Orbital angular momentums (OAMs) of light can be categorized into longitudinal OAM (L-OAM) and transverse OAM (T-OAM). Light carrying time-varying L-OAM, known as self-torqued light, was recently discovered during harmonic generation and has been extensively developed within the context of optical frequency combs (OFCs). Meanwhile, ultrafast bursts of optical pulses, analogous to OFCs, are sought for various light-matter interaction, spectroscopic and nonlinear applications1-6. However, achieving transiently switchable T-OAM of light on request, namely spatiotemporal vortex pulse bursts, with independently controlled spatiotemporal profile of each comb teeth, remains unrealized thus far. In this work, the experimental generation of spatiotemporal vortex bursts featured with controllable time-dependent characteristics is reported. The resultant bursts comprised of spatiotemporal optical vortex comb teeth have picosecond timescale switchable T-OAMs with defined arrangement. We also show ultrafast control of T-OAM chirality, yielding pulse bursts with staggered azimuthal local momentum density, resembling Kármán vortex streets. This approach enables the tailoring of more intricate spatiotemporal wavepacket bursts, such as high-purity modes variation in both radial and azimuthal quantum numbers of spatiotemporal Laguerre-Gaussian wavepackets over time, which may facilitate a host of novel applications in ultrafast light-matter interactions, high-dimensional quantum entanglements, space-time photonic topologies as well as spatiotemporal metrology and photography.
扫码关注我们
求助内容:
应助结果提醒方式:
