
{"title":"Evolutionary diversification and historical biogeography of the Orchidaceae in Central America with emphasis on Costa Rica and Panama","authors":"D. Bogarín, F. Pupulin, E. Smets, B. Gravendeel","doi":"10.15517/LANK.V16I2.26005","DOIUrl":"https://doi.org/10.15517/LANK.V16I2.26005","url":null,"abstract":"Historically, the isthmus of Costa Rica and Panama has been a source of fascination for its strategic position linking North America to South America. In terms of biodiversity, the isthmus is considered one of the richest regions in the world. Orchidaceae is the most diverse plant family in the area, and the number of species is triple that of other well-represented angiosperm families such as Rubiaceae, Fabaceae and Poaceae. Though we are still far from knowing the exact number of orchid species occurring extant in both countries nowadays, at present the orchid flora reported for Costa Rica (1574 spp.) and Panama (1372 spp.) summarise together about 2010 species; which represents 6.5-8.0% of all orchid species on just about 1% of the Earth’s land surface. Pleurothallidinae and Laeliinae are the most species rich groups and contain the largest genera: Lepanthes, Pleurothallis, Stelis and Epidendrum . These groups significantly outnumber the other genera recorded in terms of species richness. Some factors explaining this regional taxonomic diversity of orchids are the natural land bridge uniting three of the 25 recognized hotspots worldwide (Mesoamerica, Choco/Darien/Western Ecuador and tropical Andes), the climatic influence of the Pacific and Atlantic oceans, and the recent lifting of the Cordillera de Talamanca and the formation of foothills of Maje, Darien and San Blas in Panama and western Colombia. Although these factors can explain the high diversity in general terms, detailed information is needed to understand species diversification as well as the evolution of the floristic composition. Updated floristic inventories (yielding a rate of 25 new species/year) and the study of biological mechanisms that have led to the evolutionary diversification of Lepanthes (one of the major groups of orchids) are the main ongoing research projects to elucidate the evolution of Orchidaceae in Costa Rica and Panama. Towards this end, we present some preliminary results of the research conducted in this direction including the integration of phylogenetics, pollination ecology, taxonomy and biogeography.","PeriodicalId":18023,"journal":{"name":"Lankesteriana","volume":"3 1","pages":"189-200"},"PeriodicalIF":0.0,"publicationDate":"2016-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79714955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-30DOI: 10.15517/LANK.V16I2.26013
Zuzana Štípková, Iva Traxmandlová, P. Kindlmann
Area and latitude are thought to be the most important determinants of species richness. The relative importance of these two factors was recently tested, using data on orchid species diversity in various countries in the world and it was found that size of the country (or of the protected areas within the country) is a better determinant of species diversity in orchids than latitude. On the other hand, literature data indicate that in many groups species richness is also heavily dependent on habitat diversity as expressed by the range of altitudes in the region considered. Here we analyze the species richness data for various countries in Latin America, using the above-mentioned altitudinal amplitude as a proxy. Habitat diversity played a role in tropical, but not in temperate countries. The reason may indicate that in the temperate countries only few orchid species grow in higher elevations, so an increase of altitudinal range of habitats there does not entail a corresponding increase of species richness there. Thus, especially in the tropics, efforts should be directed to preservation of protected areas in all altitudes, rather than to increase of existing reserve size only in areas that are not attractive for human development.
{"title":"Determinants of orchid species diversity in Latin America","authors":"Zuzana Štípková, Iva Traxmandlová, P. Kindlmann","doi":"10.15517/LANK.V16I2.26013","DOIUrl":"https://doi.org/10.15517/LANK.V16I2.26013","url":null,"abstract":"Area and latitude are thought to be the most important determinants of species richness. The relative importance of these two factors was recently tested, using data on orchid species diversity in various countries in the world and it was found that size of the country (or of the protected areas within the country) is a better determinant of species diversity in orchids than latitude. On the other hand, literature data indicate that in many groups species richness is also heavily dependent on habitat diversity as expressed by the range of altitudes in the region considered. Here we analyze the species richness data for various countries in Latin America, using the above-mentioned altitudinal amplitude as a proxy. Habitat diversity played a role in tropical, but not in temperate countries. The reason may indicate that in the temperate countries only few orchid species grow in higher elevations, so an increase of altitudinal range of habitats there does not entail a corresponding increase of species richness there. Thus, especially in the tropics, efforts should be directed to preservation of protected areas in all altitudes, rather than to increase of existing reserve size only in areas that are not attractive for human development.","PeriodicalId":18023,"journal":{"name":"Lankesteriana","volume":"47 1","pages":"293-297"},"PeriodicalIF":0.0,"publicationDate":"2016-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86075122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-30DOI: 10.15517/LANK.V16I2.26007
N. S. Flanagan, A. T. Mosquera-Espinosa
The natural vanilla essence is obtained principally from the fruits of the species Vanilla planifolia , a member of the Vanilla aromatic clade, and native to the neo-tropics. Colombia is an important center of diversity for the genus with 22 Vanilla species reported, of which 18 belong to the aromatic clade. Colombian native Vanilla species comprise important genetic resources for the vanilla crop. Although there is no tradition of cultivation of vanilla in the country, these species have potential for establishment in sustainable agroforestry systems. Nonetheless, Vanilla , like many orchid species, is subject to both intrinsic and extrinsic conservation threats. This article outlines an integrated strategy for conservation, incorporating in situ , ex situ and circa situm measures to ensure the conservation of Vanilla species in Colombia, and to promote their sustainable use in community-based cultivation programs. This proposed strategy is also relevant for conservation managers in other countries with native Vanilla species.
{"title":"An integrated strategy for the conservation and sustainable use of native Vanilla species in Colombia","authors":"N. S. Flanagan, A. T. Mosquera-Espinosa","doi":"10.15517/LANK.V16I2.26007","DOIUrl":"https://doi.org/10.15517/LANK.V16I2.26007","url":null,"abstract":"The natural vanilla essence is obtained principally from the fruits of the species Vanilla planifolia , a member of the Vanilla aromatic clade, and native to the neo-tropics. Colombia is an important center of diversity for the genus with 22 Vanilla species reported, of which 18 belong to the aromatic clade. Colombian native Vanilla species comprise important genetic resources for the vanilla crop. Although there is no tradition of cultivation of vanilla in the country, these species have potential for establishment in sustainable agroforestry systems. Nonetheless, Vanilla , like many orchid species, is subject to both intrinsic and extrinsic conservation threats. This article outlines an integrated strategy for conservation, incorporating in situ , ex situ and circa situm measures to ensure the conservation of Vanilla species in Colombia, and to promote their sustainable use in community-based cultivation programs. This proposed strategy is also relevant for conservation managers in other countries with native Vanilla species.","PeriodicalId":18023,"journal":{"name":"Lankesteriana","volume":"80 1","pages":"201-218"},"PeriodicalIF":0.0,"publicationDate":"2016-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84104299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-30DOI: 10.15517/LANK.V16I2.26011
Erika Perea-Morera, J. Otero
El uso de herbicidas ha tenido un impacto grande sobre la produccion agricola y sin duda ha aumentado la produccion en muchas cosechas. Desafortunadamente, la aplicacion de herbicidas puede tener efectos negativos sobre otras especies nativas aledanas al cultivo. Con el fin de establecer si el herbicida glifosato afecta negativamente a la orquidea terrestre Epidendrum melinanthum y sus hongos endofitos aislados de la raiz, se evaluaron tres dosis de Round Up® en keikis y en hongos endofitos previamente aislados. Las dosis de aplicacion se determinaron a partir de la utilizada para la maduracion en cana de azucar (1.5 l/Ha equivalentes a 544.5 g de glifosato/l) de la siguiente manera: a) control (sin herbicida), b) dosis de aplicacion en cana de un decimo y c) una centesima parte de la dosis de maduracion. Se observo en keikis el cambio de coloracion en tallo y en hojas, adicional a la caida de las mismas. El Round Up genero afectacion en uno de los tres hongos estudiados en forma de un halo de inhibicion. Se concluye, que el glifosato afecta negativamente las estructuras foliares de los keikis de manera rapida al aplicar el herbicida sobre las hojas, en adicion a la inhibicion de un hongos endofitos de Epidendrum melinanthum . Estos aspectos sugieren el potencial negativo del herbicida sobre la especie estudiada y su microflora asociada .
除草剂的使用对农业生产产生了巨大的影响,无疑增加了许多作物的产量。然而,除草剂的使用可能会对作物附近的其他本地物种产生负面影响。为了确定草甘膦除草剂是否对陆生兰花Epidendrum melinanthum及其根系内生真菌有不利影响,我们对keikis和之前分离的内生真菌进行了三剂Round Up®的评估。确定《剂量用于起糖maduracion在监狱(1.5升/公顷相当于草甘膦544.5 g / l)如下:(a)(无除草剂控制),(b)剂量《在监狱decimo;以及(c) centesima maduracion剂量的一部分。在keikis中观察到茎和叶的颜色变化,除了它们的下降。在研究的三种真菌中,有一种以抑制光环的形式产生了影响。本研究的目的是确定草甘膦对keikis叶片结构的抑制作用,以及草甘膦对Epidendrum melinanthum内生真菌的抑制作用。这些方面表明除草剂对被研究物种及其相关菌群的潜在负面影响。
{"title":"Efecto del herbicida glisofato en hongos endófitos de raíz y keikis de Epidendrum melinanthum (Orchidaceae)","authors":"Erika Perea-Morera, J. Otero","doi":"10.15517/LANK.V16I2.26011","DOIUrl":"https://doi.org/10.15517/LANK.V16I2.26011","url":null,"abstract":"El uso de herbicidas ha tenido un impacto grande sobre la produccion agricola y sin duda ha aumentado la produccion en muchas cosechas. Desafortunadamente, la aplicacion de herbicidas puede tener efectos negativos sobre otras especies nativas aledanas al cultivo. Con el fin de establecer si el herbicida glifosato afecta negativamente a la orquidea terrestre Epidendrum melinanthum y sus hongos endofitos aislados de la raiz, se evaluaron tres dosis de Round Up® en keikis y en hongos endofitos previamente aislados. Las dosis de aplicacion se determinaron a partir de la utilizada para la maduracion en cana de azucar (1.5 l/Ha equivalentes a 544.5 g de glifosato/l) de la siguiente manera: a) control (sin herbicida), b) dosis de aplicacion en cana de un decimo y c) una centesima parte de la dosis de maduracion. Se observo en keikis el cambio de coloracion en tallo y en hojas, adicional a la caida de las mismas. El Round Up genero afectacion en uno de los tres hongos estudiados en forma de un halo de inhibicion. Se concluye, que el glifosato afecta negativamente las estructuras foliares de los keikis de manera rapida al aplicar el herbicida sobre las hojas, en adicion a la inhibicion de un hongos endofitos de Epidendrum melinanthum . Estos aspectos sugieren el potencial negativo del herbicida sobre la especie estudiada y su microflora asociada .","PeriodicalId":18023,"journal":{"name":"Lankesteriana","volume":"31 1","pages":"269-278"},"PeriodicalIF":0.0,"publicationDate":"2016-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88172417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-30DOI: 10.15517/LANK.V16I2.26027
S. Kirby
Tropical Latin America is a nexus of tectonic plates whose relative motions have led to rapid tectonic and volcanic mountain building in late Neogene time. Tropical mountain building, in turn, leads to highland “cloud forest” microclimates with increased rainfall, lower diurnal temperatures, and diverse microclimates. I have previously emphasized how the geologically recent growth of mountains has been localized in Central America and that this is likely a factor in the high diversity and endemism in those highlands. This paper will show that Andean uplift accelerated at ~15 Ma ago and ~ 5 Ma BP and continues to this day. This process evolved geographically among the cordilleras of the region. Givnish and others recently presented phylogenomic evidence that the diversity of many epiphytic orchids, including tribes found in the neotropics, also accelerated during this time interval.. Phylogenetic investigations of tropical orchid pollinators have shown that acceleration in speciation in such pollinators as hummingbirds, orchid bees, and flies occurred over this same time frame, suggesting that geologically driven environmental changes may have acted in concert with changes in orchid biology to speed up orchid diversity in these highlands. I also review some of the long-distance dispersal processes of orchids in the tropical Americas. River systems draining the Colombian Andes discharge into the Caribbean Sea and current-driven log-raft drifts and air suspension during cyclonic storms transport plants and animals from east to the west. Lastly I emphasize the need for the more information on orchid floras and species distribution in this hotspot.
热带拉丁美洲是构造板块的联系,其相对运动导致了新近纪晚期快速的构造和火山造山。热带造山反过来又导致了高原“云雾森林”小气候,降雨增加,昼间温度降低,小气候多样化。我以前曾强调过,从地质角度来看,最近的山脉生长是如何局限于中美洲的,这很可能是这些高地具有高度多样性和地方性的一个因素。本文将表明,安第斯山脉的隆升在~15 Ma前和~ 5 Ma BP加速,并持续至今。这一过程在地理上在该地区的科迪勒拉山脉之间演变。Givnish和其他人最近提出的系统基因组学证据表明,许多附生兰花的多样性,包括在新热带地区发现的部落,也在这段时间间隔内加速了。对热带兰花传粉媒介的系统发育研究表明,蜂鸟、兰花蜂和苍蝇等传粉媒介的物种形成加速发生在同一时间框架内,这表明地质驱动的环境变化可能与兰花生物学的变化协同作用,加速了这些高地兰花的多样性。我还回顾了一些兰花在热带美洲的长距离传播过程。将哥伦比亚安第斯山脉排入加勒比海的河流系统,以及气旋风暴期间由水流驱动的木筏漂流和空气悬浮将动植物从东部运送到西部。最后强调了对该热点地区兰花区系和种类分布的进一步了解的必要性。
{"title":"Active tectonic and volcanic mountain building as agents of rapid environmental changes and increased orchid diversity and long-distance orchid dispersal in the tropical Americas: opportunities and challenges","authors":"S. Kirby","doi":"10.15517/LANK.V16I2.26027","DOIUrl":"https://doi.org/10.15517/LANK.V16I2.26027","url":null,"abstract":"Tropical Latin America is a nexus of tectonic plates whose relative motions have led to rapid tectonic and volcanic mountain building in late Neogene time. Tropical mountain building, in turn, leads to highland “cloud forest” microclimates with increased rainfall, lower diurnal temperatures, and diverse microclimates. I have previously emphasized how the geologically recent growth of mountains has been localized in Central America and that this is likely a factor in the high diversity and endemism in those highlands. This paper will show that Andean uplift accelerated at ~15 Ma ago and ~ 5 Ma BP and continues to this day. This process evolved geographically among the cordilleras of the region. Givnish and others recently presented phylogenomic evidence that the diversity of many epiphytic orchids, including tribes found in the neotropics, also accelerated during this time interval.. Phylogenetic investigations of tropical orchid pollinators have shown that acceleration in speciation in such pollinators as hummingbirds, orchid bees, and flies occurred over this same time frame, suggesting that geologically driven environmental changes may have acted in concert with changes in orchid biology to speed up orchid diversity in these highlands. I also review some of the long-distance dispersal processes of orchids in the tropical Americas. River systems draining the Colombian Andes discharge into the Caribbean Sea and current-driven log-raft drifts and air suspension during cyclonic storms transport plants and animals from east to the west. Lastly I emphasize the need for the more information on orchid floras and species distribution in this hotspot.","PeriodicalId":18023,"journal":{"name":"Lankesteriana","volume":"8 1","pages":"243-254"},"PeriodicalIF":0.0,"publicationDate":"2016-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78498630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-30DOI: 10.15517/LANK.V16I2.26014
J. Suárez, I. Kottke
Orchids are a main component of the diversity of vascular plants in Ecuador with approximately 4000 species representing about 5.3% of the orchid species described worldwide. More than a third of these species are endemics. As orchids, in contrast to other plants, depend on mycorrhizal fungi already for seed germination and early seedling establishment, availability of appropriate fungi may strongly influence distribution of orchid populations. It is currently debated if green orchids depend on specific mycobionts or may be equally promoted by a broad spectrum of mycorrhizal fungi, discussion mostly based on data from temperate regions. Here we summarize results obtained from broad scale investigations in the tropical mountain rain forest of Ecuador revealing associations with members of Serendipitaceae (Sebacinales), Tulasnellaceae, Ceratobasidiaceae (Cantharellales), and Atractiellales. Recent molecular data show that these worldwide spread fungal groups have broad ecological implications and are specifically suited as mycorrhizal fungi of green orchids. We found that main fungal partners and different levels of specificity among orchids and their mycobionts in the tropical mountain forests correspond to findings in other biomes despite the large ecological differences .
{"title":"MAIN FUNGAL PARTNERS AND DIFFERENT LEVELS OF SPECIFICITY OF ORCHID MYCORRHIZAE IN THE TROPICAL MOUNTAIN FORESTS OF ECUADOR","authors":"J. Suárez, I. Kottke","doi":"10.15517/LANK.V16I2.26014","DOIUrl":"https://doi.org/10.15517/LANK.V16I2.26014","url":null,"abstract":"Orchids are a main component of the diversity of vascular plants in Ecuador with approximately 4000 species representing about 5.3% of the orchid species described worldwide. More than a third of these species are endemics. As orchids, in contrast to other plants, depend on mycorrhizal fungi already for seed germination and early seedling establishment, availability of appropriate fungi may strongly influence distribution of orchid populations. It is currently debated if green orchids depend on specific mycobionts or may be equally promoted by a broad spectrum of mycorrhizal fungi, discussion mostly based on data from temperate regions. Here we summarize results obtained from broad scale investigations in the tropical mountain rain forest of Ecuador revealing associations with members of Serendipitaceae (Sebacinales), Tulasnellaceae, Ceratobasidiaceae (Cantharellales), and Atractiellales. Recent molecular data show that these worldwide spread fungal groups have broad ecological implications and are specifically suited as mycorrhizal fungi of green orchids. We found that main fungal partners and different levels of specificity among orchids and their mycobionts in the tropical mountain forests correspond to findings in other biomes despite the large ecological differences .","PeriodicalId":18023,"journal":{"name":"Lankesteriana","volume":"66 1","pages":"299-305"},"PeriodicalIF":0.0,"publicationDate":"2016-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86016565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-09DOI: 10.15517/LANK.V16I2.25880
Delsy Trujillo, P. Gonzáles, Huber Trinidad, A. Cano
Se presenta una revision de Myrosmodes del Peru. Se aceptan siete especies para el pais. Se describe e ilustra cada especie con base en la revision del material tipo, protologos y material peruano. Se evalua su distribucion en el pais. Myrosmodes nervosa se registra por primera vez para el Peru. Se proponen nuevos sinonimos: M. cleefii es incluido bajo la sinonimia de M. nubigena, M. inaequalis y M. pumilio bajo M. paludosa, M. weberbaueri bajo M. gymnandra y M. cochlearis bajo M. rhynchocarpa. Tambien se proporciona una clave para identificar las especies reconocidas. Se designa un lectotipo para Aa chiogena
本文的目的是分析在墨西哥和拉丁美洲发现的真菌。这个国家接受七个物种。本研究的目的是评估秘鲁的物种多样性,并评估秘鲁的物种多样性。评估其在全国的分布情况。秘鲁首次记录了神经Myrosmodes nervosa。提出了新的同义词:M. cleefii属于M. nubigena, M. inaequalis和M. pumilio属于M. paludosa, M. weberbaueri属于M. gymnandra, M. cochlearis属于M. rhynchocarpa。它还提供了识别已识别物种的关键。指定Aa chiogena的选择型
{"title":"The Andean genus Myrosmodes (Orchidaceae, Cranichideae) in Peru","authors":"Delsy Trujillo, P. Gonzáles, Huber Trinidad, A. Cano","doi":"10.15517/LANK.V16I2.25880","DOIUrl":"https://doi.org/10.15517/LANK.V16I2.25880","url":null,"abstract":"Se presenta una revision de Myrosmodes del Peru. Se aceptan siete especies para el pais. Se describe e ilustra cada especie con base en la revision del material tipo, protologos y material peruano. Se evalua su distribucion en el pais. Myrosmodes nervosa se registra por primera vez para el Peru. Se proponen nuevos sinonimos: M. cleefii es incluido bajo la sinonimia de M. nubigena, M. inaequalis y M. pumilio bajo M. paludosa, M. weberbaueri bajo M. gymnandra y M. cochlearis bajo M. rhynchocarpa. Tambien se proporciona una clave para identificar las especies reconocidas. Se designa un lectotipo para Aa chiogena","PeriodicalId":18023,"journal":{"name":"Lankesteriana","volume":"19 1","pages":"129-151"},"PeriodicalIF":0.0,"publicationDate":"2016-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81359052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}