Corrosion degradation significantly contributes to the deterioration of offshore structures and subsea installations, impacting the durability of technology equipment while potentially leading to structural failure and environmental pollution. This review primarily focuses on the various types of corrosion observed in offshore structures, the factors influencing corrosion, and the resulting degradation of mechanical properties following corrosion exposure. The study examines the deterioration patterns in tensile properties of offshore structures and subsea facilities, along with the assessment and analysis of corrosion in offshore steel bridges and submarine pipelines. Future research should include a comprehensive scientific investigation of corrosion mechanisms and the development of engineering predictive models to assess corrosion failure and extend the remaining life of offshore structures.
{"title":"Deterioration of marine offshore structures and subsea installations subjected to severely corrosive environment: A review","authors":"Ruilin Xia, Chen Jia, Yordan Garbatov","doi":"10.1002/maco.202314050","DOIUrl":"https://doi.org/10.1002/maco.202314050","url":null,"abstract":"Corrosion degradation significantly contributes to the deterioration of offshore structures and subsea installations, impacting the durability of technology equipment while potentially leading to structural failure and environmental pollution. This review primarily focuses on the various types of corrosion observed in offshore structures, the factors influencing corrosion, and the resulting degradation of mechanical properties following corrosion exposure. The study examines the deterioration patterns in tensile properties of offshore structures and subsea facilities, along with the assessment and analysis of corrosion in offshore steel bridges and submarine pipelines. Future research should include a comprehensive scientific investigation of corrosion mechanisms and the development of engineering predictive models to assess corrosion failure and extend the remaining life of offshore structures.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Akhil Varghese, Miguel Arana‐Catania, S. Mori, A. Encinas-Oropesa, Joy Sumner
Gas turbine superalloys experience hot corrosion, driven by factors including corrosive deposit flux, temperature, gas composition, and component material. The full mechanism still needs clarification and research often focuses on laboratory work. As such, there is interest in causal discovery to confirm the significance of factors and identify potential missing causal relationships or codependencies between these factors. The causal discovery algorithm fast causal inference (FCI) has been trialled on a small set of laboratory data, with the outputs evaluated for their significance to corrosion propagation, and compared to existing mechanistic understanding. FCI identified salt deposition flux as the most influential corrosion variable for this limited data set. However, HCl was the second most influential for pitting regions, compared to temperature for more uniformly corroding regions. Thus, FCI generated causal links aligned with literature from a randomised corrosion data set, while also identifying the presence of two different degradation modes in operation.
{"title":"Causal discovery to understand hot corrosion","authors":"Akhil Varghese, Miguel Arana‐Catania, S. Mori, A. Encinas-Oropesa, Joy Sumner","doi":"10.1002/maco.202314240","DOIUrl":"https://doi.org/10.1002/maco.202314240","url":null,"abstract":"Gas turbine superalloys experience hot corrosion, driven by factors including corrosive deposit flux, temperature, gas composition, and component material. The full mechanism still needs clarification and research often focuses on laboratory work. As such, there is interest in causal discovery to confirm the significance of factors and identify potential missing causal relationships or codependencies between these factors. The causal discovery algorithm fast causal inference (FCI) has been trialled on a small set of laboratory data, with the outputs evaluated for their significance to corrosion propagation, and compared to existing mechanistic understanding. FCI identified salt deposition flux as the most influential corrosion variable for this limited data set. However, HCl was the second most influential for pitting regions, compared to temperature for more uniformly corroding regions. Thus, FCI generated causal links aligned with literature from a randomised corrosion data set, while also identifying the presence of two different degradation modes in operation.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"133 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139842993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EVENTS","authors":"","doi":"10.1002/maco.202470034","DOIUrl":"https://doi.org/10.1002/maco.202470034","url":null,"abstract":"","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139847844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbonation‐induced corrosion of steel in concrete can allow for premature degradation of structures. Corrosion probes in health monitoring systems can assess concrete carbonation and steel corrosion rates. The electrochemical noise (EN) technique has advantages for corrosion sensing. Instrumented concrete columns were fitted with a carbonation chamber for accelerated testing. EN was assessed through statistical evaluation of noise time signatures, noise resistance, and spectral analysis. The mean noise potential for the electrodes showed electronegative potential and correspondingly high rms noise current, indicative of corrosion activation in carbonated concrete. The estimated corrosion rates obtained from the noise impedance were comparable to those resolved from the polarization resistance and noise resistance. The shot noise analysis indicated isolated spontaneous noise events associated with the activation of local steel anodes. The outcomes of the testing indicate that the placement of low‐cost sensors and passive EN measurements can be used to monitor the onset of carbonation‐induced corrosion of steel in concrete and provide estimates on corrosion rates.
混凝土中碳化引起的钢材腐蚀会导致结构过早退化。健康监测系统中的腐蚀探头可以评估混凝土碳化和钢材腐蚀率。电化学噪声(EN)技术在腐蚀传感方面具有优势。带仪器的混凝土柱安装了一个碳化室,用于加速测试。通过对噪声时间特征、噪声阻抗和频谱分析的统计评估,对 EN 进行了评估。电极的平均噪声电位显示出电负电位和相应的高均方根噪声电流,表明碳化混凝土中的腐蚀活化。噪声阻抗得出的估计腐蚀率与极化电阻和噪声阻抗得出的腐蚀率相当。射击噪声分析表明,孤立的自发噪声事件与局部钢阳极的活化有关。测试结果表明,放置低成本传感器和被动 EN 测量可用于监测混凝土中钢材碳化诱导腐蚀的开始,并提供腐蚀率估计值。
{"title":"Identification of carbonation‐induced corrosion of steel in concrete by electrochemical testing","authors":"Samanbar Permeh, K. Lau","doi":"10.1002/maco.202414272","DOIUrl":"https://doi.org/10.1002/maco.202414272","url":null,"abstract":"Carbonation‐induced corrosion of steel in concrete can allow for premature degradation of structures. Corrosion probes in health monitoring systems can assess concrete carbonation and steel corrosion rates. The electrochemical noise (EN) technique has advantages for corrosion sensing. Instrumented concrete columns were fitted with a carbonation chamber for accelerated testing. EN was assessed through statistical evaluation of noise time signatures, noise resistance, and spectral analysis. The mean noise potential for the electrodes showed electronegative potential and correspondingly high rms noise current, indicative of corrosion activation in carbonated concrete. The estimated corrosion rates obtained from the noise impedance were comparable to those resolved from the polarization resistance and noise resistance. The shot noise analysis indicated isolated spontaneous noise events associated with the activation of local steel anodes. The outcomes of the testing indicate that the placement of low‐cost sensors and passive EN measurements can be used to monitor the onset of carbonation‐induced corrosion of steel in concrete and provide estimates on corrosion rates.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"37 9-10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139853494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hélène Lotz, D. Neff, F. Mercier‐Bion, C. Bataillon, Nicolas Nuns, P. Dillmann
A two‐step corrosion experiment was performed on a ferritic steel (Armco) in a synthetic solution representing the Callovo–Oxfordian at 120°C. After the development of a carbonated corrosion product layer (CPL) during the first 15 days of the experimental step, corrosion front progression was investigated using 13C marked carbonate species during the second 15 days experimental step. CPL was characterized at each step, in terms of morphology (scanning electron microscopy), composition (energy‐dispersive spectroscopy), and structure (µ‐Raman). 13C corrosion product locations were analyzed by time‐of‐flight secondary ion mass spectrometry. Results evidenced that after a step of generalized corrosion, iron corrosion continues locally at the metal/CPL interface. These results suggest that although a protective siderite layer formed on the iron surface after 15 days, a local dissolution of the carbonate layer at the M/CPL interface occurred. A galvanic effect is developed between the bared surface (anode) and the covered one (cathode). This activates iron oxidation. The precipitation of carbonate corrosion products to the metal/CPL interface is possible by the diffusion of 13CO32− ions from the bulk through the siderite layer.
{"title":"13C isotopic labeling to decipher the iron corrosion mechanisms in a carbonated anoxic environment","authors":"Hélène Lotz, D. Neff, F. Mercier‐Bion, C. Bataillon, Nicolas Nuns, P. Dillmann","doi":"10.1002/maco.202314203","DOIUrl":"https://doi.org/10.1002/maco.202314203","url":null,"abstract":"A two‐step corrosion experiment was performed on a ferritic steel (Armco) in a synthetic solution representing the Callovo–Oxfordian at 120°C. After the development of a carbonated corrosion product layer (CPL) during the first 15 days of the experimental step, corrosion front progression was investigated using 13C marked carbonate species during the second 15 days experimental step. CPL was characterized at each step, in terms of morphology (scanning electron microscopy), composition (energy‐dispersive spectroscopy), and structure (µ‐Raman). 13C corrosion product locations were analyzed by time‐of‐flight secondary ion mass spectrometry. Results evidenced that after a step of generalized corrosion, iron corrosion continues locally at the metal/CPL interface. These results suggest that although a protective siderite layer formed on the iron surface after 15 days, a local dissolution of the carbonate layer at the M/CPL interface occurred. A galvanic effect is developed between the bared surface (anode) and the covered one (cathode). This activates iron oxidation. The precipitation of carbonate corrosion products to the metal/CPL interface is possible by the diffusion of 13CO32− ions from the bulk through the siderite layer.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139860651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Kelm, Tom Marquardt, Andreas Momber, Steffen Sellmeyer, Michael Irmer
The automation of coating processes allows consistent, economical, and ecological applications. In this study, the effects of various surface geometries—steel plates, plates with weld seams, plates with bolts, and plates with welded fillets—on the uniformity of dry film thickness (DFT) after robotic stripe coating applications with an electrostatic spray device are investigated and analyzed with statistical methods. Robot traverse rate, pump pressure, and voltage. Based on analysis of variance studies, the robot traverse rate was identified to be the most influential factor. For plates with weld seams, an optimization study was conducted, resulting in a multiresponse prediction model. The model achieved a DFT within the target range across all measuring points within a 95% confidence interval. At an optimized factor combination (117 mm/s, 0.3 MPa, 61.4 kV), the DFT values ranged between 100 and 142 µm. The findings of this study provide fundamentals for achieving uniform coating distributions on complex geometries and for optimizing process parameters.
{"title":"Statistical investigations into automated spray-applied stripe coats to complex geometries of floating offshore wind foundations","authors":"Daniel Kelm, Tom Marquardt, Andreas Momber, Steffen Sellmeyer, Michael Irmer","doi":"10.1002/maco.202314140","DOIUrl":"https://doi.org/10.1002/maco.202314140","url":null,"abstract":"The automation of coating processes allows consistent, economical, and ecological applications. In this study, the effects of various surface geometries—steel plates, plates with weld seams, plates with bolts, and plates with welded fillets—on the uniformity of dry film thickness (DFT) after robotic stripe coating applications with an electrostatic spray device are investigated and analyzed with statistical methods. Robot traverse rate, pump pressure, and voltage. Based on analysis of variance studies, the robot traverse rate was identified to be the most influential factor. For plates with weld seams, an optimization study was conducted, resulting in a multiresponse prediction model. The model achieved a DFT within the target range across all measuring points within a 95% confidence interval. At an optimized factor combination (117 mm/s, 0.3 MPa, 61.4 kV), the DFT values ranged between 100 and 142 µm. The findings of this study provide fundamentals for achieving uniform coating distributions on complex geometries and for optimizing process parameters.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"19 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andreas W. Momber, Tom Marquardt, Michael Irmer, Daniel Kelm
Abstract Damage to multilayer organic coating systems due to compressive loads can deteriorate the corrosion protection performance of the coatings under offshore exposure. The contribution is concerned with statistical investigations into the effects of load‐based and coating‐based factors on the protection performance of different coating systems. Accelerated cyclic laboratory tests (ISO 12944‐9) were performed on four multilayer coating systems, and the results were statistically analyzed. Results of analysis of variance investigations revealed that the effects on the anticorrosive performance of the coatings (anticorrosive effect [AE]) were dominated by coating‐based factors, namely coating system and total dry film thickness. These factors could explain 86% of all effects. Coating system was the only extremely significant factor. Load‐based factors did not deliver notable effects (5%). Except for the contact stiffness, these factors were insignificant. The load intensity was insignificant for all target parameters (blistering, delamination, AE). Coating regions, plastically deformed during the compression tests, did not lead to a reduction in the protection performance.
{"title":"Effects of compressive damage on the corrosion protection performance of offshore wind power coating systems","authors":"Andreas W. Momber, Tom Marquardt, Michael Irmer, Daniel Kelm","doi":"10.1002/maco.202314074","DOIUrl":"https://doi.org/10.1002/maco.202314074","url":null,"abstract":"Abstract Damage to multilayer organic coating systems due to compressive loads can deteriorate the corrosion protection performance of the coatings under offshore exposure. The contribution is concerned with statistical investigations into the effects of load‐based and coating‐based factors on the protection performance of different coating systems. Accelerated cyclic laboratory tests (ISO 12944‐9) were performed on four multilayer coating systems, and the results were statistically analyzed. Results of analysis of variance investigations revealed that the effects on the anticorrosive performance of the coatings (anticorrosive effect [AE]) were dominated by coating‐based factors, namely coating system and total dry film thickness. These factors could explain 86% of all effects. Coating system was the only extremely significant factor. Load‐based factors did not deliver notable effects (5%). Except for the contact stiffness, these factors were insignificant. The load intensity was insignificant for all target parameters (blistering, delamination, AE). Coating regions, plastically deformed during the compression tests, did not lead to a reduction in the protection performance.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"47 13","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134992059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ole Ø. Knudsen, Catalina H. M. Hagen, Anders W. B. Skilbred, Tarjei K. Bruaas, Jarand Nærland
Abstract Our understanding of the failure mechanisms of coatings, for example, cathodic disbonding, corrosion creep, blistering, and cracking, have been developed to a high level over the past decades. However, knowing what actually causes coatings to fail in the field is also important. Several atmospheric field tests of coating with duration 2–9 years have been published, showing that epoxy‐based heavy‐duty protective coating systems with zinc‐rich primers have high resistance against corrosion creep from damages in the coating. Despite this, scribe creep corrosion has become the most important evaluation parameter in standardized testing. In this work, inspection pictures from an offshore oil and gas platform, a ballast water tank system, and two coastal road bridges have been analyzed with respect to the root cause for initiation of corrosion on coated steel. The results show that corrosion mainly initiates at edges and welds. Between 50% and 90% of the corrosion attacks could be attributed to this, depending on the type of structure. The paint failed due to low film thickness, that is, the wet paint retracts from sharp edges in the surface so that the cured film has reduced barrier properties.
{"title":"Root causes for corrosion on painted steel structures in marine environments","authors":"Ole Ø. Knudsen, Catalina H. M. Hagen, Anders W. B. Skilbred, Tarjei K. Bruaas, Jarand Nærland","doi":"10.1002/maco.202314046","DOIUrl":"https://doi.org/10.1002/maco.202314046","url":null,"abstract":"Abstract Our understanding of the failure mechanisms of coatings, for example, cathodic disbonding, corrosion creep, blistering, and cracking, have been developed to a high level over the past decades. However, knowing what actually causes coatings to fail in the field is also important. Several atmospheric field tests of coating with duration 2–9 years have been published, showing that epoxy‐based heavy‐duty protective coating systems with zinc‐rich primers have high resistance against corrosion creep from damages in the coating. Despite this, scribe creep corrosion has become the most important evaluation parameter in standardized testing. In this work, inspection pictures from an offshore oil and gas platform, a ballast water tank system, and two coastal road bridges have been analyzed with respect to the root cause for initiation of corrosion on coated steel. The results show that corrosion mainly initiates at edges and welds. Between 50% and 90% of the corrosion attacks could be attributed to this, depending on the type of structure. The paint failed due to low film thickness, that is, the wet paint retracts from sharp edges in the surface so that the cured film has reduced barrier properties.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136373000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kathhi Palaksha Reddy, Thanjavur Krishnamoorthi Kandavel, Selvaraj Nelson Raja
Sintered low carbon steels are developed using prealloyed and elemental powders to improve the mechanical properties of powder metallurgy and powder forged parts. The research focuses on the mechanism of workability and corrosion studies on sintered preforms of Alloy 1 (ATOMET4601 + 0.35%C) and Alloy 2 (ATOMET4601‐0.35%C‐0.25%Mn‐0.1%Si‐0.9%Cr). Sintered preforms of relative densities of 81%, 84%, and 90% were used for the present work. The preforms with 84% relative density have been used to study the formability parameters. It is observed from the experimental study that the Alloy 2 preforms with the addition of alloying elements have undergone lesser densification and deformation due to the work hardening mechanism. Corrosion studies have been carried out by conducting aqueous immersion and electrochemical corrosion tests on these two alloys using 18% HCl solution at different timings. It is found that the Alloy 2 has exhibited a better corrosion resistance than the Alloy 1 due to the addition of various alloying elements. It is also observed that the corrosion rate has decreased with an increase in densification irrespective of the alloys. The microstructures, scanning electron microscopy, and X‐ray diffraction of corroded surfaces have been corroborated with densification and the corrosion behavior of alloys.
{"title":"Workability and corrosion behavior studies on sintered iron‐based hybrid powder metallurgy alloys","authors":"Kathhi Palaksha Reddy, Thanjavur Krishnamoorthi Kandavel, Selvaraj Nelson Raja","doi":"10.1002/maco.202213268","DOIUrl":"https://doi.org/10.1002/maco.202213268","url":null,"abstract":"Sintered low carbon steels are developed using prealloyed and elemental powders to improve the mechanical properties of powder metallurgy and powder forged parts. The research focuses on the mechanism of workability and corrosion studies on sintered preforms of Alloy 1 (ATOMET4601 + 0.35%C) and Alloy 2 (ATOMET4601‐0.35%C‐0.25%Mn‐0.1%Si‐0.9%Cr). Sintered preforms of relative densities of 81%, 84%, and 90% were used for the present work. The preforms with 84% relative density have been used to study the formability parameters. It is observed from the experimental study that the Alloy 2 preforms with the addition of alloying elements have undergone lesser densification and deformation due to the work hardening mechanism. Corrosion studies have been carried out by conducting aqueous immersion and electrochemical corrosion tests on these two alloys using 18% HCl solution at different timings. It is found that the Alloy 2 has exhibited a better corrosion resistance than the Alloy 1 due to the addition of various alloying elements. It is also observed that the corrosion rate has decreased with an increase in densification irrespective of the alloys. The microstructures, scanning electron microscopy, and X‐ray diffraction of corroded surfaces have been corroborated with densification and the corrosion behavior of alloys.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"92 1","pages":"1854 - 1864"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81609494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jovana Pejić, Bojana M. Radojković, Dunja Marunkić, B. Jegdić, S. Stevanović, Milena Milošević, J. Bajat
The inhibitory effect of cysteine in the presence of selected lanthanide chlorides (LaCl3, NdCl3, and CeCl3) in a neutral 0.1 M NaCl solution was analyzed. The cysteine concentration of 0.3 mM was determined as an optimal one. The resistance to general and pitting corrosion of AA7075‐T6 alloy in inhibitive solutions was determined using electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The surface appearance of the aluminum alloy was determined before and after corrosion tests using scanning electron microscopy/energy dispersive spectroscopy, while the presence of an inhibitory layer on the alloy surface was confirmed by X‐ray photoelectron spectroscopy analysis and atomic force microscopy. The inhibitory effect of cysteine was significantly higher in the presence of all tested lanthanide chlorides, especially to pitting corrosion. The protective ability of cysteine was increased by lanthanides in the following sequence: Ln < Nd < Ce ions. The inhibitory effect of cysteine in the presence of cerium ions was examined in more detail as cerium ions provided the highest inhibitory effect, both to general and pitting corrosion.
分析了在中性0.1 M NaCl溶液中,选择镧系氯化物(LaCl3、NdCl3和CeCl3)存在时,半胱氨酸的抑制作用。半胱氨酸的最佳浓度为0.3 mM。采用电化学阻抗谱法和动电位极化法测定了AA7075‐T6合金在缓蚀剂溶液中的抗一般腐蚀和点蚀性能。采用扫描电镜/能量色散光谱法测定了腐蚀前后铝合金的表面形貌,同时通过X射线光电子能谱分析和原子力显微镜法证实了合金表面存在抑制层。在所有被测镧系氯化物存在的情况下,半胱氨酸的抑制作用明显更高,尤其是对点蚀的抑制作用。镧系元素对半胱氨酸的保护能力增强的顺序为:Ln < Nd < Ce。对于半胱氨酸在铈离子存在下的抑制作用进行了更详细的研究,因为铈离子对一般腐蚀和点蚀都具有最高的抑制作用。
{"title":"Inhibitory effect of cysteine and lanthanides on AA7075‐T6 in neutral NaCl solution","authors":"Jovana Pejić, Bojana M. Radojković, Dunja Marunkić, B. Jegdić, S. Stevanović, Milena Milošević, J. Bajat","doi":"10.1002/maco.202213330","DOIUrl":"https://doi.org/10.1002/maco.202213330","url":null,"abstract":"The inhibitory effect of cysteine in the presence of selected lanthanide chlorides (LaCl3, NdCl3, and CeCl3) in a neutral 0.1 M NaCl solution was analyzed. The cysteine concentration of 0.3 mM was determined as an optimal one. The resistance to general and pitting corrosion of AA7075‐T6 alloy in inhibitive solutions was determined using electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The surface appearance of the aluminum alloy was determined before and after corrosion tests using scanning electron microscopy/energy dispersive spectroscopy, while the presence of an inhibitory layer on the alloy surface was confirmed by X‐ray photoelectron spectroscopy analysis and atomic force microscopy. The inhibitory effect of cysteine was significantly higher in the presence of all tested lanthanide chlorides, especially to pitting corrosion. The protective ability of cysteine was increased by lanthanides in the following sequence: Ln < Nd < Ce ions. The inhibitory effect of cysteine in the presence of cerium ions was examined in more detail as cerium ions provided the highest inhibitory effect, both to general and pitting corrosion.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"15 1","pages":"1800 - 1812"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79121219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}