Pub Date : 2024-05-28DOI: 10.1038/s41377-024-01426-0
Han Wu, Bo Hu, Lu Chen, Fei Peng, Zinan Wang, Goëry Genty, Houkun Liang
Ghost imaging in the time domain allows for reconstructing fast temporal objects using a slow photodetector. The technique involves correlating random or pre-programmed probing temporal intensity patterns with the integrated signal measured after modulation by the temporal object. However, the implementation of temporal ghost imaging necessitates ultrafast detectors or modulators for measuring or pre-programming the probing intensity patterns, which are not available in all spectral regions especially in the mid-infrared range. Here, we demonstrate a frequency downconversion temporal ghost imaging scheme that enables to extend the operation regime to arbitrary wavelengths regions where fast modulators and detectors are not available. The approach modulates a signal with temporal intensity patterns in the near-infrared and transfers the patterns to an idler via difference-frequency generation in a nonlinear crystal at a wavelength where the temporal object can be retrieved. As a proof-of-concept, we demonstrate computational temporal ghost imaging in the mid-infrared with operating wavelength that can be tuned from 3.2 to 4.3 μm. The scheme is flexible and can be extended to other regimes. Our results introduce new possibilities for scan-free pump-probe imaging and the study of ultrafast dynamics in spectral regions where ultrafast modulation or detection is challenging such as the mid-infrared and THz regions.
{"title":"Mid-infrared computational temporal ghost imaging.","authors":"Han Wu, Bo Hu, Lu Chen, Fei Peng, Zinan Wang, Goëry Genty, Houkun Liang","doi":"10.1038/s41377-024-01426-0","DOIUrl":"10.1038/s41377-024-01426-0","url":null,"abstract":"<p><p>Ghost imaging in the time domain allows for reconstructing fast temporal objects using a slow photodetector. The technique involves correlating random or pre-programmed probing temporal intensity patterns with the integrated signal measured after modulation by the temporal object. However, the implementation of temporal ghost imaging necessitates ultrafast detectors or modulators for measuring or pre-programming the probing intensity patterns, which are not available in all spectral regions especially in the mid-infrared range. Here, we demonstrate a frequency downconversion temporal ghost imaging scheme that enables to extend the operation regime to arbitrary wavelengths regions where fast modulators and detectors are not available. The approach modulates a signal with temporal intensity patterns in the near-infrared and transfers the patterns to an idler via difference-frequency generation in a nonlinear crystal at a wavelength where the temporal object can be retrieved. As a proof-of-concept, we demonstrate computational temporal ghost imaging in the mid-infrared with operating wavelength that can be tuned from 3.2 to 4.3 μm. The scheme is flexible and can be extended to other regimes. Our results introduce new possibilities for scan-free pump-probe imaging and the study of ultrafast dynamics in spectral regions where ultrafast modulation or detection is challenging such as the mid-infrared and THz regions.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"124"},"PeriodicalIF":19.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1038/s41377-024-01463-9
Wei Ren, Xichuan Ge, Meiqi Li, Jing Sun, Shiyi Li, Shu Gao, Chunyan Shan, Baoxiang Gao, Peng Xi
Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 μm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution.
{"title":"Visualization of cristae and mtDNA interactions via STED nanoscopy using a low saturation power probe.","authors":"Wei Ren, Xichuan Ge, Meiqi Li, Jing Sun, Shiyi Li, Shu Gao, Chunyan Shan, Baoxiang Gao, Peng Xi","doi":"10.1038/s41377-024-01463-9","DOIUrl":"10.1038/s41377-024-01463-9","url":null,"abstract":"<p><p>Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 μm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"116"},"PeriodicalIF":19.4,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1038/s41377-024-01465-7
Zhiyuan Liu, Yi Lu, Haicheng Cao, Glen Isaac Maciel Garcia, Tingang Liu, Xiao Tang, Na Xiao, Raul Aguileta Vazquez, Mingtao Nong, Xiaohang Li
The traditional plasma etching process for defining micro-LED pixels could lead to significant sidewall damage. Defects near sidewall regions act as non-radiative recombination centers and paths for current leakage, significantly deteriorating device performance. In this study, we demonstrated a novel selective thermal oxidation (STO) method that allowed pixel definition without undergoing plasma damage and subsequent dielectric passivation. Thermal annealing in ambient air oxidized and reshaped the LED structure, such as p-layers and InGaN/GaN multiple quantum wells. Simultaneously, the pixel areas beneath the pre-deposited SiO2 layer were selectively and effectively protected. It was demonstrated that prolonged thermal annealing time enhanced the insulating properties of the oxide, significantly reducing LED leakage current. Furthermore, applying a thicker SiO2 protective layer minimized device resistance and boosted device efficiency effectively. Utilizing the STO method, InGaN green micro-LED arrays with 50-, 30-, and 10-µm pixel sizes were manufactured and characterized. The results indicated that after 4 h of air annealing and with a 3.5-μm SiO2 protective layer, the 10-µm pixel array exhibited leakage currents density 1.2 × 10-6 A/cm2 at -10 V voltage and a peak on-wafer external quantum efficiency of ~6.48%. This work suggests that the STO method could become an effective approach for future micro-LED manufacturing to mitigate adverse LED efficiency size effects due to the plasma etching and improve device efficiency. Micro-LEDs fabricated through the STO method can be applied to micro-displays, visible light communication, and optical interconnect-based memories. Almost planar pixel geometry will provide more possibilities for the monolithic integration of driving circuits with micro-LEDs. Moreover, the STO method is not limited to micro-LED fabrication and can be extended to design other III-nitride devices, such as photodetectors, laser diodes, high-electron-mobility transistors, and Schottky barrier diodes.
用于确定微型 LED 像素的传统等离子体蚀刻工艺可能会导致侧壁严重损坏。侧壁附近的缺陷既是非辐射重组中心,也是电流泄漏的途径,会严重降低器件性能。在这项研究中,我们展示了一种新颖的选择性热氧化(STO)方法,这种方法无需经过等离子体损伤和随后的电介质钝化即可实现像素定义。在环境空气中进行热退火可氧化和重塑 LED 结构,如 p 层和 InGaN/GaN 多量子阱。同时,预沉积的二氧化硅层下的像素区域也得到了选择性的有效保护。实验证明,延长热退火时间可增强氧化物的绝缘性能,显著降低 LED 漏电流。此外,应用较厚的二氧化硅保护层可将器件电阻降至最低,并有效提高器件效率。利用 STO 方法,制造出了像素尺寸分别为 50、30 和 10 微米的 InGaN 绿色微型 LED 阵列,并对其进行了表征。结果表明,经过 4 小时的空气退火和 3.5 微米的二氧化硅保护层后,10 微米像素阵列在 -10 V 电压下的漏电流密度为 1.2 × 10-6 A/cm2,晶圆上的外部量子效率峰值约为 6.48%。这项工作表明,STO 方法可以成为未来制造微型 LED 的有效方法,以减轻等离子刻蚀对 LED 效率尺寸的不利影响,并提高器件效率。通过 STO 方法制造的微型 LED 可应用于微型显示器、可见光通信和基于光互连的存储器。近乎平面的像素几何形状将为驱动电路与微型 LED 的单片集成提供更多可能性。此外,STO 方法并不局限于微型 LED 的制造,还可以扩展到其他 III 氮化物器件的设计,如光电探测器、激光二极管、高电子迁移率晶体管和肖特基势垒二极管。
{"title":"Etching-free pixel definition in InGaN green micro-LEDs.","authors":"Zhiyuan Liu, Yi Lu, Haicheng Cao, Glen Isaac Maciel Garcia, Tingang Liu, Xiao Tang, Na Xiao, Raul Aguileta Vazquez, Mingtao Nong, Xiaohang Li","doi":"10.1038/s41377-024-01465-7","DOIUrl":"10.1038/s41377-024-01465-7","url":null,"abstract":"<p><p>The traditional plasma etching process for defining micro-LED pixels could lead to significant sidewall damage. Defects near sidewall regions act as non-radiative recombination centers and paths for current leakage, significantly deteriorating device performance. In this study, we demonstrated a novel selective thermal oxidation (STO) method that allowed pixel definition without undergoing plasma damage and subsequent dielectric passivation. Thermal annealing in ambient air oxidized and reshaped the LED structure, such as p-layers and InGaN/GaN multiple quantum wells. Simultaneously, the pixel areas beneath the pre-deposited SiO<sub>2</sub> layer were selectively and effectively protected. It was demonstrated that prolonged thermal annealing time enhanced the insulating properties of the oxide, significantly reducing LED leakage current. Furthermore, applying a thicker SiO<sub>2</sub> protective layer minimized device resistance and boosted device efficiency effectively. Utilizing the STO method, InGaN green micro-LED arrays with 50-, 30-, and 10-µm pixel sizes were manufactured and characterized. The results indicated that after 4 h of air annealing and with a 3.5-μm SiO<sub>2</sub> protective layer, the 10-µm pixel array exhibited leakage currents density 1.2 × 10<sup>-6</sup> A/cm<sup>2</sup> at -10 V voltage and a peak on-wafer external quantum efficiency of ~6.48%. This work suggests that the STO method could become an effective approach for future micro-LED manufacturing to mitigate adverse LED efficiency size effects due to the plasma etching and improve device efficiency. Micro-LEDs fabricated through the STO method can be applied to micro-displays, visible light communication, and optical interconnect-based memories. Almost planar pixel geometry will provide more possibilities for the monolithic integration of driving circuits with micro-LEDs. Moreover, the STO method is not limited to micro-LED fabrication and can be extended to design other III-nitride devices, such as photodetectors, laser diodes, high-electron-mobility transistors, and Schottky barrier diodes.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"117"},"PeriodicalIF":19.4,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-22DOI: 10.1038/s41377-024-01470-w
Seungmin Nam, Wontae Jung, Jun Hyuk Shin, Su Seok Choi
Wavelength-tunable structural colors using stimuli-responsive materials, such as chiral liquid crystals (CLCs), have attracted increasing attention owing to their high functionality in various tunable photonic applications. Ideally, on-demand omnidirectional wavelength control is highly desirable from the perspective of wavelength-tuning freedom. However, despite numerous previous research efforts on tunable CLC structural colors, only mono-directional wavelength tuning toward shorter wavelengths has been employed in most studies to date. In this study, we report the ideally desired omnidirectional wavelength control toward longer and shorter wavelengths with significantly improved tunability over a broadband wavelength range. By using areal expanding and contractive strain control of dielectric elastomer actuators (DEAs) with chiral liquid crystal elastomers (CLCEs), simultaneous and omnidirectional structural color-tuning control was achieved. This breakthrough in omnidirectional wavelength control enhances the achievable tuning freedom and versatility, making it applicable to a broad range of high-functional photonic applications.
{"title":"Omnidirectional color wavelength tuning of stretchable chiral liquid crystal elastomers.","authors":"Seungmin Nam, Wontae Jung, Jun Hyuk Shin, Su Seok Choi","doi":"10.1038/s41377-024-01470-w","DOIUrl":"10.1038/s41377-024-01470-w","url":null,"abstract":"<p><p>Wavelength-tunable structural colors using stimuli-responsive materials, such as chiral liquid crystals (CLCs), have attracted increasing attention owing to their high functionality in various tunable photonic applications. Ideally, on-demand omnidirectional wavelength control is highly desirable from the perspective of wavelength-tuning freedom. However, despite numerous previous research efforts on tunable CLC structural colors, only mono-directional wavelength tuning toward shorter wavelengths has been employed in most studies to date. In this study, we report the ideally desired omnidirectional wavelength control toward longer and shorter wavelengths with significantly improved tunability over a broadband wavelength range. By using areal expanding and contractive strain control of dielectric elastomer actuators (DEAs) with chiral liquid crystal elastomers (CLCEs), simultaneous and omnidirectional structural color-tuning control was achieved. This breakthrough in omnidirectional wavelength control enhances the achievable tuning freedom and versatility, making it applicable to a broad range of high-functional photonic applications.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"114"},"PeriodicalIF":19.4,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141074665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.1038/s41377-024-01437-x
Jiayi Liu, Bowen Sun, Wenkai Li, Han-Joon Kim, Shu Uin Gan, John S Ho, Juwita Norasmara Bte Rahmat, Yong Zhang
Using photodynamic therapy (PDT) to treat deep-seated cancers is limited due to inefficient delivery of photosensitizers and low tissue penetration of light. Polymeric nanocarriers are widely used for photosensitizer delivery, while the self-quenching of the encapsulated photosensitizers would impair the PDT efficacy. Furthermore, the generated short-lived reactive oxygen spieces (ROS) can hardly diffuse out of nanocarriers, resulting in low PDT efficacy. Therefore, a smart nanocarrier system which can be degraded by light, followed by photosensitizer activation can potentially overcome these limitations and enhance the PDT efficacy. A light-sensitive polymer nanocarrier encapsulating photosensitizer (RB-M) was synthesized. An implantable wireless dual wavelength microLED device which delivers the two light wavelengths sequentially was developed to programmatically control the release and activation of the loaded photosensitizer. Two transmitter coils with matching resonant frequencies allow activation of the connected LEDs to emit different wavelengths independently. Optimal irradiation time, dose, and RB-M concentration were determined using an agent-based digital simulation method. In vitro and in vivo validation experiments in an orthotopic rat liver hepatocellular carcinoma disease model confirmed that the nanocarrier rupture and sequential low dose light irradiation strategy resulted in successful PDT at reduced photosensitizer and irradiation dose, which is a clinically significant event that enhances treatment safety.
光动力疗法(PDT)治疗深部癌症的局限性在于光敏剂的传输效率低和光的组织穿透力低。聚合物纳米载体被广泛用于光敏剂的输送,但封装光敏剂的自淬会影响光动力疗法的疗效。此外,产生的短寿命活性氧(ROS)很难从纳米载体中扩散出来,从而导致局部放疗疗效低下。因此,一种能被光降解、然后被光敏剂激活的智能纳米载体系统有可能克服这些局限性,提高光动力疗法的疗效。我们合成了一种封装光敏剂(RB-M)的光敏聚合物纳米载体。研究人员开发了一种可植入的无线双波长微型 LED 装置,该装置可依次发射两种波长的光,以编程方式控制负载光敏剂的释放和激活。两个具有匹配谐振频率的发射线圈可以激活连接的 LED,使其独立发射不同波长的光。使用基于代理的数字模拟方法确定了最佳照射时间、剂量和 RB-M 浓度。在正位大鼠肝脏肝细胞癌疾病模型中进行的体外和体内验证实验证实,纳米载体破裂和连续低剂量光照射策略可在减少光敏剂和照射剂量的情况下成功实现光导治疗,这对提高治疗安全性具有重要的临床意义。
{"title":"Wireless sequential dual light delivery for programmed PDT in vivo.","authors":"Jiayi Liu, Bowen Sun, Wenkai Li, Han-Joon Kim, Shu Uin Gan, John S Ho, Juwita Norasmara Bte Rahmat, Yong Zhang","doi":"10.1038/s41377-024-01437-x","DOIUrl":"10.1038/s41377-024-01437-x","url":null,"abstract":"<p><p>Using photodynamic therapy (PDT) to treat deep-seated cancers is limited due to inefficient delivery of photosensitizers and low tissue penetration of light. Polymeric nanocarriers are widely used for photosensitizer delivery, while the self-quenching of the encapsulated photosensitizers would impair the PDT efficacy. Furthermore, the generated short-lived reactive oxygen spieces (ROS) can hardly diffuse out of nanocarriers, resulting in low PDT efficacy. Therefore, a smart nanocarrier system which can be degraded by light, followed by photosensitizer activation can potentially overcome these limitations and enhance the PDT efficacy. A light-sensitive polymer nanocarrier encapsulating photosensitizer (RB-M) was synthesized. An implantable wireless dual wavelength microLED device which delivers the two light wavelengths sequentially was developed to programmatically control the release and activation of the loaded photosensitizer. Two transmitter coils with matching resonant frequencies allow activation of the connected LEDs to emit different wavelengths independently. Optimal irradiation time, dose, and RB-M concentration were determined using an agent-based digital simulation method. In vitro and in vivo validation experiments in an orthotopic rat liver hepatocellular carcinoma disease model confirmed that the nanocarrier rupture and sequential low dose light irradiation strategy resulted in successful PDT at reduced photosensitizer and irradiation dose, which is a clinically significant event that enhances treatment safety.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"113"},"PeriodicalIF":19.4,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Topological photonic insulators show promise for applications in compact integrated photonic circuits due to their ability to transport light robustly through sharp bendings. The number of topological edge states relies on the difference between the bulk Chern numbers across the boundary, as dictated by the bulk edge correspondence. The interference among multiple topological edge modes in topological photonics systems may allow for controllable functionalities that are particularly desirable for constructing reconfigurable photonic devices. In this work, we demonstrate magnetically controllable multimode interference based on gyromagnetic topological photonic insulators that support two unidirectional edge modes with different dispersions. We successfully achieve controllable power splitting in experiments by engineering multimode interference with the magnetic field intensity or the frequency of wave. Our work demonstrates that manipulating the interference among multiple chiral edge modes can facilitate the advancement of highly efficient and adaptable microwave devices.
{"title":"Magnetically controllable multimode interference in topological photonic crystals.","authors":"Weiyuan Tang, Mudi Wang, Shaojie Ma, Che Ting Chan, Shuang Zhang","doi":"10.1038/s41377-024-01433-1","DOIUrl":"10.1038/s41377-024-01433-1","url":null,"abstract":"<p><p>Topological photonic insulators show promise for applications in compact integrated photonic circuits due to their ability to transport light robustly through sharp bendings. The number of topological edge states relies on the difference between the bulk Chern numbers across the boundary, as dictated by the bulk edge correspondence. The interference among multiple topological edge modes in topological photonics systems may allow for controllable functionalities that are particularly desirable for constructing reconfigurable photonic devices. In this work, we demonstrate magnetically controllable multimode interference based on gyromagnetic topological photonic insulators that support two unidirectional edge modes with different dispersions. We successfully achieve controllable power splitting in experiments by engineering multimode interference with the magnetic field intensity or the frequency of wave. Our work demonstrates that manipulating the interference among multiple chiral edge modes can facilitate the advancement of highly efficient and adaptable microwave devices.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"112"},"PeriodicalIF":19.4,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Strong-field photoelectron holography is promising for the study of electron dynamics and structure in atoms and molecules, with superior spatiotemporal resolution compared to conventional electron and X-ray diffractometry. However, the application of strong-field photoelectron holography has been hindered by inter-cycle interference from multicycle fields. Here, we address this challenge by employing a near-single-cycle field to suppress the inter-cycle interference. We observed and separated two distinct holographic patterns for the first time. Our measurements allow us not only to identify the Gouy phase effect on electron wavepackets and holographic patterns but also to correctly extract the internuclear separation of the target molecule from the holographic pattern. Our work leads to a leap jump from theory to application in the field of strong-field photoelectron holography-based ultrafast imaging of molecular structures.
强场光电子全息技术在研究原子和分子中的电子动力学和结构方面大有可为,与传统的电子和 X 射线衍射法相比,它具有更高的时空分辨率。然而,强场光电子全息技术的应用一直受到多周期场的周期间干扰的阻碍。在这里,我们采用近乎单周期场来抑制周期间干扰,从而解决了这一难题。我们首次观测并分离出两种截然不同的全息图案。我们的测量结果不仅使我们能够识别电子波包和全息图案上的古伊相位效应,还能从全息图案中正确提取目标分子的核内分离度。在基于强场光电子全息技术的分子结构超快成像领域,我们的工作实现了从理论到应用的飞跃。
{"title":"Strong-field photoelectron holography in the subcycle limit.","authors":"Tsendsuren Khurelbaatar, Jaewuk Heo, ShaoGang Yu, XuanYang Lai, XiaoJun Liu, Dong Eon Kim","doi":"10.1038/s41377-024-01457-7","DOIUrl":"10.1038/s41377-024-01457-7","url":null,"abstract":"<p><p>Strong-field photoelectron holography is promising for the study of electron dynamics and structure in atoms and molecules, with superior spatiotemporal resolution compared to conventional electron and X-ray diffractometry. However, the application of strong-field photoelectron holography has been hindered by inter-cycle interference from multicycle fields. Here, we address this challenge by employing a near-single-cycle field to suppress the inter-cycle interference. We observed and separated two distinct holographic patterns for the first time. Our measurements allow us not only to identify the Gouy phase effect on electron wavepackets and holographic patterns but also to correctly extract the internuclear separation of the target molecule from the holographic pattern. Our work leads to a leap jump from theory to application in the field of strong-field photoelectron holography-based ultrafast imaging of molecular structures.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"108"},"PeriodicalIF":19.4,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-22DOI: 10.1038/s41377-024-01425-1
Jiapeng Wang, Hongpeng Wu, Angelo Sampaolo, Pietro Patimisco, Vincenzo Spagnolo, Suotang Jia, Lei Dong
The extension of dual-comb spectroscopy (DCS) to all wavelengths of light along with its ability to provide ultra-large dynamic range and ultra-high spectral resolution, renders it extremely useful for a diverse array of applications in physics, chemistry, atmospheric science, space science, as well as medical applications. In this work, we report on an innovative technique of quartz-enhanced multiheterodyne resonant photoacoustic spectroscopy (QEMR-PAS), in which the beat frequency response from a dual comb is frequency down-converted into the audio frequency domain. In this way, gas molecules act as an optical-acoustic converter through the photoacoustic effect, generating heterodyne sound waves. Unlike conventional DCS, where the light wave is detected by a wavelength-dependent photoreceiver, QEMR-PAS employs a quartz tuning fork (QTF) as a high-Q sound transducer and works in conjunction with a phase-sensitive detector to extract the resonant sound component from the multiple heterodyne acoustic tones, resulting in a straightforward and low-cost hardware configuration. This novel QEMR-PAS technique enables wavelength-independent DCS detection for gas sensing, providing an unprecedented dynamic range of 63 dB, a remarkable spectral resolution of 43 MHz (or ~0.3 pm), and a prominent noise equivalent absorption of 5.99 × 10-6 cm-1·Hz-1/2.
{"title":"Quartz-enhanced multiheterodyne resonant photoacoustic spectroscopy.","authors":"Jiapeng Wang, Hongpeng Wu, Angelo Sampaolo, Pietro Patimisco, Vincenzo Spagnolo, Suotang Jia, Lei Dong","doi":"10.1038/s41377-024-01425-1","DOIUrl":"10.1038/s41377-024-01425-1","url":null,"abstract":"<p><p>The extension of dual-comb spectroscopy (DCS) to all wavelengths of light along with its ability to provide ultra-large dynamic range and ultra-high spectral resolution, renders it extremely useful for a diverse array of applications in physics, chemistry, atmospheric science, space science, as well as medical applications. In this work, we report on an innovative technique of quartz-enhanced multiheterodyne resonant photoacoustic spectroscopy (QEMR-PAS), in which the beat frequency response from a dual comb is frequency down-converted into the audio frequency domain. In this way, gas molecules act as an optical-acoustic converter through the photoacoustic effect, generating heterodyne sound waves. Unlike conventional DCS, where the light wave is detected by a wavelength-dependent photoreceiver, QEMR-PAS employs a quartz tuning fork (QTF) as a high-Q sound transducer and works in conjunction with a phase-sensitive detector to extract the resonant sound component from the multiple heterodyne acoustic tones, resulting in a straightforward and low-cost hardware configuration. This novel QEMR-PAS technique enables wavelength-independent DCS detection for gas sensing, providing an unprecedented dynamic range of 63 dB, a remarkable spectral resolution of 43 MHz (or ~0.3 pm), and a prominent noise equivalent absorption of 5.99 × 10<sup>-6 </sup>cm<sup>-1</sup>·Hz<sup>-1/2</sup>.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"77"},"PeriodicalIF":19.4,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140184840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-18DOI: 10.1038/s41377-024-01415-3
Isabel Barth, Hakho Lee
In the continuous pursuit of enhancing the sensitivity of nanophotonic biosensors by leveraging phase phenomena, a recent development involved the engineering of an atomically thin Ge2Sb2Te5 layer on a silver nanofilm to generate large Goos-Hänchen-shifts associated with phase singularities. The resulting detection limit reached ~7 × 10-7 RIU.
{"title":"Phase-driven progress in nanophotonic biosensing.","authors":"Isabel Barth, Hakho Lee","doi":"10.1038/s41377-024-01415-3","DOIUrl":"10.1038/s41377-024-01415-3","url":null,"abstract":"<p><p>In the continuous pursuit of enhancing the sensitivity of nanophotonic biosensors by leveraging phase phenomena, a recent development involved the engineering of an atomically thin Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> layer on a silver nanofilm to generate large Goos-Hänchen-shifts associated with phase singularities. The resulting detection limit reached ~7 × 10<sup>-7</sup> RIU.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"76"},"PeriodicalIF":19.4,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944832/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}