首页 > 最新文献

Materials and Corrosion最新文献

英文 中文
Effects of Ni content on the corrosion behavior of Al0.5CoCrFeNix high entropy alloys in acid and alkaline media Ni含量对Al0.5CoCrFeNix高熵合金在酸、碱介质中腐蚀行为的影响
Pub Date : 2022-03-23 DOI: 10.1002/maco.202112851
Qi Dong, Wenchao Jia, Zequn Zhang, Dingxin Zhang, Junsheng Wu, Bowei Zhang
The present work investigates the influence of Ni content on the microstructure evolution of Al0.5CoCrFeNix high‐entropy alloys followed by the study on their corrosion behavior in acid and alkaline solutions, respectively. The microscopic characterization demonstrates that the transformation from a BCC single‐phase to a triple‐phase (BCC + FCC + B2) structure occurs with the increase of Ni content. The corrosion behavior of Al0.5CoCrFeNix high‐entropy alloys was evaluated by electrochemical measurements coupled with morphology analysis. It is found that the corrosion on Al0.5CoCrFeNi0 high‐entropy alloy in both acid and alkaline media is uniform due to its homogeneous microstructure. In contrast, the increase of Ni content leads to the formation of Al, Ni enriched B2 phase with lower Volta potential, causing the respective occurrence of selective dissolution in acid and preferential oxidation in alkaline on the Al0.5CoCrFeNi0.2, Al0.5CoCrFeNi0.6, and Al0.5CoCrFeNi0.8 high‐entropy alloys.
本文研究了Ni含量对Al0.5CoCrFeNix高熵合金组织演变的影响,并分别研究了其在酸性和碱性溶液中的腐蚀行为。微观表征表明,随着Ni含量的增加,BCC单相结构向BCC + FCC + B2三相结构转变。采用电化学测量和形貌分析相结合的方法对Al0.5CoCrFeNix高熵合金的腐蚀行为进行了评价。结果表明,Al0.5CoCrFeNi0高熵合金由于其组织均匀,在酸性和碱性介质中的腐蚀都是均匀的。而随着Ni含量的增加,Al0.5CoCrFeNi0.2、Al0.5CoCrFeNi0.6和Al0.5CoCrFeNi0.8高熵合金形成了伏特电位较低的富Al、Ni B2相,分别在酸性条件下发生选择性溶解和碱性条件下发生优先氧化。
{"title":"Effects of Ni content on the corrosion behavior of Al0.5CoCrFeNix high entropy alloys in acid and alkaline media","authors":"Qi Dong, Wenchao Jia, Zequn Zhang, Dingxin Zhang, Junsheng Wu, Bowei Zhang","doi":"10.1002/maco.202112851","DOIUrl":"https://doi.org/10.1002/maco.202112851","url":null,"abstract":"The present work investigates the influence of Ni content on the microstructure evolution of Al0.5CoCrFeNix high‐entropy alloys followed by the study on their corrosion behavior in acid and alkaline solutions, respectively. The microscopic characterization demonstrates that the transformation from a BCC single‐phase to a triple‐phase (BCC + FCC + B2) structure occurs with the increase of Ni content. The corrosion behavior of Al0.5CoCrFeNix high‐entropy alloys was evaluated by electrochemical measurements coupled with morphology analysis. It is found that the corrosion on Al0.5CoCrFeNi0 high‐entropy alloy in both acid and alkaline media is uniform due to its homogeneous microstructure. In contrast, the increase of Ni content leads to the formation of Al, Ni enriched B2 phase with lower Volta potential, causing the respective occurrence of selective dissolution in acid and preferential oxidation in alkaline on the Al0.5CoCrFeNi0.2, Al0.5CoCrFeNi0.6, and Al0.5CoCrFeNi0.8 high‐entropy alloys.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"1 1","pages":"1274 - 1285"},"PeriodicalIF":0.0,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77594978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Effect of structure, phase, and elemental composition of AlN, CrAlN, and ZrAlN coatings on their electrochemical behavior in 3% NaCl solution AlN、CrAlN和ZrAlN涂层的结构、相和元素组成对其在3% NaCl溶液中电化学行为的影响
Pub Date : 2022-03-10 DOI: 10.1002/maco.202213073
A. Kameneva, V. Kichigin, N. Bublik
Thin coatings AlN, AlZrN, and AlCrN were deposited by pulsed magnetron sputtering. The high‐speed steel Т1, structural alloy steel 5140, and structural carbon steel 1017 were used as substrates. The magnetron current, nitrogen content in the gas mixture, and bias voltage on the substrate were changed to obtain nanostructured and amorphous layers of coatings with different elemental compositions. The voltammetry and impedance spectroscopy were performed on the coated samples in 3% NaCl solution. The corrosion behavior of the coatings was characterized by the corrosion current density icorr, the polarization resistance Rp (at the corrosion potential), the ratios icorr,s/icorr, and Rp/Rp,s, where subscript s refers to the substrate. It was shown that the coatings under study (except AlN) are electrochemically active, and the corrosion processes occur not only on the substrate in the coating discontinuity but on the coating surface as well. The coatings AlN/T1, AlZrN/5140, AlCrN/T1, and AlCrN/5140 with icorr ~ 10−7 A cm−2 are found to be the most corrosion‐resistant in 3% NaCl. The paper discusses factors affecting the corrosion behavior of the investigated coatings.
采用脉冲磁控溅射法制备了AlN、AlZrN和AlCrN薄膜。采用高速钢Т1、结构合金钢5140和结构碳钢1017作为衬底。通过改变磁控管电流、混合气体中的氮含量和衬底上的偏置电压,可以获得不同元素组成的纳米结构和非晶态涂层。对包被样品在3% NaCl溶液中进行伏安法和阻抗谱分析。涂层的腐蚀行为由腐蚀电流密度icorr、极化电阻Rp(腐蚀电位处)、比值icorr,s/icorr和Rp/Rp,s表征,其中下标s为基材。结果表明,除AlN外,所研究的涂层均具有电化学活性,腐蚀过程不仅发生在涂层不连续的基体上,也发生在涂层表面。结果表明,icorr为10−7 A cm−2的AlN/T1、AlZrN/5140、AlCrN/T1和AlCrN/5140涂层在3% NaCl中耐腐蚀性能最好。本文讨论了影响所研究涂层腐蚀行为的因素。
{"title":"Effect of structure, phase, and elemental composition of AlN, CrAlN, and ZrAlN coatings on their electrochemical behavior in 3% NaCl solution","authors":"A. Kameneva, V. Kichigin, N. Bublik","doi":"10.1002/maco.202213073","DOIUrl":"https://doi.org/10.1002/maco.202213073","url":null,"abstract":"Thin coatings AlN, AlZrN, and AlCrN were deposited by pulsed magnetron sputtering. The high‐speed steel Т1, structural alloy steel 5140, and structural carbon steel 1017 were used as substrates. The magnetron current, nitrogen content in the gas mixture, and bias voltage on the substrate were changed to obtain nanostructured and amorphous layers of coatings with different elemental compositions. The voltammetry and impedance spectroscopy were performed on the coated samples in 3% NaCl solution. The corrosion behavior of the coatings was characterized by the corrosion current density icorr, the polarization resistance Rp (at the corrosion potential), the ratios icorr,s/icorr, and Rp/Rp,s, where subscript s refers to the substrate. It was shown that the coatings under study (except AlN) are electrochemically active, and the corrosion processes occur not only on the substrate in the coating discontinuity but on the coating surface as well. The coatings AlN/T1, AlZrN/5140, AlCrN/T1, and AlCrN/5140 with icorr ~ 10−7 A cm−2 are found to be the most corrosion‐resistant in 3% NaCl. The paper discusses factors affecting the corrosion behavior of the investigated coatings.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"30 1","pages":"1308 - 1317"},"PeriodicalIF":0.0,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84466683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
High‐temperature corrosion of mechanically alloyed Cr–AlSi12 composite coatings on Ti–6Al–4V alloy substrate Ti-6Al-4V合金基体上机械合金Cr-AlSi12复合涂层的高温腐蚀
Pub Date : 2022-03-04 DOI: 10.1002/maco.202113008
Jiangzhong Jiang, Xiaomei Feng, Yifu Shen
In the present work, the Cr–AlSi12 composite coatings were successfully synthesized on the Ti–6Al–4V alloy substrate by using the mechanical alloying method. The effects of raw Cr particle size, milling duration, and annealing treatment on the preparation of the coatings were investigated. The as‐prepared coatings consisted of the inner coating layer with coarse Cr particles and the outer coating layer with refined and highly homogenized structure. The annealing treatment could promote element diffusion and alloying; it was favorable to the densification and oxidation resistance of the coatings. There is a highly densified alloyed layer in the outer coating. The annealed coating showed excellent friction and wear resistance. After the oxidation process, the annealed coating showed the best high‐temperature oxidation resistance. The oxidized annealed coating exhibited four layers, which included the thin Al2O3 oxide film, the homogenized alloyed layer, the composite layer consisted of Al2O3 and coarse Cr particles surrounded by alloyed layer, and the Al3Ti diffusion layer. This was favorable to the improvement of high‐temperature oxidation resistance. The oxidation process of the annealed coating was elaborated.
本文采用机械合金化方法,在Ti-6Al-4V合金基体上成功制备了Cr-AlSi12复合涂层。研究了生料Cr粒度、铣削时间和退火处理对涂层制备的影响。制备的涂层由内涂层和外涂层组成,内涂层为粗Cr颗粒,外涂层为精细且高度均匀化的结构。退火处理能促进元素的扩散和合金化;这有利于涂层的致密化和抗氧化。外涂层中有一高度致密的合金层。退火后的涂层具有良好的摩擦磨损性能。经过氧化处理后,退火后的涂层表现出最佳的高温抗氧化性。氧化退火涂层呈现4层结构,分别为Al2O3氧化膜、均匀化合金层、Al2O3与粗Cr颗粒包裹的复合层和Al3Ti扩散层。这有利于提高材料的高温抗氧化性。阐述了退火涂层的氧化过程。
{"title":"High‐temperature corrosion of mechanically alloyed Cr–AlSi12 composite coatings on Ti–6Al–4V alloy substrate","authors":"Jiangzhong Jiang, Xiaomei Feng, Yifu Shen","doi":"10.1002/maco.202113008","DOIUrl":"https://doi.org/10.1002/maco.202113008","url":null,"abstract":"In the present work, the Cr–AlSi12 composite coatings were successfully synthesized on the Ti–6Al–4V alloy substrate by using the mechanical alloying method. The effects of raw Cr particle size, milling duration, and annealing treatment on the preparation of the coatings were investigated. The as‐prepared coatings consisted of the inner coating layer with coarse Cr particles and the outer coating layer with refined and highly homogenized structure. The annealing treatment could promote element diffusion and alloying; it was favorable to the densification and oxidation resistance of the coatings. There is a highly densified alloyed layer in the outer coating. The annealed coating showed excellent friction and wear resistance. After the oxidation process, the annealed coating showed the best high‐temperature oxidation resistance. The oxidized annealed coating exhibited four layers, which included the thin Al2O3 oxide film, the homogenized alloyed layer, the composite layer consisted of Al2O3 and coarse Cr particles surrounded by alloyed layer, and the Al3Ti diffusion layer. This was favorable to the improvement of high‐temperature oxidation resistance. The oxidation process of the annealed coating was elaborated.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"51 1","pages":"1248 - 1264"},"PeriodicalIF":0.0,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88440149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Failure cause assessment of steam reformer radiant tube after long‐term service 蒸汽转化炉辐射管长期使用后的失效原因评估
Pub Date : 2022-03-03 DOI: 10.1002/maco.202213068
A. N. Dobrotvorskaia, M. A. Dobrotvorskii, É. P. Shevyakova, M. A. Simanov
This study investigates the damage, microstructure, and mechanical evolution of service‐exposed HP40NbTi radiant tubes of a steam reformer furnace. Tube failure was reported after 6‐year of working at 525°C–830°C in the form of visible longitudinal and transverse cracks. The microstructure was evaluated using optical and scanning electron microscopy equipped with energy‐dispersive X‐ray spectrum analysis. The carbide phase transformation was determined by the method based on the matrix dissolution technique and X‐ray diffraction. The results of this study showed that the primary cause of the longitudinal crack formation is the local overheating and the oxidation of the dendritic grain boundaries. The M7C3 carbide transforms completely into the metastable M23C6 phase during high‐temperature service. Metallographic examinations revealed the shrinkage cavities and creep voids that are nucleated on both Cr‐ and Nb‐carbides. The continuous oxide layers of Cr2O3 and SiO2 formed near the inner and outer tube surfaces and the matrix's chemical composition near the outer tube surface was found to be depleted of Cr and C. Mechanical properties are irregular across the samples. A little margin of safety is noted, while the complete ductility dip is detected at room temperature. The root cause analysis of the failure under investigation showed that the tube failed due to the creep.
本文研究了蒸汽转化炉服役暴露的HP40NbTi辐射管的损伤、微观结构和力学演化。在525°C - 830°C环境下工作6年后,钢管出现了明显的纵向和横向裂纹。利用光学和扫描电子显微镜以及能量色散X射线能谱分析对其微观结构进行了评估。采用基体溶解法和X射线衍射法测定了合金的碳化物相变。研究结果表明,纵向裂纹形成的主要原因是局部过热和枝晶晶界氧化。M7C3碳化物在高温下完全转变为亚稳的M23C6相。金相检查显示Cr -和Nb -碳化物上都有收缩空洞和蠕变空洞成核。内外表面形成连续的Cr2O3和SiO2氧化层,外表面基体化学成分中Cr和c的含量明显减少。注意到一点安全余量,而在室温下检测到完全的延性下降。对所调查的失效原因进行了根本原因分析,结果表明,管的失效是由于蠕变引起的。
{"title":"Failure cause assessment of steam reformer radiant tube after long‐term service","authors":"A. N. Dobrotvorskaia, M. A. Dobrotvorskii, É. P. Shevyakova, M. A. Simanov","doi":"10.1002/maco.202213068","DOIUrl":"https://doi.org/10.1002/maco.202213068","url":null,"abstract":"This study investigates the damage, microstructure, and mechanical evolution of service‐exposed HP40NbTi radiant tubes of a steam reformer furnace. Tube failure was reported after 6‐year of working at 525°C–830°C in the form of visible longitudinal and transverse cracks. The microstructure was evaluated using optical and scanning electron microscopy equipped with energy‐dispersive X‐ray spectrum analysis. The carbide phase transformation was determined by the method based on the matrix dissolution technique and X‐ray diffraction. The results of this study showed that the primary cause of the longitudinal crack formation is the local overheating and the oxidation of the dendritic grain boundaries. The M7C3 carbide transforms completely into the metastable M23C6 phase during high‐temperature service. Metallographic examinations revealed the shrinkage cavities and creep voids that are nucleated on both Cr‐ and Nb‐carbides. The continuous oxide layers of Cr2O3 and SiO2 formed near the inner and outer tube surfaces and the matrix's chemical composition near the outer tube surface was found to be depleted of Cr and C. Mechanical properties are irregular across the samples. A little margin of safety is noted, while the complete ductility dip is detected at room temperature. The root cause analysis of the failure under investigation showed that the tube failed due to the creep.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"6 1","pages":"1265 - 1273"},"PeriodicalIF":0.0,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80476283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrosion behavior of a newly developed high strength aluminum alloy with high magnesium content under simulated seawater environment 新研制的高镁高强铝合金在模拟海水环境下的腐蚀行为
Pub Date : 2022-03-02 DOI: 10.1002/maco.202213065
Xiaodan Lv, Shuhui Liu, H. Xie, Qingming Cao, Chengdong Zhang, Fanwei Chen, Bin Liu
AMg61 (Al‐6.2% Mg), a novel form of high‐strength, high‐magnesium‐content aluminum alloy, has been developed for specific maritime engineering in recent years, while its corrosion behavior in seawater is still unknown. Therefore, the corrosion behavior of AMg61 in the simulated seawater was investigated herein, using a weight‐loss test and different electrochemical measurements. In addition, corrosion morphology and chemical contents were characterized by metallography, scanning electron microscopy, and energy‐dispersive spectroscopy. The results demonstrated that intergranular corrosion and microcracks developed first in the second phase of AMg61, followed by pitting corrosion. The matrix of AMg61, on the other hand, exhibited a uniform and exfoliation corrosion. The corrosion rate gradually decreased over time.
AMg61 (Al - 6.2% Mg)是一种新型的高强度、高镁含量铝合金,近年来被开发用于特定的海洋工程,但其在海水中的腐蚀行为尚不清楚。因此,本文采用失重试验和不同的电化学测量方法研究了AMg61在模拟海水中的腐蚀行为。此外,通过金相、扫描电镜和能量色散光谱对腐蚀形貌和化学成分进行了表征。结果表明:AMg61第二相首先发生晶间腐蚀和微裂纹,其次发生点蚀;而AMg61的基体则表现为均匀的剥落腐蚀。随着时间的推移,腐蚀速率逐渐降低。
{"title":"Corrosion behavior of a newly developed high strength aluminum alloy with high magnesium content under simulated seawater environment","authors":"Xiaodan Lv, Shuhui Liu, H. Xie, Qingming Cao, Chengdong Zhang, Fanwei Chen, Bin Liu","doi":"10.1002/maco.202213065","DOIUrl":"https://doi.org/10.1002/maco.202213065","url":null,"abstract":"AMg61 (Al‐6.2% Mg), a novel form of high‐strength, high‐magnesium‐content aluminum alloy, has been developed for specific maritime engineering in recent years, while its corrosion behavior in seawater is still unknown. Therefore, the corrosion behavior of AMg61 in the simulated seawater was investigated herein, using a weight‐loss test and different electrochemical measurements. In addition, corrosion morphology and chemical contents were characterized by metallography, scanning electron microscopy, and energy‐dispersive spectroscopy. The results demonstrated that intergranular corrosion and microcracks developed first in the second phase of AMg61, followed by pitting corrosion. The matrix of AMg61, on the other hand, exhibited a uniform and exfoliation corrosion. The corrosion rate gradually decreased over time.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"5 1","pages":"1318 - 1329"},"PeriodicalIF":0.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75325483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: Materials and Corrosion. 3/2022 报头:材料与腐蚀。3/2022
Pub Date : 2022-03-01 DOI: 10.1002/maco.202270032
{"title":"Masthead: Materials and Corrosion. 3/2022","authors":"","doi":"10.1002/maco.202270032","DOIUrl":"https://doi.org/10.1002/maco.202270032","url":null,"abstract":"","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86299154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of inhibitory properties of Ce‐citrate as a green corrosion inhibitor of low alloy steel in neutral chloride solution 柠檬酸铈作为绿色缓蚀剂对低合金钢在中性氯化物溶液中的抑制性能分析
Pub Date : 2022-02-28 DOI: 10.1002/maco.202213079
Dunja Marunkić, B. Jegdić, Jovana Pejić, Milena Milošević, A. Marinković, Bojana M. Radojković
The new environmentally friendly corrosion inhibitor Ce‐citrate was analyzed in 0.05 M NaCl solution on the AISI 4130 steel. For comparison, corrosion inhibitor Ce‐chloride is tested in the same concentration as Ce‐citrate (0.3 mM). Inhibitor efficiencies were determined by applying electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The results of electrochemical measurements, the contact angle measurements, as well as the surface appearance of the specimens after the immersion in the inhibitive NaCl solution for 96 h confirmed that the new environmentally friendly inhibitor (Ce‐citrate) has a significantly higher protective ability than the Ce‐chloride. The protective ability of Ce‐citrate increases over time, according to the proposed mechanism of its action. In the inhibitive layer formed in NaCl solution containing Ce‐citrate, XPS analysis revealed the presence of cerium in oxidation states CeIII and CeIV, citrate anions (carboxyl O–C═O group as well as C–OH and C–C and C–H bonds), oxide, hydroxide, and oxyhydroxide of iron (mainly FeOOH and Fe2O3). The mechanism of inhibitory action of Ce‐citrate was proposed and analyzed in detail.
在0.05 M NaCl溶液中对新型环保型缓蚀剂柠檬酸铈(Ce‐citrate)在AISI 4130钢上进行了分析。为了进行比较,缓蚀剂氯化铈在与柠檬酸铈(0.3 mM)相同浓度下进行测试。通过电化学阻抗谱和动电位极化测量来确定缓蚀剂的效率。电化学测量、接触角测量以及样品在NaCl溶液中浸泡96 h后的表面形貌均证实了新型环保型缓蚀剂(柠檬酸铈)的保护能力明显高于氯化铈。根据提出的作用机制,柠檬酸铈的保护能力随着时间的推移而增加。在含有柠檬酸Ce的NaCl溶液中形成的抑制层中,XPS分析发现铈在氧化态CeIII和CeIV、柠檬酸阴离子(羧基O - c = O基团以及C-OH和C-C和C-H键)、铁的氧化物、氢氧化物和氢氧化物(主要是FeOOH和Fe2O3)中存在。提出并详细分析了柠檬酸铈的抑制作用机理。
{"title":"Analysis of inhibitory properties of Ce‐citrate as a green corrosion inhibitor of low alloy steel in neutral chloride solution","authors":"Dunja Marunkić, B. Jegdić, Jovana Pejić, Milena Milošević, A. Marinković, Bojana M. Radojković","doi":"10.1002/maco.202213079","DOIUrl":"https://doi.org/10.1002/maco.202213079","url":null,"abstract":"The new environmentally friendly corrosion inhibitor Ce‐citrate was analyzed in 0.05 M NaCl solution on the AISI 4130 steel. For comparison, corrosion inhibitor Ce‐chloride is tested in the same concentration as Ce‐citrate (0.3 mM). Inhibitor efficiencies were determined by applying electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The results of electrochemical measurements, the contact angle measurements, as well as the surface appearance of the specimens after the immersion in the inhibitive NaCl solution for 96 h confirmed that the new environmentally friendly inhibitor (Ce‐citrate) has a significantly higher protective ability than the Ce‐chloride. The protective ability of Ce‐citrate increases over time, according to the proposed mechanism of its action. In the inhibitive layer formed in NaCl solution containing Ce‐citrate, XPS analysis revealed the presence of cerium in oxidation states CeIII and CeIV, citrate anions (carboxyl O–C═O group as well as C–OH and C–C and C–H bonds), oxide, hydroxide, and oxyhydroxide of iron (mainly FeOOH and Fe2O3). The mechanism of inhibitory action of Ce‐citrate was proposed and analyzed in detail.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"118 1","pages":"1286 - 1297"},"PeriodicalIF":0.0,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81780177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
High‐temperature corrosion behavior of S30432 and TP310HCbN coatings in simulated 620°C ultra‐supercritical boiler coal ash/gas environment S30432和TP310HCbN涂层在模拟620℃超超临界锅炉煤灰/气体环境中的高温腐蚀行为
Pub Date : 2022-02-28 DOI: 10.1002/maco.202113014
Yugang Liu, Yinhe Liu, Chunhong Mo, Minqiang Zhang, Meng Dong, Shaocheng Pan, Shenming Ran
The high‐temperature sulfur corrosion resistance of S30432 and TP310HCbN typically used in the superheater and reheater of a 620°C ultra‐supercritical boiler is investigated in this study. Samples coated with coal ash are placed in a device filled with simulated flue gas at 650°C and 700°C, respectively, for 2000 h. The samples are then analyzed through X‐ray diffraction, scanning electron microscopy, and energy‐dispersive spectroscopy. S30432 is mainly oxidized under 650°C and 0.2% SO2 volume concentration, and the weight reduction is 6.6 mg cm−2. However, under 700°C and 0.3% SO2 volume concentration, severe sulfidation reaction occurs, sharply accelerating high‐temperature corrosion. As a result, weight reduction up to 41.8 mg cm−2 occurs. Although sulfidation reaction also occurs in TP310HCbN, there is no serious corrosion; the corrosion rate reduces in the later stages of the experiment, and a weight increase of 2.4 mg cm−2 is observed. After 11 520 h of the actual operation of the 1000 MW 620°C boiler, there is no obvious high‐temperature corrosion in the high‐temperature areas without coke‐block adhesion. These results indicate that S30432 and TP310HCbN satisfy the requirements of 620°C ultra‐supercritical boilers burning high‐sulfur coal.
研究了620℃超超临界锅炉过热器和再热器中常用的S30432和TP310HCbN的耐高温硫腐蚀性能。将涂有煤灰的样品分别置于充满模拟烟气的装置中,温度分别为650°C和700°C,时间为2000小时。然后通过X射线衍射、扫描电子显微镜和能量色散光谱对样品进行分析。S30432在650℃和0.2% SO2体积浓度下主要氧化,重量减轻6.6 mg cm−2。然而,在700°C和0.3% SO2体积浓度下,发生严重的硫化反应,急剧加速高温腐蚀。结果,重量减少高达41.8 mg cm−2。TP310HCbN虽然也发生硫化反应,但腐蚀不严重;在实验后期,腐蚀速率降低,质量增加2.4 mg cm−2。1000mw 620℃锅炉实际运行11 520 h后,在无焦块粘连的高温区域未发现明显的高温腐蚀现象。结果表明,S30432和TP310HCbN满足620℃超超临界锅炉燃烧高硫煤的要求。
{"title":"High‐temperature corrosion behavior of S30432 and TP310HCbN coatings in simulated 620°C ultra‐supercritical boiler coal ash/gas environment","authors":"Yugang Liu, Yinhe Liu, Chunhong Mo, Minqiang Zhang, Meng Dong, Shaocheng Pan, Shenming Ran","doi":"10.1002/maco.202113014","DOIUrl":"https://doi.org/10.1002/maco.202113014","url":null,"abstract":"The high‐temperature sulfur corrosion resistance of S30432 and TP310HCbN typically used in the superheater and reheater of a 620°C ultra‐supercritical boiler is investigated in this study. Samples coated with coal ash are placed in a device filled with simulated flue gas at 650°C and 700°C, respectively, for 2000 h. The samples are then analyzed through X‐ray diffraction, scanning electron microscopy, and energy‐dispersive spectroscopy. S30432 is mainly oxidized under 650°C and 0.2% SO2 volume concentration, and the weight reduction is 6.6 mg cm−2. However, under 700°C and 0.3% SO2 volume concentration, severe sulfidation reaction occurs, sharply accelerating high‐temperature corrosion. As a result, weight reduction up to 41.8 mg cm−2 occurs. Although sulfidation reaction also occurs in TP310HCbN, there is no serious corrosion; the corrosion rate reduces in the later stages of the experiment, and a weight increase of 2.4 mg cm−2 is observed. After 11 520 h of the actual operation of the 1000 MW 620°C boiler, there is no obvious high‐temperature corrosion in the high‐temperature areas without coke‐block adhesion. These results indicate that S30432 and TP310HCbN satisfy the requirements of 620°C ultra‐supercritical boilers burning high‐sulfur coal.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"32 1","pages":"1222 - 1235"},"PeriodicalIF":0.0,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89959922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Isothermal short‐term oxidation behavior of MAR‐M246 nickel‐based superalloy at 800°C and 1000°C MAR - M246镍基高温合金在800℃和1000℃下的等温短期氧化行为
Pub Date : 2022-02-27 DOI: 10.1002/maco.202112931
R. Baldan, L. Latu-Romain, Y. Wouters, N. Chaia, L. B. Alkmin, A. M. S. Sousa Malafaia
Superalloys are widely employed at high temperatures for structural applications. Hence, knowledge about the oxidation of these materials is essential. However, the literature is scanty when it comes to some families of superalloys. The purpose of this study was therefore to analyze the MAR‐M246 polycrystalline alloy in isothermal short‐term tests at 800°C and 1000°C for up to 240 h. Thermodynamic simulations were performed to evaluate the material's phase stability as a function of temperature and to assess the expected phases in response to oxygen pressure. The oxidized samples were characterized by SEM‐EDS and DRX, which revealed a tendency for scaling of oxidized material, particularly at temperatures of 1000°C. Nevertheless, protective layers of Cr2O3 and Al2O3 oxides were formed, which enabled the formation of fairly thin oxide layers, in addition to NiO and complex oxides. The region of the metallic substrate close to the oxide layer underwent aluminum depletion, causing the gamma‐prime phase to disappear, as well as formation of aluminum oxides and titanium nitrides. Last, a good correlation was found between the thermodynamic simulations and the oxides that were formed.
高温合金在高温下广泛应用于结构应用。因此,关于这些材料氧化的知识是必不可少的。然而,关于某些家族的高温合金,文献很少。因此,本研究的目的是分析MAR - M246多晶合金在800°C和1000°C下长达240小时的等温短期试验。进行热力学模拟以评估材料的相稳定性作为温度的函数,并评估氧压响应的预期相。通过SEM - EDS和DRX对氧化样品进行了表征,发现氧化材料有结垢的趋势,特别是在1000℃的温度下。然而,形成了Cr2O3和Al2O3氧化物保护层,除了NiO和复合氧化物外,还形成了相当薄的氧化层。靠近氧化层的金属衬底区域发生铝耗尽,导致γ -素相消失,并形成氧化铝和氮化钛。最后,在热力学模拟和形成的氧化物之间发现了良好的相关性。
{"title":"Isothermal short‐term oxidation behavior of MAR‐M246 nickel‐based superalloy at 800°C and 1000°C","authors":"R. Baldan, L. Latu-Romain, Y. Wouters, N. Chaia, L. B. Alkmin, A. M. S. Sousa Malafaia","doi":"10.1002/maco.202112931","DOIUrl":"https://doi.org/10.1002/maco.202112931","url":null,"abstract":"Superalloys are widely employed at high temperatures for structural applications. Hence, knowledge about the oxidation of these materials is essential. However, the literature is scanty when it comes to some families of superalloys. The purpose of this study was therefore to analyze the MAR‐M246 polycrystalline alloy in isothermal short‐term tests at 800°C and 1000°C for up to 240 h. Thermodynamic simulations were performed to evaluate the material's phase stability as a function of temperature and to assess the expected phases in response to oxygen pressure. The oxidized samples were characterized by SEM‐EDS and DRX, which revealed a tendency for scaling of oxidized material, particularly at temperatures of 1000°C. Nevertheless, protective layers of Cr2O3 and Al2O3 oxides were formed, which enabled the formation of fairly thin oxide layers, in addition to NiO and complex oxides. The region of the metallic substrate close to the oxide layer underwent aluminum depletion, causing the gamma‐prime phase to disappear, as well as formation of aluminum oxides and titanium nitrides. Last, a good correlation was found between the thermodynamic simulations and the oxides that were formed.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"10 1","pages":"1236 - 1247"},"PeriodicalIF":0.0,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82371313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Corrosion resistance of iron‐containing experimental titanium alloys exposed to simulated body fluids 含铁实验钛合金暴露于模拟体液中的耐蚀性
Pub Date : 2022-02-26 DOI: 10.1002/maco.202213076
Mogomotsi Leshetla, D. Klenam, J. Merwe, Herman Potgieter, D. Whitefield, M. Bodunrin
In this study, experimental Ti–6Al–1V–3Fe, Ti–4.5Al–1V–3Fe, and Ti–3Fe alloys, as well as commercial Ti–6Al–4V alloy that were scaled up utilizing vacuum induction melting technology, were assessed for corrosion performance in simulated body fluids. The selected simulated body fluids were 0.9 wt% NaCl solution and Hanks balanced salt solution (HBSS). Open circuit potential and linear polarization scans were performed to understand the corrosion performance of the alloys. The surface of the alloys was examined before and after exposure to corrosive solutions using scanning electron microscopy. The results show that all the alloys exhibit good corrosion performance in simulated body fluids. The corrosion rates were less than 0.5 mm/year. Owing to higher corrosion potential and lower corrosion rate, Ti–6Al–1V–3Fe and Ti–4.5Al–1V–3Fe had the best resistance to corrosion in 0.9 wt% NaCl and HBSS, respectively. All the alloys consist of a fully lamellar structure with α and β phases. There was no evidence of severe deterioration on the exposed surface of alloys in the simulated body fluids.
在这项研究中,实验Ti-6Al-1V-3Fe、Ti-4.5Al-1V-3Fe和Ti-3Fe合金,以及利用真空感应熔化技术放大的商用Ti-6Al-4V合金,在模拟体液中的腐蚀性能进行了评估。所选模拟体液为0.9 wt% NaCl溶液和Hanks平衡盐溶液(HBSS)。通过开路电位和线性极化扫描来了解合金的腐蚀性能。用扫描电子显微镜对合金暴露于腐蚀溶液前后的表面进行了检测。结果表明,所有合金在模拟体液中均表现出良好的腐蚀性能。腐蚀速率小于0.5 mm/年。Ti-6Al-1V-3Fe和Ti-4.5Al-1V-3Fe分别在0.9 wt% NaCl和HBSS中具有较高的腐蚀电位和较低的腐蚀速率。所有合金均由具有α和β相的全片层结构组成。在模拟体液中,合金暴露的表面没有严重变质的证据。
{"title":"Corrosion resistance of iron‐containing experimental titanium alloys exposed to simulated body fluids","authors":"Mogomotsi Leshetla, D. Klenam, J. Merwe, Herman Potgieter, D. Whitefield, M. Bodunrin","doi":"10.1002/maco.202213076","DOIUrl":"https://doi.org/10.1002/maco.202213076","url":null,"abstract":"In this study, experimental Ti–6Al–1V–3Fe, Ti–4.5Al–1V–3Fe, and Ti–3Fe alloys, as well as commercial Ti–6Al–4V alloy that were scaled up utilizing vacuum induction melting technology, were assessed for corrosion performance in simulated body fluids. The selected simulated body fluids were 0.9 wt% NaCl solution and Hanks balanced salt solution (HBSS). Open circuit potential and linear polarization scans were performed to understand the corrosion performance of the alloys. The surface of the alloys was examined before and after exposure to corrosive solutions using scanning electron microscopy. The results show that all the alloys exhibit good corrosion performance in simulated body fluids. The corrosion rates were less than 0.5 mm/year. Owing to higher corrosion potential and lower corrosion rate, Ti–6Al–1V–3Fe and Ti–4.5Al–1V–3Fe had the best resistance to corrosion in 0.9 wt% NaCl and HBSS, respectively. All the alloys consist of a fully lamellar structure with α and β phases. There was no evidence of severe deterioration on the exposed surface of alloys in the simulated body fluids.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"35 1","pages":"1298 - 1307"},"PeriodicalIF":0.0,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79777240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Materials and Corrosion
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1