In recent decades, the rising challenge in the treatment of industrial wastewater has become a focal point for researchers due to the substantial expansion of industrialization. The current study aims to investigate the influence of Cd doping on the structural, optical, and photocatalytic properties of CeO2 nanoparticles synthesized through a facile sol-gel method. Raman spectroscopy unveiled oxygen vacancy defects in the CeO2 lattice, intensifying with Cd doping up to 6 % and subsequently diminishing. The lattice defects demonstrated a direct correlation with the band gap energy of the catalysts. The variation in lattice defects due to Cd doping plays an important role in enhancing the photocatalytic performance of the synthesized photocatalysts against crystal violet dye. Notably, the 6 % Cd-doped CeO2 catalyst achieved a maximum degradation of 96.8 % at pH 9 within 80 min under UV light. These synthesized catalysts stand out as promising candidates for photocatalytic applications in environmental wastewater remediation.
{"title":"Controlled synthesis of nanosized Cd-CeO2 for efficient pH responsive photocatalytic degradation of CV dye for sustainable wastewater treatment","authors":"Ankit Kumar , Lakshita Phor , Samir Bhargava , Amanullah Fatehmulla , Surender Singh , Parveen Kumar , Ashok Kumar , Surjeet Chahal","doi":"10.1016/j.mseb.2024.117840","DOIUrl":"10.1016/j.mseb.2024.117840","url":null,"abstract":"<div><div>In recent decades, the rising challenge in the treatment of industrial wastewater has become a focal point for researchers due to the substantial expansion of industrialization. The current study aims to investigate the influence of Cd doping on the structural, optical, and photocatalytic properties of CeO<sub>2</sub> nanoparticles synthesized through a facile sol-gel method. Raman spectroscopy unveiled oxygen vacancy defects in the CeO<sub>2</sub> lattice, intensifying with Cd doping up to 6 % and subsequently diminishing. The lattice defects demonstrated a direct correlation with the band gap energy of the catalysts. The variation in lattice defects due to Cd doping plays an important role in enhancing the photocatalytic performance of the synthesized photocatalysts against crystal violet dye. Notably, the 6 % Cd-doped CeO<sub>2</sub> catalyst achieved a maximum degradation of 96.8 % at pH 9 within 80 min under UV light. These synthesized catalysts stand out as promising candidates for photocatalytic applications in environmental wastewater remediation.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117840"},"PeriodicalIF":3.9,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.mseb.2024.117834
Xiuquan Gu , Lei Cao , Shujie Miao , Xueyu Tao , Yulong Zhao , Sheng Huang
Zero-dimensional (0D) perovskite nanocrystals (NCs) have become a kind of popular materials for fabricating the humidity sensors. One key challenge is the construction of a humidity sensor with low toxicity, high sensitivity and good stability under a moisture environment. In recent years, metal halide perovskites (MHPs) NCs, such as CsPbBr3, have emerged as one of the most promising materials for humidity sensors due to their good carrier transport and soft crystal structure, thus showing superior humidity sensitivity and response/recovery time to those of traditional inorganic oxide perovskites. In this review, recent advances of MHP-constituted humidity sensors are presented in a mainline of improving the humidity-sensitive activity and stability. Various strategies for improving the activity and stability, including band structure engineering, surface modification, ligand capping, and mechanic learning, are summarized and analyzed in detail. It is worth mentioning that our group’s research achievements in the field of humidity sensors, especially the latest work in non-contact monitoring of soil moisture and pipeline cracks, have also been introduced. Finally, perspective and outlook on further exploring the application potential of MHP NCs are proposed, while a few major challenges and prospects for the perovskite NCs based humidity sensors are highlighted.
{"title":"A comprehensive review on preparation and humidity sensing applications of metal-halide perovskites","authors":"Xiuquan Gu , Lei Cao , Shujie Miao , Xueyu Tao , Yulong Zhao , Sheng Huang","doi":"10.1016/j.mseb.2024.117834","DOIUrl":"10.1016/j.mseb.2024.117834","url":null,"abstract":"<div><div>Zero-dimensional (0D) perovskite nanocrystals (NCs) have become a kind of popular materials for fabricating the humidity sensors. One key challenge is the construction of a humidity sensor with low toxicity, high sensitivity and good stability under a moisture environment. In recent years, metal halide perovskites (MHPs) NCs, such as CsPbBr<sub>3</sub>, have emerged as one of the most promising materials for humidity sensors due to their good carrier transport and soft crystal structure, thus showing superior humidity sensitivity and response/recovery time to those of traditional inorganic oxide perovskites. In this review, recent advances of MHP-constituted humidity sensors are presented in a mainline of improving the humidity-sensitive activity and stability. Various strategies for improving the activity and stability, including band structure engineering, surface modification, ligand capping, and mechanic learning, are summarized and analyzed in detail. It is worth mentioning that our group’s research achievements in the field of humidity sensors, especially the latest work in non-contact monitoring of soil moisture and pipeline cracks, have also been introduced. Finally, perspective and outlook on further exploring the application potential of MHP NCs are proposed, while a few major challenges and prospects for the perovskite NCs based humidity sensors are highlighted.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117834"},"PeriodicalIF":3.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present study, a non-lithographic method is utilized to create patterns of vertically aligned carbon nanotubes (VACNTs). A 20-nm-thick Au layer and a 50-nm-thick Al layer were deposited onto the silicon substrate by thermal evaporation using a steel mesh to create patterns, followed by CNT growth at 900 °C using thermal chemical vapour deposition (TCVD). The effect on the growth of VACNTs on various patterned substrates is studied using a field emission scanning electron microscope (FESEM) and Raman spectroscopy. The field emission characteristics of VACNT bundle patterns produced on patterned surfaces were examined. At 3 V/μm, the current density of CNT film grown on non-patterned substrate is 3.2 mA/cm2, which rises to 16.1 mA/cm2 for the circular pillar of VACNT bundles. Greater spacing between VACNT bundles in the circular pattern reduces electric field screening, resulting in a 500 % increase in current density compared to other samples.
{"title":"Growth of vertically aligned carbon nanotube bundles by a cost-effective non-lithographic technique for high-performance field emission electron source","authors":"Gulshan Kumar , D.C. Agarwal , Pankaj Srivastava , Santanu Ghosh","doi":"10.1016/j.mseb.2024.117798","DOIUrl":"10.1016/j.mseb.2024.117798","url":null,"abstract":"<div><div>In the present study, a non-lithographic method is utilized to create patterns of vertically aligned carbon nanotubes (VACNTs). A 20-nm-thick Au layer and a 50-nm-thick Al layer were deposited onto the silicon substrate by thermal evaporation using a steel mesh to create patterns, followed by CNT growth at 900 °C using thermal chemical vapour deposition (TCVD). The effect on the growth of VACNTs on various patterned substrates is studied using a field emission scanning electron microscope (FESEM) and Raman spectroscopy. The field emission characteristics of VACNT bundle patterns produced on patterned surfaces were examined. At 3 V/μm, the current density of CNT film grown on non-patterned substrate is 3.2 mA/cm<sup>2</sup>, which rises to 16.1 mA/cm<sup>2</sup> for the circular pillar of VACNT bundles. Greater spacing between VACNT bundles in the circular pattern reduces electric field screening, resulting in a 500 % increase in current density compared to other samples.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117798"},"PeriodicalIF":3.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.mseb.2024.117771
Arpan Das
The randomly interconnected 3D carbon nanotube (CNT) sponge possesses the elegant hierarchical truss-like network. Particularly, the overall pattern and architecture of these tubes under certain stress/strain are extremely important for such cellular solids. The complex arrangement/pattern between neighboring nanotubes primarily influences its compressive stability. These inter–tubes bonding strongly influence its deformation characteristics and structural collapse under compression. In present research, the influence of such compressive stress/strain on the rearrangement/alignment of these nanotubes has been investigated through fractal measurement of published micrographs. The analysis of image-texture has also been performed to recognize the configurational-stability and stored-energy of such complex tube-networks as a function of strain. The fractality of CNT tangles are correlated with their orientation, gray-scale fitting parameters of micrographs and mechanical responses of material as a function of compressive deformation.
{"title":"Fractal-property correlation of carbon nano-tubes in 3D truss-like network under stress/strain","authors":"Arpan Das","doi":"10.1016/j.mseb.2024.117771","DOIUrl":"10.1016/j.mseb.2024.117771","url":null,"abstract":"<div><div>The randomly interconnected <em>3D</em> carbon nanotube (<em>CNT</em>) sponge possesses the elegant hierarchical <em>truss-like</em> network. Particularly, the overall pattern and architecture of these tubes under certain stress/strain are extremely important for such cellular solids. The complex arrangement/pattern between neighboring nanotubes primarily influences its compressive stability. These inter–tubes bonding strongly influence its deformation characteristics and structural collapse under compression. In present research, the influence of such compressive stress/strain on the rearrangement/alignment of these nanotubes has been investigated through fractal measurement of published micrographs. The analysis of <em>image-texture</em> has also been performed to recognize the <em>configurational-stability</em> and <em>stored-energy</em> of such complex <em>tube-networks</em> as a function of strain. The fractality of <em>CNT</em> tangles are correlated with their orientation, <em>gray-scale</em> fitting parameters of micrographs and mechanical responses of material as a function of compressive deformation.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117771"},"PeriodicalIF":3.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.mseb.2024.117806
Shifeng Niu , Yuanyuan Liu , Yusheng Mao , Wenjie Zhang , Zhenxing Yang , Chunguang Zhai , Shijie Liu , Hui Wang
The structure and properties of the Li-N system in the nitrogen-rich region have been systematically studied at 50 GPa. We propose four stable novel phases: P1-LiN7, Pm-LiN8, P1-LiN9 and P1-LiN10. The polynitrogen polymeric structure in the P1-LiN10 phase is discovered for the first time: the N atoms exist in the form of nitrogen chains, which contain N5 rings, and every two the N5 rings are connected by five N atoms. The analysis of electrical properties shows that the P1-LiN7, Pm-LiN8 and P1-LiN9 phases are semiconductor, while the P1-LiN10 phase is a superconductor with 0.23 K at 50 GPa. The N atoms in the P1-LiN10 phase all exist in the sp3 hybrid form. The high energy density, and excellent detonation pressure, detonation velocity performance of the P1-LiN10 phase make it good candidate for high energy density materials.
{"title":"Unique structure and high energy properties of lithium-nitrogen compound in the N-rich region","authors":"Shifeng Niu , Yuanyuan Liu , Yusheng Mao , Wenjie Zhang , Zhenxing Yang , Chunguang Zhai , Shijie Liu , Hui Wang","doi":"10.1016/j.mseb.2024.117806","DOIUrl":"10.1016/j.mseb.2024.117806","url":null,"abstract":"<div><div>The structure and properties of the Li-N system in the nitrogen-rich region have been systematically studied at 50 GPa. We propose four stable novel phases: P1-LiN<sub>7</sub>, Pm-LiN<sub>8</sub>, P1-LiN<sub>9</sub> and P1-LiN<sub>10</sub>. The polynitrogen polymeric structure in the P1-LiN<sub>10</sub> phase is discovered for the first time: the N atoms exist in the form of nitrogen chains, which contain N<sub>5</sub> rings, and every two the N<sub>5</sub> rings are connected by five N atoms. The analysis of electrical properties shows that the P1-LiN<sub>7</sub>, Pm-LiN<sub>8</sub> and P1-LiN<sub>9</sub> phases are semiconductor, while the P1-LiN<sub>10</sub> phase is a superconductor with 0.23 K at 50 GPa. The N atoms in the P1-LiN<sub>10</sub> phase all exist in the sp<sup>3</sup> hybrid form. The high energy density, and excellent detonation pressure, detonation velocity performance of the P1-LiN<sub>10</sub> phase make it good candidate for high energy density materials.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117806"},"PeriodicalIF":3.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.mseb.2024.117817
Md Masum Mia , Md. Faruk Hossain , Mahabur Rahman , Nacer Badi , Ahmad Irfan , Md. Ferdous Rahman
In light of growing global energy demands and the environmental challenges posed by fossil fuels, this study investigates the efficiency improvement of BaZrSe3-based perovskite solar cells (PSCs) through the application of selenium (Se)-based hole transport materials (HTMs). Chalcogenide perovskites, such as BaZrSe3, present a viable alternative to conventional photovoltaic materials that are often toxic and scarce. Using SCAPS-1D simulations, we modeled and analyzed the photovoltaic performance of PSCs incorporating different Se-based HTMs, including GeSe, MoSe2, Sb2Se3, and SnSe. The results show that integrating SnSe as the HTM significantly enhances power conversion efficiency (PCE), reaching a theoretical maximum of 32.20%. In contrast, BaZrSe3-based PSCs without HTMs (FTO/CdS/BaZrSe3/Au) achieved a PCE of 23.63%. The performance boost is attributed to better band alignment, improved carrier transport, and reduced recombination losses enabled by the SnSe layer. This study underscores the potential of Se-based HTMs in advancing BaZrSe3-based PSCs, paving the way for sustainable and highly efficient photovoltaic technologies.
{"title":"Unveiling the impact of Se based HTM on BaZrSe3 perovskites solar cell and improving the theoretical efficiency above 32%","authors":"Md Masum Mia , Md. Faruk Hossain , Mahabur Rahman , Nacer Badi , Ahmad Irfan , Md. Ferdous Rahman","doi":"10.1016/j.mseb.2024.117817","DOIUrl":"10.1016/j.mseb.2024.117817","url":null,"abstract":"<div><div>In light of growing global energy demands and the environmental challenges posed by fossil fuels, this study investigates the efficiency improvement of BaZrSe<sub>3</sub>-based perovskite solar cells (PSCs) through the application of selenium (Se)-based hole transport materials (HTMs). Chalcogenide perovskites, such as BaZrSe<sub>3</sub>, present a viable alternative to conventional photovoltaic materials that are often toxic and scarce. Using SCAPS-1D simulations, we modeled and analyzed the photovoltaic performance of PSCs incorporating different Se-based HTMs, including GeSe, MoSe<sub>2</sub>, Sb<sub>2</sub>Se<sub>3</sub>, and SnSe. The results show that integrating SnSe as the HTM significantly enhances power conversion efficiency (PCE), reaching a theoretical maximum of 32.20%. In contrast, BaZrSe<sub>3</sub>-based PSCs without HTMs (FTO/CdS/BaZrSe<sub>3</sub>/Au) achieved a PCE of 23.63%. The performance boost is attributed to better band alignment, improved carrier transport, and reduced recombination losses enabled by the SnSe layer. This study underscores the potential of Se-based HTMs in advancing BaZrSe<sub>3</sub>-based PSCs, paving the way for sustainable and highly efficient photovoltaic technologies.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117817"},"PeriodicalIF":3.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.mseb.2024.117803
Dipa Dutta Pathak
Tin dioxide (SnO2), with diverse morphological structures, stands out as a key candidate among wide bandgap semiconductors. This study examines how fabrication conditions influence the morphology of SnO2 and the subsequent effects on its physical properties across different structures, such as highly crystalline SnO2 Quantum Dots (QDs), cauliflower (CF), and kadam flower (KF). Optical and Raman studies confirm the presence of singly charged oxygen vacancies, leading to green emission in both QDs and CF. The increased surface area of QDs offers more active sites for dye adsorption, thereby enhancing photocatalytic activity. The oxygen vacancies in QDs and CF act as electron acceptors, reducing the surface recombination of electron-hole pairs. Comparative analysis shows that QDs are more effective catalysts for the photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB) dyes compared to flower-like SnO2 microstructures. The rate of dye photodegradation is slower under solar light than under UV light.
{"title":"Impact of morphology on defect related properties and photocatalytic activity of tin oxide structures","authors":"Dipa Dutta Pathak","doi":"10.1016/j.mseb.2024.117803","DOIUrl":"10.1016/j.mseb.2024.117803","url":null,"abstract":"<div><div>Tin dioxide (SnO<sub>2</sub>), with diverse morphological structures, stands out as a key candidate among wide bandgap semiconductors. This study examines how fabrication conditions influence the morphology of SnO<sub>2</sub> and the subsequent effects on its physical properties across different structures, such as highly crystalline SnO<sub>2</sub> Quantum Dots (QDs), cauliflower (CF), and kadam flower (KF). Optical and Raman studies confirm the presence of singly charged oxygen vacancies, leading to green emission in both QDs and CF. The increased surface area of QDs offers more active sites for dye adsorption, thereby enhancing photocatalytic activity. The oxygen vacancies in QDs and CF act as electron acceptors, reducing the surface recombination of electron-hole pairs. Comparative analysis shows that QDs are more effective catalysts for the photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB) dyes compared to flower-like SnO<sub>2</sub> microstructures. The rate of dye photodegradation is slower under solar light than under UV light.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117803"},"PeriodicalIF":3.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present the evidence of high-temperature ferromagnetism and optical behaviour of 5 atomic percent Fe doped In2O3 semiconductor. Enhanced transition temperature (927 K) is noticed for ferromagnetic to paramagnetic phase transition in the nanocrystalline material. Understanding of ferromagnetism in (In0.95Fe0.05)2O3 nanocrystalline material is explained by considering two basic indirect exchange interaction processes, one, in between spins of Fe2+ and Fe3+ magnetic ions through mediation of oxygen ion vacancy (i.e., Fe2+ − (↑) − Fe3+), and other, from exchange interaction processes which occurred in between spins of magnetic ions of Fe3+- Fe3+ or, Fe2+- Fe2+ through carrier mediation. From our calculation we have estimated the effective paramagnetic moment of (In0.95Fe0.05)2O3 nanocrystals as 1.62 μB/ formula unit. The optical band gap energy of (In0.95Fe0.05)2O3 magnetic semiconductor is evaluated as 3.6 eV.
{"title":"Structural, magnetic and optical characterization of 5 atomic % Fe doped In2O3 dilute magnetic semiconducting nanoparticles","authors":"Bhakti Pada Das , Tapan Kumar Nath , Sourav Mandal , Ashes Shit , Palash Nandi , Subhasis Shit , Bishnu Chakraborty , Panchanan Pramanik","doi":"10.1016/j.mseb.2024.117823","DOIUrl":"10.1016/j.mseb.2024.117823","url":null,"abstract":"<div><div>We present the evidence of high-temperature ferromagnetism and optical behaviour of 5 atomic percent Fe doped In<sub>2</sub>O<sub>3</sub> semiconductor. Enhanced transition temperature (927 K) is noticed for ferromagnetic to paramagnetic phase transition in the nanocrystalline material. Understanding of ferromagnetism in (In<sub>0.95</sub>Fe<sub>0.05</sub>)<sub>2</sub>O<sub>3</sub> nanocrystalline material is explained by considering two basic indirect exchange interaction processes, one, in between spins of Fe<sup>2+</sup> and Fe<sup>3+</sup> magnetic ions through mediation of oxygen ion vacancy (i.e., Fe<sup>2+</sup> − (↑) − Fe<sup>3+</sup>), and other, from exchange interaction processes which occurred in between spins of magnetic ions of Fe<sup>3+</sup>- Fe<sup>3+</sup> or, Fe<sup>2+</sup>- Fe<sup>2+</sup> through carrier mediation. From our calculation we have estimated the effective paramagnetic moment of (In<sub>0.95</sub>Fe<sub>0.05</sub>)<sub>2</sub>O<sub>3</sub> nanocrystals as 1.62 μ<sub>B</sub> <strong>/</strong> formula unit. The optical band gap energy of (In<sub>0.95</sub>Fe<sub>0.05</sub>)<sub>2</sub>O<sub>3</sub> magnetic semiconductor is evaluated as 3.6 eV.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117823"},"PeriodicalIF":3.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.mseb.2024.117839
Haluk Korucu
The synthesis of graphene oxide can be improved by replacing boron compounds for NaNO3 and H3PO4 in the Hummers technique, using the TOPSIS-Based Taguchi method, which was employed to analyze multiple responses. L9(34) experimental design with four parameters and three levels was used to describe how boron compounds are used in the Hummers technique of synthesizing graphene oxide. The parameters chosen for each 2 g graphite amount, include the specific boron compound, the quantity of boron compound, the quantity of sulfuric acid, and the quantity of potassium permanganate. Seven quality criteria have been established to conduct parameter effect analysis. Raman analysis was conducted to determine the ratio of D peak intensity to G peak intensity (ID/IG) and 2D peak intensity to G peak intensity (I2D/IG), SEM + EDS was used to measure the atomic ratio of carbon to oxygen (C/O), BET analysis was employed to measure the surface area (SA), XRD analysis was performed to measure crystallite (Cs), ZETA-SİZER analyses were performed to measure Zeta Potenital (ZP) and Particle Size (PS) analyses and FTIR analysis was used for structure characterization. A reference experiment was conducted using H3PO4 in the Hummers method, and the recovery rates were documented. L9(34) The results of the best quality criteria in the design of the experiment, and improvement rates were calculated based on the reference experiment. The improvement rates calculated according to the quality criteria are for ID/IG, I2D/IG, C/O, SA,Cs,ZP and PS respectively 5 %, 190 %, 178 %, 74 %, 77 %, 66 %, and 30 % has been achieved.
{"title":"Multi response optimization of synthesis of boron compounds by Dopting to graphene oxide in the Modified Hummers method","authors":"Haluk Korucu","doi":"10.1016/j.mseb.2024.117839","DOIUrl":"10.1016/j.mseb.2024.117839","url":null,"abstract":"<div><div>The synthesis of graphene oxide can be improved by replacing boron compounds for NaNO<sub>3</sub> and H<sub>3</sub>PO<sub>4</sub> in the Hummers technique, using the TOPSIS-Based Taguchi method, which was employed to analyze multiple responses. L<sub>9</sub>(3<sup>4</sup>) experimental design with four parameters and three levels was used to describe how boron compounds are used in the Hummers technique of synthesizing graphene oxide. The parameters chosen for each 2 g graphite amount, include the specific boron compound, the quantity of boron compound, the quantity of sulfuric acid, and the quantity of potassium permanganate. Seven quality criteria have been established to conduct parameter effect analysis. Raman analysis was conducted to determine the ratio of D peak intensity to G peak intensity (ID/IG) and 2D peak intensity to G peak intensity (I2D/IG), SEM + EDS was used to measure the atomic ratio of carbon to oxygen (C/O), BET analysis was employed to measure the surface area (SA), XRD analysis was performed to measure crystallite (Cs), ZETA-SİZER analyses were performed to measure Zeta Potenital (ZP) and Particle Size (PS) analyses and FTIR analysis was used for structure characterization. A reference experiment was conducted using H<sub>3</sub>PO<sub>4</sub> in the Hummers method, and the recovery rates were documented. L<sub>9</sub>(3<sup>4</sup>) The results of the best quality criteria in the design of the experiment, and improvement rates were calculated based on the reference experiment. The improvement rates calculated according to the quality criteria are for ID/IG, I2D/IG, C/O, SA,Cs,ZP and PS respectively 5 %, 190 %, 178 %, 74 %, 77 %, 66 %, and 30 % has been achieved.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117839"},"PeriodicalIF":3.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.mseb.2024.117810
Shuai Wang , Zhenni Huang , Shanshan Song , Qibo Xia , Junjie Sun , Jiaming Li , Lu Zhang , Xiuqing Qin , Zhujun Yao , Yefeng Yang
In this paper, we report the fabrication of metal organic framework (MOF)-derived heterostructured NiS2/ZnS nanoparticles embedded in hollow carbon spheres (denoted as NiS2/ZnS/C) using Ni-MOF as template precursor through a combined method of solvothermal, ion adsorption and subsequent sulfurization. The hollow spherical morphology and in-situ carbon layer confinement of active materials offer rich channels and paths for rapid ion/electron transport, alleviate the volume changes and agglomeration effect during cycling. Moreover, the built-in electric field created at the heterointerfaces of NiS2/ZnS can promote the Na+ transport kinetics. Benefitting from these advantages, the optimal NiS2/ZnS/C electrode shows a high reversible capacity (568 mAh/g at 1.0 A/g), superior rate property (401 mAh/g at 5.0 A/g) and outstanding long-term cycling stability (79 % retention over 3000 cycles at 5.0 A/g). This design concept is expected to be utilized for constructing other anode materials with heterostructures for SIBs.
{"title":"Metal organic framework derived hollow heterostructured NiS2/ZnS/C hybrid spheres for enhanced sodium-ion storage properties","authors":"Shuai Wang , Zhenni Huang , Shanshan Song , Qibo Xia , Junjie Sun , Jiaming Li , Lu Zhang , Xiuqing Qin , Zhujun Yao , Yefeng Yang","doi":"10.1016/j.mseb.2024.117810","DOIUrl":"10.1016/j.mseb.2024.117810","url":null,"abstract":"<div><div>In this paper, we report the fabrication of metal organic framework (MOF)-derived heterostructured NiS<sub>2</sub>/ZnS nanoparticles embedded in hollow carbon spheres (denoted as NiS<sub>2</sub>/ZnS/C) using Ni-MOF as template precursor through a combined method of solvothermal, ion adsorption and subsequent sulfurization. The hollow spherical morphology and in-situ carbon layer confinement of active materials offer rich channels and paths for rapid ion/electron transport, alleviate the volume changes and agglomeration effect during cycling. Moreover, the built-in electric field created at the heterointerfaces of NiS<sub>2</sub>/ZnS can promote the Na<sup>+</sup> transport kinetics. Benefitting from these advantages, the optimal NiS<sub>2</sub>/ZnS/C electrode shows a high reversible capacity (568 mAh/g at 1.0 A/g), superior rate property (401 mAh/g at 5.0 A/g) and outstanding long-term cycling stability (79 % retention over 3000 cycles at 5.0 A/g). This design concept is expected to be utilized for constructing other anode materials with heterostructures for SIBs.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117810"},"PeriodicalIF":3.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}