首页 > 最新文献

Materials Chemistry and Physics最新文献

英文 中文
Mixed-dimensional nanofluids: Synergistic thermal enhancement using 2D and 1D materials 混合维纳米流体:利用二维和一维材料协同增热
IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.matchemphys.2024.130116
Shivakumar Jagadish Shetty , M.P. Shilpa , Saideep Shirish Bhat , Srivathsava Surabhi , K.S. Pavithra , A. Ganesha , T. Niranjana Prabhu , R.C. Shivamurthy , S.C. Gurumurthy
Excessive heat generation is a common problem in automobiles due to wear and tear of working parts. A suitable heat transfer system is required to avoid stalling automobiles due to the large quantity of heat generated. Liquids like water and ethylene glycol (EG) serve as a coolant by reducing generated heat. To further increase the effectiveness of these coolants, nanofluids which contain nanosized particles dispersed in base fluid like water, ethylene glycol, or a mixture of these two, can be used. In the present work, hybrid nanofluids using Ti3C2 (MXene) (2D) and functionalized multi-wall carbon nanotubes (F-MWCNTs) (1D) nanocomposites are prepared. The prepared material is characterized using X-ray diffraction (XRD) for structural analysis, field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM) with energy dispersive X-ray analysis (EDAX) for morphological and elemental analysis, and Fourier transform infrared spectroscopy (FTIR) for identifying functional groups. The suitability of the prepared nanofluids is tested for heat transfer application by measuring the thermal conductivity and viscosity. The long-term stability of the nanofluids is verified by zeta potential measurement. The addition of the dispersant to the water has shown an enhanced thermal conductivity (about 10.83% at room temperature and 96.76% at 50 °C) while having lower viscosity compared to the base fluid (water), confirming the suitability for heat transfer applications.
由于工作部件的磨损,汽车普遍存在发热量过大的问题。为避免汽车因产生大量热量而熄火,需要一个合适的传热系统。水和乙二醇(EG)等液体可作为冷却剂,减少产生的热量。为了进一步提高这些冷却剂的效果,可以使用纳米流体,这种流体含有分散在水、乙二醇或这两种流体混合物等基础流体中的纳米颗粒。本研究使用 Ti3C2(MXene)(二维)和功能化多壁碳纳米管(F-MWCNTs)(一维)纳米复合材料制备了混合纳米流体。利用 X 射线衍射 (XRD) 进行结构分析,利用场发射扫描电子显微镜 (FESEM)、扫描电子显微镜 (SEM) 和高分辨率透射电子显微镜 (HR-TEM) 以及能量色散 X 射线分析 (EDAX) 进行形态和元素分析,并利用傅立叶变换红外光谱 (FTIR) 鉴定官能团。通过测量热导率和粘度,测试了制备的纳米流体在传热应用中的适用性。通过 zeta 电位测量验证了纳米流体的长期稳定性。与基础流体(水)相比,在水中添加分散剂可提高导热率(室温下约为 10.83%,50 ℃ 时约为 96.76%),同时降低粘度,从而证实了纳米流体在传热应用中的适用性。
{"title":"Mixed-dimensional nanofluids: Synergistic thermal enhancement using 2D and 1D materials","authors":"Shivakumar Jagadish Shetty ,&nbsp;M.P. Shilpa ,&nbsp;Saideep Shirish Bhat ,&nbsp;Srivathsava Surabhi ,&nbsp;K.S. Pavithra ,&nbsp;A. Ganesha ,&nbsp;T. Niranjana Prabhu ,&nbsp;R.C. Shivamurthy ,&nbsp;S.C. Gurumurthy","doi":"10.1016/j.matchemphys.2024.130116","DOIUrl":"10.1016/j.matchemphys.2024.130116","url":null,"abstract":"<div><div>Excessive heat generation is a common problem in automobiles due to wear and tear of working parts. A suitable heat transfer system is required to avoid stalling automobiles due to the large quantity of heat generated. Liquids like water and ethylene glycol (EG) serve as a coolant by reducing generated heat. To further increase the effectiveness of these coolants, nanofluids which contain nanosized particles dispersed in base fluid like water, ethylene glycol, or a mixture of these two, can be used. In the present work, hybrid nanofluids using Ti<sub>3</sub>C<sub>2</sub> (MXene) (2D) and functionalized multi-wall carbon nanotubes (F-MWCNTs) (1D) nanocomposites are prepared. The prepared material is characterized using X-ray diffraction (XRD) for structural analysis, field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM) with energy dispersive X-ray analysis (EDAX) for morphological and elemental analysis, and Fourier transform infrared spectroscopy (FTIR) for identifying functional groups. The suitability of the prepared nanofluids is tested for heat transfer application by measuring the thermal conductivity and viscosity. The long-term stability of the nanofluids is verified by zeta potential measurement. The addition of the dispersant to the water has shown an enhanced thermal conductivity (about 10.83% at room temperature and 96.76% at 50 °C) while having lower viscosity compared to the base fluid (water), confirming the suitability for heat transfer applications.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130116"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing microstructure, nanomechanical and tribological properties of TiAl alloy processed by spark plasma sintering with Si3N4 ceramic particulates addition 通过添加 Si3N4 陶瓷颗粒的火花等离子烧结工艺提高 TiAl 合金的微观结构、纳米力学和摩擦学性能
IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.matchemphys.2024.130113
Azeez Lawan Rominiyi , Peter Madindwa Mashinini , Moipone Linda Teffo
TiAl matrix composites reinforced with varying weight fractions of Si3N4 ceramic particles were successfully fabricated by the spark plasma sintering method. The microstructure, nanomechanical and tribological properties of the sintered composites were investigated. The microstructural characterization revealed the evolution of a quasi-continuous and continuous network structure consisting of minor fractions of in-situ formed Ti2AlN, unreacted Si3N4 ceramic particles and dominant Ti5Si3 intermetallic phases within the TiAl matrix at Si3N4 content above 1.5 wt%. The in-situ precipitated phases enhanced the nanomechanical and tribological properties of the composites. The 7Si3N4/TiAl composite displayed the best nanomechanical properties, including nanohardness, elastic modulus, and H/Er ratio among the sintered samples. The specific wear rate of the composites decreases with increasing reinforcement content. 7Si3N4/TiAl composite exhibited the lowest specific wear rate of 0.38 ± 0.55 × 10−4 mm3/Nm, representing a 95.6 % improvement in wear resistance compared to the unreinforced pure TiAl alloy. The improved wear performance of the composites was attributed to their load-bearing capacity and wear resistance of the hard, in-situ Ti2AlN, Ti5Si3 and unreacted Si3N4 particles in the TiAl matrix. The composites displayed a transition from adhesive wear to predominantly abrasive wear where the hard Si3N4 particles prevented direct metal-to-metal contact and facilitated the formation of a protective tribolayer, resulting in enhanced wear resistance. Hence, the developed Si3N4/TiAl composites are suitable for various structural and tribological applications.
采用火花等离子烧结法成功地制造出了用不同重量分数的 Si3N4 陶瓷颗粒增强的 TiAl 基复合材料。研究了烧结复合材料的微观结构、纳米力学性能和摩擦学性能。微观结构表征显示,当 Si3N4 含量超过 1.5 wt% 时,TiAl 基体中出现了准连续和连续的网络结构,其中包括少量原位形成的 Ti2AlN、未反应的 Si3N4 陶瓷颗粒和主要的 Ti5Si3 金属间相。原位析出相增强了复合材料的纳米力学性能和摩擦学性能。在烧结样品中,7Si3N4/TiAl 复合材料显示出最佳的纳米力学性能,包括纳米硬度、弹性模量和 H/Er 比。复合材料的比磨损率随着增强成分的增加而降低。7Si3N4/TiAl 复合材料的比磨损率最低,为 0.38 ± 0.55 × 10-4 mm3/Nm,与未增强的纯 TiAl 合金相比,耐磨性提高了 95.6%。复合材料耐磨性能的提高归功于其承载能力和 TiAl 基体中坚硬的原位 Ti2AlN、Ti5Si3 和未反应的 Si3N4 颗粒的耐磨性。复合材料显示出从粘着磨损向主要是磨料磨损的过渡,其中坚硬的 Si3N4 颗粒阻止了金属与金属之间的直接接触,促进了保护摩擦层的形成,从而增强了耐磨性。因此,所开发的 Si3N4/TiAl 复合材料适用于各种结构和摩擦学应用。
{"title":"Enhancing microstructure, nanomechanical and tribological properties of TiAl alloy processed by spark plasma sintering with Si3N4 ceramic particulates addition","authors":"Azeez Lawan Rominiyi ,&nbsp;Peter Madindwa Mashinini ,&nbsp;Moipone Linda Teffo","doi":"10.1016/j.matchemphys.2024.130113","DOIUrl":"10.1016/j.matchemphys.2024.130113","url":null,"abstract":"<div><div>TiAl matrix composites reinforced with varying weight fractions of Si<sub>3</sub>N<sub>4</sub> ceramic particles were successfully fabricated by the spark plasma sintering method. The microstructure, nanomechanical and tribological properties of the sintered composites were investigated. The microstructural characterization revealed the evolution of a quasi-continuous and continuous network structure consisting of minor fractions of in-situ formed Ti<sub>2</sub>AlN, unreacted Si<sub>3</sub>N<sub>4</sub> ceramic particles and dominant Ti<sub>5</sub>Si<sub>3</sub> intermetallic phases within the TiAl matrix at Si<sub>3</sub>N<sub>4</sub> content above 1.5 wt%. The in-situ precipitated phases enhanced the nanomechanical and tribological properties of the composites. The 7Si<sub>3</sub>N<sub>4</sub>/TiAl composite displayed the best nanomechanical properties, including nanohardness, elastic modulus, and <em>H/E</em><sub><em>r</em></sub> ratio among the sintered samples. The specific wear rate of the composites decreases with increasing reinforcement content. 7Si<sub>3</sub>N<sub>4</sub>/TiAl composite exhibited the lowest specific wear rate of 0.38 ± 0.55 <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>−4</sup> mm<sup>3</sup>/Nm, representing a 95.6 % improvement in wear resistance compared to the unreinforced pure TiAl alloy. The improved wear performance of the composites was attributed to their load-bearing capacity and wear resistance of the hard, in-situ Ti<sub>2</sub>AlN, Ti<sub>5</sub>Si<sub>3</sub> and unreacted Si<sub>3</sub>N<sub>4</sub> particles in the TiAl matrix. The composites displayed a transition from adhesive wear to predominantly abrasive wear where the hard Si<sub>3</sub>N<sub>4</sub> particles prevented direct metal-to-metal contact and facilitated the formation of a protective tribolayer, resulting in enhanced wear resistance. Hence, the developed Si<sub>3</sub>N<sub>4</sub>/TiAl composites are suitable for various structural and tribological applications.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130113"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly sensitive electrochemical sensor based Nd2O3/graphene for monitoring additive compounds in palm oil product 基于钕2O3/石墨烯的高灵敏度电化学传感器用于监测棕榈油产品中的添加剂化合物
IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.matchemphys.2024.130121
Rahmat Hidayat , Ganjar Fadillah , Febi Indah Fajarwati , Aldo Diandra Nur Ramdani , Qonita Awliya Hanif , Muhaimin
The use of additives, such as 3-monochloropropane-1,2-diol (3-MCPDs), in palm oil products can impact the product's quality and safety. Therefore, it is essential to have a sensitive and accurate detection method. This study explored the hydrothermal synthesis of Nd₂O₃/graphene (Nd₂O₃/G) composites and their application as electrochemical sensors for detecting 3-MCPDs as additive compounds in palm oil products. Different techniques for characterization, such as Fourier Transform Infra-Red (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM), supply evidence supporting the successful assembly and positive arrangement of the Nd₂O₃/G composite. The sensor's electrochemical efficacy is assessed concerning the detection of typical additives found in palm oil (3-MCPDs). The sensor performance test is studied by voltammetric technique. The modified sensor showed good analytical performance for detection of 3-MCPDs with improving electrocatalytic activity, electron transfer, and reduced charge transfer resistance (Rct). These modifications greatly enhance the sensor's ability to accurately detect 3-MCPDs with limit of detection of 0.65 μM. This developed sensor shows a great stability and accuracy, thus it has potential to apply in quality control and daily analysis process.
在棕榈油产品中使用 3-氯丙二醇(3-MCPDs)等添加剂会影响产品质量和安全。因此,灵敏而准确的检测方法至关重要。本研究探讨了 Nd₂O₃/石墨烯(Nd₂O₃/G)复合材料的水热合成及其作为电化学传感器的应用,以检测棕榈油产品中作为添加剂化合物的 3-MCPD。傅立叶变换红外(FTIR)、X 射线衍射(XRD)和扫描电子显微镜(SEM)等不同的表征技术为 Nd₂O₃/G 复合材料的成功组装和正排列提供了证据。在检测棕榈油中的典型添加剂(3-MCPDs)方面,对传感器的电化学功效进行了评估。传感器性能测试采用伏安技术进行研究。改进后的传感器在检测 3-MCPDs 方面表现出良好的分析性能,电催化活性、电子传递和电荷转移电阻(Rct)均有所提高。这些改进大大提高了传感器准确检测 3-MCPDs 的能力,其检测限为 0.65 μM。这种新开发的传感器具有极高的稳定性和准确性,因此有望应用于质量控制和日常分析过程中。
{"title":"Highly sensitive electrochemical sensor based Nd2O3/graphene for monitoring additive compounds in palm oil product","authors":"Rahmat Hidayat ,&nbsp;Ganjar Fadillah ,&nbsp;Febi Indah Fajarwati ,&nbsp;Aldo Diandra Nur Ramdani ,&nbsp;Qonita Awliya Hanif ,&nbsp;Muhaimin","doi":"10.1016/j.matchemphys.2024.130121","DOIUrl":"10.1016/j.matchemphys.2024.130121","url":null,"abstract":"<div><div>The use of additives, such as 3-monochloropropane-1,2-diol (3-MCPDs), in palm oil products can impact the product's quality and safety. Therefore, it is essential to have a sensitive and accurate detection method. This study explored the hydrothermal synthesis of Nd₂O₃/graphene (Nd₂O₃/G) composites and their application as electrochemical sensors for detecting 3-MCPDs as additive compounds in palm oil products. Different techniques for characterization, such as Fourier Transform Infra-Red (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM), supply evidence supporting the successful assembly and positive arrangement of the Nd₂O₃/G composite. The sensor's electrochemical efficacy is assessed concerning the detection of typical additives found in palm oil (3-MCPDs). The sensor performance test is studied by voltammetric technique. The modified sensor showed good analytical performance for detection of 3-MCPDs with improving electrocatalytic activity, electron transfer, and reduced charge transfer resistance (R<sub>ct</sub>). These modifications greatly enhance the sensor's ability to accurately detect 3-MCPDs with limit of detection of 0.65 μM. This developed sensor shows a great stability and accuracy, thus it has potential to apply in quality control and daily analysis process.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130121"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of the nanostructure design on the corrosion behaviour of TiN thin films prepared by glancing angle deposition 纳米结构设计对闪烁角沉积法制备的 TiN 薄膜腐蚀性能的影响
IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1016/j.matchemphys.2024.130100
Cláudia Lopes , Alexandra C. Alves , Armando Ferreira , Eduardo Alves , Nuno Pessoa Barradas , Ioana Borsan , Daniel Munteanu , Filipe Vaz
This study reports on the influence of nanostructure design on the corrosion behaviour of titanium nitride (TiN) thin films, prepared by DC reactive magnetron sputtering, using the Glancing Angle Deposition (GLAD) technique. The primary objective was to explore how modifying the deposition geometry affects the growth design and surface features of TiN films (keeping roughly constant the N/Ti ratio) and compare these effects with those produced by changing the chemical composition within the same thin film system (N/Ti increasing ratios). For this, two groups of samples were prepared: Group 1 – the samples were prepared in the conventional geometry (normal growth) with varied nitrogen content (stoichiometric and non-stoichiometric films) and; Group 2 – the samples were prepared with modified growth geometries (inclined and zigzag, with increasing incidence angles), keeping an almost unchanged stoichiometry. The results revealed increased surface porosity and roughness for Group 2 films compared to Group 1, demonstrating that deposition geometry can affect more significantly the surface characteristics than the composition variations. Corrosion studies indicated that the films prepared within Group 2, despite having higher porosity, showed a more stable open circuit potential (OCP) and nobler values than the reference close-stoichiometric TiN0.92 film (reference sample) from Group 1. However, potentiodynamic polarization curves suggested higher corrosion kinetics for Group 2 films, most likely due to their increased surface heterogeneities. Electrochemical impedance spectroscopy (EIS) confirmed these findings, showing lower corrosion resistance for films prepared with inclined and zigzag geometries, if compared to the films prepared in conventional geometry (Group 1 samples).
This study advances the current state of the art on this film's responses, by demonstrating that tailoring nanostructure design through deposition geometry offers a promising approach to optimize the corrosion behaviour of TiNx without the need to change its composition.
本研究报告介绍了纳米结构设计对氮化钛(TiN)薄膜腐蚀性能的影响,该薄膜采用直流反应磁控溅射法,并使用滑动角沉积(GLAD)技术制备而成。主要目的是探索改变沉积几何形状如何影响氮化钛薄膜的生长设计和表面特征(保持氮/钛比率基本不变),并将这些影响与改变同一薄膜系统中的化学成分(氮/钛比率增加)所产生的影响进行比较。为此,我们制备了两组样品:第 1 组--样品以传统几何形状(正常生长)制备,氮含量变化(化学计量薄膜和非化学计量薄膜);第 2 组--样品以改良生长几何形状(倾斜和之字形,入射角增加)制备,化学计量几乎保持不变。结果显示,与第一组相比,第二组薄膜的表面孔隙率和粗糙度都有所增加,这表明沉积几何比成分变化对表面特性的影响更大。腐蚀研究表明,第 2 组制备的薄膜尽管孔隙率较高,但其开路电位(OCP)更稳定,其数值也比第 1 组的接近化学计量的 TiN0.92 参考薄膜(参考样品)更高。电化学阻抗光谱(EIS)证实了这些发现,与传统几何形状制备的薄膜(第 1 组样品)相比,采用倾斜和之字形几何形状制备的薄膜耐腐蚀性更低。这项研究表明,通过沉积几何形状定制纳米结构设计是优化 TiNx 腐蚀性能的一种可行方法,而无需改变其成分,从而推动了该薄膜响应技术的发展。
{"title":"The influence of the nanostructure design on the corrosion behaviour of TiN thin films prepared by glancing angle deposition","authors":"Cláudia Lopes ,&nbsp;Alexandra C. Alves ,&nbsp;Armando Ferreira ,&nbsp;Eduardo Alves ,&nbsp;Nuno Pessoa Barradas ,&nbsp;Ioana Borsan ,&nbsp;Daniel Munteanu ,&nbsp;Filipe Vaz","doi":"10.1016/j.matchemphys.2024.130100","DOIUrl":"10.1016/j.matchemphys.2024.130100","url":null,"abstract":"<div><div>This study reports on the influence of nanostructure design on the corrosion behaviour of titanium nitride (TiN) thin films, prepared by DC reactive magnetron sputtering, using the Glancing Angle Deposition (GLAD) technique. The primary objective was to explore how modifying the deposition geometry affects the growth design and surface features of TiN films (keeping roughly constant the N/Ti ratio) and compare these effects with those produced by changing the chemical composition within the same thin film system (N/Ti increasing ratios). For this, two groups of samples were prepared: Group 1 – the samples were prepared in the conventional geometry (normal growth) with varied nitrogen content (stoichiometric and non-stoichiometric films) and; Group 2 – the samples were prepared with modified growth geometries (inclined and zigzag, with increasing incidence angles), keeping an almost unchanged stoichiometry. The results revealed increased surface porosity and roughness for Group 2 films compared to Group 1, demonstrating that deposition geometry can affect more significantly the surface characteristics than the composition variations. Corrosion studies indicated that the films prepared within Group 2, despite having higher porosity, showed a more stable open circuit potential (OCP) and nobler values than the reference close-stoichiometric TiN<sub>0.92</sub> film (reference sample) from Group 1. However, potentiodynamic polarization curves suggested higher corrosion kinetics for Group 2 films, most likely due to their increased surface heterogeneities. Electrochemical impedance spectroscopy (EIS) confirmed these findings, showing lower corrosion resistance for films prepared with inclined and zigzag geometries, if compared to the films prepared in conventional geometry (Group 1 samples).</div><div>This study advances the current state of the art on this film's responses, by demonstrating that tailoring nanostructure design through deposition geometry offers a promising approach to optimize the corrosion behaviour of TiN<sub>x</sub> without the need to change its composition.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130100"},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size-controlled synthesis and sensing properties of anthracene-based metal-organic frameworks for detection of singlet oxygen in photodynamic therapy 用于检测光动力疗法中单线态氧的蒽基金属有机框架的尺寸控制合成与传感特性
IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1016/j.matchemphys.2024.130112
Ning Li , Ying Yang , Linshan Jia , Xiaotong Li , Yunkun Zhao , Xiaohong Hou
Developing fluorescent probes to detect singlet oxygen (1O2) is essential to understanding the critical role of 1O2 in immunological and pathological processes in various organs. In this study, size-controlled DPA-MOF (X) with good biocompatibility and excellent optical stability was used as a nanoprobe for real-time imaging and monitoring of 1O2 in photodynamic therapy (PDT). The experimentally synthesized DPA-MOF (X), which can be adjusted in particle size by dilution, exhibits blue fluorescence signals. The results show that smaller-sized DPA-MOF (60) has a faster response to 1O2 and higher cell uptake ability. The ratio of fluorescence intensity (F0/Fi) of DPA-MOF (60) showed a linear correlation with the concentration of 1O2 in the range of 0–7 mM, with a detection limit of 88 μM. DPA-MOF has a distinct advantage over most carrier loading sensors in that it effectively avoids the issue of fluorophore leakage from the nanomaterial matrix, thereby improving its stability. Additionally, the controlled synthesis of DPA-MOF can potentially improve probe accumulation in tumors and lower the uptake by the body system. This study presents a luminescent metal-organic framework (LMOF) sensor that utilizes a 1O2 capture unit as a measuring ligand. This sensor has been shown to have exceptional biocompatibility and can be utilized for highly specific and efficient detection of 1O2 in vivo or living cells.
开发检测单线态氧(1O2)的荧光探针对于了解 1O2 在各种器官的免疫和病理过程中的关键作用至关重要。在这项研究中,具有良好生物相容性和优异光学稳定性的尺寸可控 DPA-MOF (X) 被用作纳米探针,用于光动力疗法(PDT)中 1O2 的实时成像和监测。实验合成的 DPA-MOF (X) 可通过稀释调节粒径,并显示蓝色荧光信号。结果表明,粒径较小的 DPA-MOF (60) 对 1O2 的反应速度更快,细胞吸收能力更强。在 0-7 mM 的范围内,DPA-MOF(60)的荧光强度比(F0/Fi)与 1O2 的浓度呈线性相关,检测限为 88 μM。与大多数载流子负载传感器相比,DPA-MOF 具有一个明显的优势,即它有效地避免了荧光团从纳米材料基质中泄漏的问题,从而提高了其稳定性。此外,DPA-MOF 的可控合成有可能改善探针在肿瘤中的积累,降低人体系统的吸收率。本研究介绍了一种利用 1O2 捕获单元作为测量配体的发光金属有机框架(LMOF)传感器。该传感器具有优异的生物相容性,可用于体内或活细胞中 1O2 的高特异性和高效检测。
{"title":"Size-controlled synthesis and sensing properties of anthracene-based metal-organic frameworks for detection of singlet oxygen in photodynamic therapy","authors":"Ning Li ,&nbsp;Ying Yang ,&nbsp;Linshan Jia ,&nbsp;Xiaotong Li ,&nbsp;Yunkun Zhao ,&nbsp;Xiaohong Hou","doi":"10.1016/j.matchemphys.2024.130112","DOIUrl":"10.1016/j.matchemphys.2024.130112","url":null,"abstract":"<div><div>Developing fluorescent probes to detect singlet oxygen (<sup>1</sup>O<sub>2</sub>) is essential to understanding the critical role of <sup>1</sup>O<sub>2</sub> in immunological and pathological processes in various organs. In this study, size-controlled DPA-MOF (X) with good biocompatibility and excellent optical stability was used as a nanoprobe for real-time imaging and monitoring of <sup>1</sup>O<sub>2</sub> in photodynamic therapy (PDT). The experimentally synthesized DPA-MOF (X), which can be adjusted in particle size by dilution, exhibits blue fluorescence signals. The results show that smaller-sized DPA-MOF (60) has a faster response to <sup>1</sup>O<sub>2</sub> and higher cell uptake ability. The ratio of fluorescence intensity (<em>F</em><sub><em>0</em></sub>/<em>F</em><sub><em>i</em></sub>) of DPA-MOF (60) showed a linear correlation with the concentration of <sup>1</sup>O<sub>2</sub> in the range of 0–7 mM, with a detection limit of 88 μM. DPA-MOF has a distinct advantage over most carrier loading sensors in that it effectively avoids the issue of fluorophore leakage from the nanomaterial matrix, thereby improving its stability. Additionally, the controlled synthesis of DPA-MOF can potentially improve probe accumulation in tumors and lower the uptake by the body system. This study presents a luminescent metal-organic framework (LMOF) sensor that utilizes a <sup>1</sup>O<sub>2</sub> capture unit as a measuring ligand. This sensor has been shown to have exceptional biocompatibility and can be utilized for highly specific and efficient detection of <sup>1</sup>O<sub>2</sub> in vivo or living cells.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130112"},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poly (acrylic acid-co-2-hydroxyethyl methacrylate)-grafted gum ghatti hydrogel for capturing heavy metal ions 用于捕获重金属离子的聚(丙烯酸-2-羟乙基甲基丙烯酸酯)接枝树胶水凝胶
IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1016/j.matchemphys.2024.130106
Praveen Kumar , Poorn Prakash Pande , Prateek Khare , Ravi Shankar , Arbind Chaurasiya , Narendra Pratap Tripathi
In this work, a facile route is explored for the synthesis of a novel polymer composite-based hydrogel (PC-hydrogel). The ratio of 2-(Hydroxyethyl) methacrylate (HEMA) and acrylic acid (AA) is optimized first based on Fourier transform infra-red spectroscopy, swelling ratio (SR%) and surface negative charge (PZC). Results indicate that PC-hydrogel composed of copolymer of HEMA: AA in 1:4 ratio is optimized, for grafting on Gum ghatti (Gg) during free-radical graft copolymerization process. Among all other possible combination of HEMA: AA, 1:4 ratio grafted Gg is termed as PC-hydrogel [Poly (AA-co-HEMA)-g-Gg]. PC-hydrogel exhibited negative surface charge over a wide range of pH owing to increase in AA. The swelling (g/g) and water retention ratio (%) of the prepared hydrogel have been found to be 342.6, 385 & 412.6 g/g and 74.83, 65.30 & 57.86 % in grey, tap and distilled water respectively. Furthermore, PC-hydrogel is applied for capturing Cu2+ and Co2+ ions in aqueous phases. Experimental results showed that adsorption process was pH-dependent, and the maximum capturing of Cu2+ and Co2+ was observed at neutral pH 7. Among different adsorption isotherms models like Langmuir, Freundlich, and Temkin models, experimental data fitted closely with the Langmuir adsorption model showing a maximum adsorption capacity of 381.67 and 328.94 mg/g for Cu2+ and Co2+ respectively. The capturing of metal ion followed pseudo-second-order rate model [rate constant k = 1.7 x 10−4 for Cu2+ and 1.5 x 10−4 for Co2+ g/(mg.min)]. The PC-hydrogel property retained its uptake capacity of metal ions up to the three successive adsorption−desorption cycles, and exhibited higher selectivity towards Cu2+ and Co2+ and other (NaCl, MgCl2, CaCl2) coexisting ions.
本研究探索了一种新型聚合物复合水凝胶(PC-hydrogel)的简便合成路线。首先根据傅立叶变换红外光谱、溶胀率(SR%)和表面负电荷(PZC)优化了甲基丙烯酸羟乙酯(HEMA)和丙烯酸(AA)的比例。结果表明,在自由基接枝共聚过程中,由 1:4 比例的 HEMA 和 AA 共聚物组成的 PC-水凝胶最适合接枝到 Gum ghatti(Gg)上。在所有其他可能的 HEMA: AA 组合中,1:4 比例接枝的 Gg 被称为 PC-hydrogel [聚(AA-co-HEMA)-g-Gg]。由于 AA 的增加,PC-水凝胶在很宽的 pH 值范围内都呈现出负表面电荷。制备的水凝胶在灰水、自来水和蒸馏水中的溶胀度(克/克)和保水率(%)分别为 342.6、385 和 412.6 克/克以及 74.83、65.30 和 57.86%。此外,PC-水凝胶还可用于捕捉水相中的 Cu2+ 和 Co2+ 离子。实验结果表明,吸附过程与 pH 值有关,在中性 pH 值为 7 时,Cu2+ 和 Co2+ 的吸附量最大。在 Langmuir、Freundlich 和 Temkin 等不同的吸附等温线模型中,实验数据与 Langmuir 吸附模型非常吻合,Cu2+ 和 Co2+ 的最大吸附容量分别为 381.67 和 328.94 mg/g。金属离子的捕获遵循伪二阶速率模型[Cu2+ 的速率常数 k = 1.7 x 10-4 和 Co2+ 的速率常数 k = 1.5 x 10-4 g/(mg.min)]。PC 水凝胶在连续三次吸附-解吸循环中都保持了对金属离子的吸附能力,并对 Cu2+、Co2+ 和其他(NaCl、MgCl2、CaCl2)共存离子表现出较高的选择性。
{"title":"Poly (acrylic acid-co-2-hydroxyethyl methacrylate)-grafted gum ghatti hydrogel for capturing heavy metal ions","authors":"Praveen Kumar ,&nbsp;Poorn Prakash Pande ,&nbsp;Prateek Khare ,&nbsp;Ravi Shankar ,&nbsp;Arbind Chaurasiya ,&nbsp;Narendra Pratap Tripathi","doi":"10.1016/j.matchemphys.2024.130106","DOIUrl":"10.1016/j.matchemphys.2024.130106","url":null,"abstract":"<div><div>In this work, a facile route is explored for the synthesis of a novel polymer composite-based hydrogel (PC-hydrogel). The ratio of 2-(Hydroxyethyl) methacrylate (HEMA) and acrylic acid (AA) is optimized first based on Fourier transform infra-red spectroscopy, swelling ratio (SR%) and surface negative charge (PZC). Results indicate that PC-hydrogel composed of copolymer of HEMA: AA in 1:4 ratio is optimized, for grafting on Gum ghatti (Gg) during free-radical graft copolymerization process. Among all other possible combination of HEMA: AA, 1:4 ratio grafted Gg is termed as PC-hydrogel [Poly (AA-co-HEMA)-g-Gg]. PC-hydrogel exhibited negative surface charge over a wide range of pH owing to increase in AA. The swelling (g/g) and water retention ratio (%) of the prepared hydrogel have been found to be 342.6, 385 &amp; 412.6 g/g and 74.83, 65.30 &amp; 57.86 % in grey, tap and distilled water respectively. Furthermore, PC-hydrogel is applied for capturing Cu<sup>2+</sup> and Co<sup>2+</sup> ions in aqueous phases. Experimental results showed that adsorption process was pH-dependent, and the maximum capturing of Cu<sup>2+</sup> and Co<sup>2+</sup> was observed at neutral pH 7. Among different adsorption isotherms models like Langmuir, Freundlich, and Temkin models, experimental data fitted closely with the Langmuir adsorption model showing a maximum adsorption capacity of 381.67 and 328.94 mg/g for Cu<sup>2+</sup> and Co<sup>2+</sup> respectively. The capturing of metal ion followed pseudo-second-order rate model [rate constant k = 1.7 x 10<sup>−4</sup> for Cu<sup>2+</sup> and 1.5 x 10<sup>−4</sup> for Co<sup>2+</sup> g/(mg.min)]. The PC-hydrogel property retained its uptake capacity of metal ions up to the three successive adsorption−desorption cycles, and exhibited higher selectivity towards Cu<sup>2+</sup> and Co<sup>2+</sup> and other (NaCl, MgCl<sub>2</sub>, CaCl<sub>2</sub>) coexisting ions.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130106"},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ formation of polymer-stabilized/-free cholesteric bi-layer photonic crystal 原位形成聚合物稳定/无胆固醇双层光子晶体
IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-30 DOI: 10.1016/j.matchemphys.2024.130093
Kuan-Wu Lin, Chun-Chuan Wang, Yu-Chieh Chang, Yu-Chieh Li, Chun-Ta Wang
Tunable photonic crystals based on cholesteric liquid crystals (CLCs) have attracted considerable attention due to their tunable optical properties and self-assembly capabilities. Despite the rapid development of various CLC-based devices, the narrow bandwidth of the photonic bandgap in CLCs limits their use in some practical applications. This paper presents a method for forming polymer-stabilized and polymer-free cholesteric bilayer photonic crystals in polymer-stabilized cholesteric liquid crystals (PSCLCs). By tuning the concentration of reactive monomers and controlling the UV polymerization conditions, two different PBGs can be formed within a single PSCLC cell. As the concentration of RM257 increases to 40 % and the intensity of UV light is used at 22 mW/cm2, the distance between the two reflectance bands can reach 200 nm, reflecting green and red light. The dynamic formation process and the tunability of these cholesteric bilayer structures under electric fields and temperature variations are investigated. By controlling the temperature and electric field, the reflectance of the liquid crystal layer can be reduced from 50 % to 15 %, resulting in a single-band reflection. In addition, we have proposed a tunable polarization volume grating based on the cholesteric bi-layer photonic crystal, which can diffract two specific light colors.
基于胆甾型液晶(CLC)的可调谐光子晶体因其可调谐的光学特性和自组装能力而备受关注。尽管各种基于胆甾型液晶的器件发展迅速,但胆甾型液晶的光子带隙带宽较窄,限制了它们在某些实际应用中的使用。本文介绍了一种在聚合物稳定胆固醇液晶(PSCLCs)中形成聚合物稳定和无聚合物胆固醇双层光子晶体的方法。通过调整反应性单体的浓度和控制紫外聚合条件,可以在单个 PSCLC 单元中形成两种不同的 PBG。当 RM257 的浓度增加到 40%、紫外光强度达到 22 mW/cm2 时,两条反射带之间的距离可达 200 nm,分别反射绿光和红光。研究了这些胆固醇双层结构在电场和温度变化下的动态形成过程和可调性。通过控制温度和电场,液晶层的反射率可从 50% 降低到 15%,从而实现单波段反射。此外,我们还提出了一种基于胆甾双层光子晶体的可调偏振体光栅,它可以衍射出两种特定的光色。
{"title":"In-situ formation of polymer-stabilized/-free cholesteric bi-layer photonic crystal","authors":"Kuan-Wu Lin,&nbsp;Chun-Chuan Wang,&nbsp;Yu-Chieh Chang,&nbsp;Yu-Chieh Li,&nbsp;Chun-Ta Wang","doi":"10.1016/j.matchemphys.2024.130093","DOIUrl":"10.1016/j.matchemphys.2024.130093","url":null,"abstract":"<div><div>Tunable photonic crystals based on cholesteric liquid crystals (CLCs) have attracted considerable attention due to their tunable optical properties and self-assembly capabilities. Despite the rapid development of various CLC-based devices, the narrow bandwidth of the photonic bandgap in CLCs limits their use in some practical applications. This paper presents a method for forming polymer-stabilized and polymer-free cholesteric bilayer photonic crystals in polymer-stabilized cholesteric liquid crystals (PSCLCs). By tuning the concentration of reactive monomers and controlling the UV polymerization conditions, two different PBGs can be formed within a single PSCLC cell. As the concentration of RM257 increases to 40 % and the intensity of UV light is used at 22 mW/cm<sup>2</sup>, the distance between the two reflectance bands can reach 200 nm, reflecting green and red light. The dynamic formation process and the tunability of these cholesteric bilayer structures under electric fields and temperature variations are investigated. By controlling the temperature and electric field, the reflectance of the liquid crystal layer can be reduced from 50 % to 15 %, resulting in a single-band reflection. In addition, we have proposed a tunable polarization volume grating based on the cholesteric bi-layer photonic crystal, which can diffract two specific light colors.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130093"},"PeriodicalIF":4.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of a fluorine-free silane-based film on an aluminum alloy via drop-coating method with the purpose of providing hydrophobic and corrosion protection properties 研究通过滴涂法在铝合金上形成无氟硅烷薄膜,以提供疏水和防腐蚀性能
IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1016/j.matchemphys.2024.130099
Rafael G.C. da Silva , Maria I.C. Malta , Jedaías J. da Silva , Walter L.C. da Silva Filho , Janaína A. Cirino , Sara H. de Oliveira , Glória M. Vinhas , Magda R.S. Vieira
This work sought to developed a fluorine-free, water-repellent silane-based film on 5052 aluminum alloy by studying the incorporation of Hexadecyltrimethoxysilane (HDTMS) into or over the silica gel film to protect against corrosion in a saline environment. Additionally, the interface of the silane-based film was studied using liquids such as soybean oil, diesel oil, and lubricating oil. Silica gel particles were deposited by dripping a solution of silica gel using design of experiment approach. The porosity of the silica gel film was assessed employing the potentiodynamic polarization technique. The condition of the more cohesive silica gel film was chemically modified by dripping a low concentration solution of HDTMS. The functionalized film on the aluminum alloy exhibited a contact angle of 136°, oleophilic behavior for soybean oil and lubricating oil, and superoleophilic character for diesel oil. Notably, hydrophobic film exhibited chemical (acid, alkaline, saline) and thermal stabilities (50–150 °C). The protective effect of the functionalized film against corrosion ions was confirmed by Electrochemical Impedance Spectroscopy in a saline solution over 7 days. These results suggest a fluorine-free alternative approach for thin film development and the study of its multifunctionality, including enhanced corrosion resistance, water-diesel oil separation, and potential applications in anti-fouling.
这项研究试图通过研究在硅胶膜中或硅胶膜上加入十六烷基三甲氧基硅烷 (HDTMS),在 5052 铝合金上开发一种无氟、憎水的硅烷基薄膜,以防止在盐水环境中受到腐蚀。此外,还使用大豆油、柴油和润滑油等液体对硅烷基薄膜的界面进行了研究。采用实验设计法,通过滴入硅胶溶液沉积硅胶颗粒。采用电位极化技术评估了硅胶膜的孔隙率。通过滴入低浓度的 HDTMS 溶液,对更具内聚力的硅胶膜的条件进行了化学修饰。铝合金上的功能化薄膜的接触角为 136°,对豆油和润滑油具有亲油性,对柴油具有超亲油性。值得注意的是,疏水性薄膜具有化学稳定性(酸、碱、盐水)和热稳定性(50-150 °C)。电化学阻抗光谱法证实了功能化薄膜在盐溶液中 7 天对腐蚀离子的保护作用。这些结果为薄膜的开发和多功能性研究提供了一种无氟替代方法,包括增强耐腐蚀性、水-柴油分离以及在防污方面的潜在应用。
{"title":"Study of a fluorine-free silane-based film on an aluminum alloy via drop-coating method with the purpose of providing hydrophobic and corrosion protection properties","authors":"Rafael G.C. da Silva ,&nbsp;Maria I.C. Malta ,&nbsp;Jedaías J. da Silva ,&nbsp;Walter L.C. da Silva Filho ,&nbsp;Janaína A. Cirino ,&nbsp;Sara H. de Oliveira ,&nbsp;Glória M. Vinhas ,&nbsp;Magda R.S. Vieira","doi":"10.1016/j.matchemphys.2024.130099","DOIUrl":"10.1016/j.matchemphys.2024.130099","url":null,"abstract":"<div><div>This work sought to developed a fluorine-free, water-repellent silane-based film on 5052 aluminum alloy by studying the incorporation of Hexadecyltrimethoxysilane (HDTMS) into or over the silica gel film to protect against corrosion in a saline environment. Additionally, the interface of the silane-based film was studied using liquids such as soybean oil, diesel oil, and lubricating oil. Silica gel particles were deposited by dripping a solution of silica gel using design of experiment approach. The porosity of the silica gel film was assessed employing the potentiodynamic polarization technique. The condition of the more cohesive silica gel film was chemically modified by dripping a low concentration solution of HDTMS. The functionalized film on the aluminum alloy exhibited a contact angle of 136°, oleophilic behavior for soybean oil and lubricating oil, and superoleophilic character for diesel oil. Notably, hydrophobic film exhibited chemical (acid, alkaline, saline) and thermal stabilities (50–150 °C). The protective effect of the functionalized film against corrosion ions was confirmed by Electrochemical Impedance Spectroscopy in a saline solution over 7 days. These results suggest a fluorine-free alternative approach for thin film development and the study of its multifunctionality, including enhanced corrosion resistance, water-diesel oil separation, and potential applications in anti-fouling.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130099"},"PeriodicalIF":4.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and application of a novel supercapacitor from chemically activated red calliandra 利用化学活化的红色马蹄莲制备新型超级电容器及其应用
IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1016/j.matchemphys.2024.130104
Nur Adi Saputra , Gustan Pari , Wasrin Syafii , Deded Sarip Nawawi , Akhiruddin Maddu , Nidya Chitraningrum , Slamet Priyono
In recent years, supercapacitors have been incorporated into hypercar units, making them more attractive to researchers. The exploration and development of low-cost supercap components are investigated for mass production preparation. The current study reveals an activated carbon-based supercapacitor from a novel biomass red calliandra. The activated carbon was chemically produced at 800 for 60 min in a pilot-scale tubular electric reactor with a capacity of 3 kg. Previously, the raw was soaked by phosphate (H) and ammonium (NH) compounds for 18 h. Activated carbon was then used to assemble the supercapacitor with the respective active slurry composition: activated carbon, conductive carbon, adhesive 80:10:10 (w/w), and LiPF6 electrolyte. The products were characterised by proximate, ultimate, iodine adsorption, surface area analyser, X-ray diffraction, infrared spectrum, cyclic voltammetry (CV), and Galvanostatic charge-discharge (GCD). H-activated carbon is hygroscopic and exhibits a crystalline structure, while NH-activated carbon has the highest adsorption and surface area of 757 mg/g and 627 m2/g. CV and GCD agreed to establish the H-supercap as the best prototype by exhibiting specific capacitances of 146 and 167 F/g. Comparative studies were further summarised to evaluate a novel species among the previous raws and the suitability of the preferred activated carbon characteristics for supercapacitor fabrication. The results crowned the red calliandra species at a decent rank among them and were suitable for sustainable green campaigns.
近年来,超级电容器已被纳入超跑装置,使其对研究人员更具吸引力。研究人员对低成本超级电容器组件的探索和开发进行了研究,以便为大规模生产做准备。目前的研究揭示了一种以新型生物质红色马蹄莲为原料的活性炭基超级电容器。活性炭是在一个容量为 3 千克的中试规模管式电动反应器中,在 800 的温度下经过 60 分钟的化学反应制得的。活性碳随后被用于组装超级电容器,其活性浆料成分分别为:活性碳、导电碳、粘合剂 80:10:10(重量比)和 LiPF6 电解液。通过近似、最终、碘吸附、表面积分析仪、X 射线衍射、红外光谱、循环伏安法(CV)和伽伐诺静态充放电法(GCD)对产品进行了表征。H 活性炭具有吸湿性并呈现晶体结构,而 NH 活性炭的吸附量和表面积最高,分别为 757 毫克/克和 627 平方米/克。CV 和 GCD 一致认为 H 型超级电容器是最佳原型,其比电容分别为 146 和 167 F/g。对比研究还进一步总结评估了以往生料中的新品种以及超级电容器制造中首选活性炭特性的适用性。结果表明,红色马蹄莲物种在这些物种中名列前茅,适用于可持续的绿色活动。
{"title":"Preparation and application of a novel supercapacitor from chemically activated red calliandra","authors":"Nur Adi Saputra ,&nbsp;Gustan Pari ,&nbsp;Wasrin Syafii ,&nbsp;Deded Sarip Nawawi ,&nbsp;Akhiruddin Maddu ,&nbsp;Nidya Chitraningrum ,&nbsp;Slamet Priyono","doi":"10.1016/j.matchemphys.2024.130104","DOIUrl":"10.1016/j.matchemphys.2024.130104","url":null,"abstract":"<div><div>In recent years, supercapacitors have been incorporated into hypercar units, making them more attractive to researchers. The exploration and development of low-cost supercap components are investigated for mass production preparation. The current study reveals an activated carbon-based supercapacitor from a novel biomass red calliandra. The activated carbon was chemically produced at 800 for 60 min in a pilot-scale tubular electric reactor with a capacity of 3 kg. Previously, the raw was soaked by phosphate (H) and ammonium (NH) compounds for 18 h. Activated carbon was then used to assemble the supercapacitor with the respective active slurry composition: activated carbon, conductive carbon, adhesive 80:10:10 (<em>w/w</em>), and LiPF<sub>6</sub> electrolyte. The products were characterised by proximate, ultimate, iodine adsorption, surface area analyser, X-ray diffraction, infrared spectrum, cyclic voltammetry (CV), and Galvanostatic charge-discharge (GCD). H-activated carbon is hygroscopic and exhibits a crystalline structure, while NH-activated carbon has the highest adsorption and surface area of 757 mg/g and 627 m<sup>2</sup>/g. CV and GCD agreed to establish the H-supercap as the best prototype by exhibiting specific capacitances of 146 and 167 F/g. Comparative studies were further summarised to evaluate a novel species among the previous raws and the suitability of the preferred activated carbon characteristics for supercapacitor fabrication. The results crowned the red calliandra species at a decent rank among them and were suitable for sustainable green campaigns.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130104"},"PeriodicalIF":4.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermally synthesized cobalt oxide/polydimethylsiloxane based photothermal absorber for superior thermal energy conversion and water evaporation application 基于氧化钴/聚二甲基硅氧烷的水热合成光热吸收器,可实现卓越的热能转换和水蒸发应用
IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1016/j.matchemphys.2024.130103
Keerthnasre Dhandapani , Hossein Fattahimoghaddam , In Ho Kim , Tae Kyu An , Yong Jin Jeong
Solar-driven interfacial evaporation has garnered worldwide interest in recent years due to its unique vapor generating capacity using sustainable solar energy. Many photoabsorber have been studied for conversion of photothermal energy and heat absorption. Unfortunately, the majority of the absorber materials in supply are pricey, and the installation procedures tend to be intricate. This research focuses on the ongoing difficulty of creating cost-efficient photothermal materials that have excellent light absorption and simple manufacturing processes. We created a novel composites coated with Cobalt oxide and polydimethylsiloxane (Co3O4/PDMS) which successfully produce energy and purify water utilizing an extensive spectrum of solar energy. Hydrothermally synthesized Co3O4 particles exhibit distinct optical properties in the UV–Vis region due to ligand field transitions and charge transfer between Co2⁺ and Co³⁺ ions. Additionally, these particles exhibits a strong absorption in the NIR region due to the intervalence charge transfer and d-d transitions, enhancing their photothermal activity. This culminates in outstanding light-to-heat transformation in the Co3O4/PDMS composite, which maintains a surface temperature of 42.7 °C compared to 33.7 °C for pristine PDMS under standard 1 sun intensity for 5 min. The flexible Co3O4/PDMS composite transfers solar energy to electric energy, producing ∼99 mV with 1 sun irradiation, while bare PDMS only achieved a voltage of 61 mV under 1 sun circumstances. An efficient double layer Co3O4/PDMS@MF sponge achieved an evaporation rate of 1.33 kg m−2 h−1 with the photothermal conversion efficiency of 68.8 %. These results motivate thorough investigation in photothermal potential of Co3O4, revealing the promising possibilities for harnessing solar-thermal energy and presents a novel method for using solar power to purify water and generate electricity.
近年来,太阳能驱动的界面蒸发因其利用可持续太阳能产生水蒸气的独特能力而受到全世界的关注。人们对许多光吸收器进行了研究,以实现光热转换和吸热。遗憾的是,目前供应的大部分吸收器材料都价格昂贵,而且安装程序往往错综复杂。这项研究的重点是如何制造出具有优异光吸收性能和简单制造工艺的低成本光热材料。我们创造了一种涂有氧化钴和聚二甲基硅氧烷(Co3O4/PDMS)的新型复合材料,成功地利用广泛的太阳能光谱生产能源和净化水。水热法合成的 Co3O4 粒子在紫外可见光区表现出独特的光学特性,这是由于配体场跃迁以及 Co2⁺和 Co³⁺ 离子之间的电荷转移所致。此外,由于间隔电荷转移和 d-d 转换,这些微粒在近红外区域表现出很强的吸收性,从而增强了它们的光热活性。最终,Co3O4/PDMS 复合材料实现了出色的光-热转换,在标准太阳光强度下 5 分钟,其表面温度保持在 42.7 °C,而原始 PDMS 的表面温度仅为 33.7 °C。柔性 Co3O4/PDMS 复合材料可将太阳能转化为电能,在太阳光照射下可产生 ∼ 99 mV 的电压,而裸露的 PDMS 在太阳光照射下只能产生 61 mV 的电压。高效双层 Co3O4/PDMS@MF 海绵的蒸发率为 1.33 kg m-2 h-1,光热转换效率为 68.8%。这些结果推动了对 Co3O4 光热潜力的深入研究,揭示了利用太阳热能的广阔前景,并提出了一种利用太阳能净化水和发电的新方法。
{"title":"Hydrothermally synthesized cobalt oxide/polydimethylsiloxane based photothermal absorber for superior thermal energy conversion and water evaporation application","authors":"Keerthnasre Dhandapani ,&nbsp;Hossein Fattahimoghaddam ,&nbsp;In Ho Kim ,&nbsp;Tae Kyu An ,&nbsp;Yong Jin Jeong","doi":"10.1016/j.matchemphys.2024.130103","DOIUrl":"10.1016/j.matchemphys.2024.130103","url":null,"abstract":"<div><div>Solar-driven interfacial evaporation has garnered worldwide interest in recent years due to its unique vapor generating capacity using sustainable solar energy. Many photoabsorber have been studied for conversion of photothermal energy and heat absorption. Unfortunately, the majority of the absorber materials in supply are pricey, and the installation procedures tend to be intricate. This research focuses on the ongoing difficulty of creating cost-efficient photothermal materials that have excellent light absorption and simple manufacturing processes. We created a novel composites coated with Cobalt oxide and polydimethylsiloxane (Co<sub>3</sub>O<sub>4</sub>/PDMS) which successfully produce energy and purify water utilizing an extensive spectrum of solar energy. Hydrothermally synthesized Co<sub>3</sub>O<sub>4</sub> particles exhibit distinct optical properties in the UV–Vis region due to ligand field transitions and charge transfer between Co<sup>2</sup>⁺ and Co³⁺ ions. Additionally, these particles exhibits a strong absorption in the NIR region due to the intervalence charge transfer and d-d transitions, enhancing their photothermal activity. This culminates in outstanding light-to-heat transformation in the Co<sub>3</sub>O<sub>4</sub>/PDMS composite, which maintains a surface temperature of 42.7 °C compared to 33.7 °C for pristine PDMS under standard 1 sun intensity for 5 min. The flexible Co<sub>3</sub>O<sub>4</sub>/PDMS composite transfers solar energy to electric energy, producing ∼99 mV with 1 sun irradiation, while bare PDMS only achieved a voltage of 61 mV under 1 sun circumstances. An efficient double layer Co<sub>3</sub>O<sub>4</sub>/PDMS@MF sponge achieved an evaporation rate of 1.33 kg m<sup>−2</sup> h<sup>−1</sup> with the photothermal conversion efficiency of 68.8 %. These results motivate thorough investigation in photothermal potential of Co<sub>3</sub>O<sub>4,</sub> revealing the promising possibilities for harnessing solar-thermal energy and presents a novel method for using solar power to purify water and generate electricity.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130103"},"PeriodicalIF":4.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Chemistry and Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1