Pub Date : 2015-04-20DOI: 10.5702/massspectrometry.A0038
S. Kumano, Masuyuki Sugiyama, Masuyoshi Yamada, Kazushige Nishimura, H. Hasegawa, H. Morokuma, H. Inoue, Yuichiro Hashimoto
We previously reported on the development of a portable mass spectrometer for the onsite screening of illicit drugs, but our previous sampling system could only be used for liquid samples. In this study, we report on an attempt to develop a probe heating method that also permits solid samples to be analyzed using a portable mass spectrometer. An aluminum rod is used as the sampling probe. The powdered sample is affixed to the sampling probe or a droplet of sample solution is placed on the tip of the probe and dried. The probe is then placed on a heater to vaporize the sample. The vapor is then introduced into the portable mass spectrometer and analyzed. With the heater temperature set to 130°C, the developed system detected 1 ng of methamphetamine, 1 ng of amphetamine, 3 ng of 3,4-methylenedioxymethamphetamine, 1 ng of 3,4-methylenedioxyamphetamine, and 0.3 ng of cocaine. Even from mixtures consisting of clove powder and methamphetamine powder, methamphetamine ions were detected by tandem mass spectrometry. The developed probe heating method provides a simple method for the analysis of solid samples. A portable mass spectrometer incorporating this method would thus be useful for the onsite screening of illicit drugs.
我们以前曾报道过一种便携式质谱仪的开发,用于现场筛选非法药物,但我们以前的采样系统只能用于液体样品。在这项研究中,我们报告了一种开发探针加热方法的尝试,该方法也允许使用便携式质谱仪分析固体样品。采用铝棒作为取样探头。将粉末状样品贴在采样探针上,或将样品溶液滴在探针尖端并干燥。然后将探针放在加热器上使样品汽化。然后将蒸汽引入便携式质谱仪并进行分析。当加热器温度设置为130℃时,所开发的系统检测出1 ng甲基苯丙胺、1 ng安非他明、3 ng 3,4-亚甲基二氧基安非他明、1 ng 3,4-亚甲基二氧基安非他明和0.3 ng可卡因。即使从丁香粉和甲基苯丙胺粉的混合物中,也可以用串联质谱法检测到甲基苯丙胺离子。所开发的探针加热法为固体样品的分析提供了一种简便的方法。因此,采用这种方法的便携式质谱仪将有助于现场筛选非法药物。
{"title":"Probe Heating Method for the Analysis of Solid Samples Using a Portable Mass Spectrometer.","authors":"S. Kumano, Masuyuki Sugiyama, Masuyoshi Yamada, Kazushige Nishimura, H. Hasegawa, H. Morokuma, H. Inoue, Yuichiro Hashimoto","doi":"10.5702/massspectrometry.A0038","DOIUrl":"https://doi.org/10.5702/massspectrometry.A0038","url":null,"abstract":"We previously reported on the development of a portable mass spectrometer for the onsite screening of illicit drugs, but our previous sampling system could only be used for liquid samples. In this study, we report on an attempt to develop a probe heating method that also permits solid samples to be analyzed using a portable mass spectrometer. An aluminum rod is used as the sampling probe. The powdered sample is affixed to the sampling probe or a droplet of sample solution is placed on the tip of the probe and dried. The probe is then placed on a heater to vaporize the sample. The vapor is then introduced into the portable mass spectrometer and analyzed. With the heater temperature set to 130°C, the developed system detected 1 ng of methamphetamine, 1 ng of amphetamine, 3 ng of 3,4-methylenedioxymethamphetamine, 1 ng of 3,4-methylenedioxyamphetamine, and 0.3 ng of cocaine. Even from mixtures consisting of clove powder and methamphetamine powder, methamphetamine ions were detected by tandem mass spectrometry. The developed probe heating method provides a simple method for the analysis of solid samples. A portable mass spectrometer incorporating this method would thus be useful for the onsite screening of illicit drugs.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"2 11-12","pages":"A0038"},"PeriodicalIF":0.0,"publicationDate":"2015-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5702/massspectrometry.A0038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72494266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-11DOI: 10.5702/massspectrometry.A0037
Y. Fukuyama
Matrices are necessary materials for ionizing analytes in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). The choice of a matrix appropriate for each analyte controls the analyses. Thus, in some cases, development or improvement of matrices can become a tool for solving problems. This paper reviews MALDI matrix research that the author has conducted in the recent decade. It describes glycopeptide, carbohydrate, or phosphopeptide analyses using 2,5-dihydroxybenzoic acid (2,5-DHB), 1,1,3,3-tetramethylguanidinium (TMG) salts of p-coumaric acid (CA) (G3CA), 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA) or 3-AQ/CA and gengeral peptide, peptide containing disulfide bonds or hydrophobic peptide analyses using butylamine salt of CHCA (CHCAB), 1,5-diaminonaphthalene (1,5-DAN), octyl 2,5-dihydroxybenzoate (alkylated dihydroxybenzoate, ADHB), or 1-(2,4,6-trihydroxyphenyl)octan-1-one (alkylated trihydroxyacetophenone, ATHAP).
在基质辅助激光解吸/电离-质谱法(MALDI-MS)中,基质是电离分析物的必要材料。选择适合每种分析物的矩阵控制分析。因此,在某些情况下,开发或改进矩阵可以成为解决问题的工具。本文综述了作者近十年来对MALDI矩阵的研究。它描述了使用2,5-二羟基苯甲酸(2,5- dhb)、1,1,3,3-四甲基胍(TMG)对香豆酸盐(CA) (G3CA)、3-氨基喹啉(3- aq)/α-氰基-4-羟基肉桂酸(CHCA) (3- aq /CHCA)或3- aq /CA的糖肽、碳水化合物或磷酸肽分析,以及使用CHCA的丁胺盐(CHCAB)、1,5-二氨基萘(1,5- dan)、2,5-二羟基苯甲酸辛酯(烷基化二羟基苯甲酸,ADHB)、或1-(2,4,6-三羟基苯基)辛烷-1- 1(烷基化三羟基苯乙酮,ATHAP)。
{"title":"MALDI Matrix Research for Biopolymers.","authors":"Y. Fukuyama","doi":"10.5702/massspectrometry.A0037","DOIUrl":"https://doi.org/10.5702/massspectrometry.A0037","url":null,"abstract":"Matrices are necessary materials for ionizing analytes in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). The choice of a matrix appropriate for each analyte controls the analyses. Thus, in some cases, development or improvement of matrices can become a tool for solving problems. This paper reviews MALDI matrix research that the author has conducted in the recent decade. It describes glycopeptide, carbohydrate, or phosphopeptide analyses using 2,5-dihydroxybenzoic acid (2,5-DHB), 1,1,3,3-tetramethylguanidinium (TMG) salts of p-coumaric acid (CA) (G3CA), 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA) or 3-AQ/CA and gengeral peptide, peptide containing disulfide bonds or hydrophobic peptide analyses using butylamine salt of CHCA (CHCAB), 1,5-diaminonaphthalene (1,5-DAN), octyl 2,5-dihydroxybenzoate (alkylated dihydroxybenzoate, ADHB), or 1-(2,4,6-trihydroxyphenyl)octan-1-one (alkylated trihydroxyacetophenone, ATHAP).","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"46 1","pages":"A0037"},"PeriodicalIF":0.0,"publicationDate":"2015-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80469698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-01DOI: 10.5702/massspectrometry.A0035
K. Teramoto, M. Suga, Takafumi Sato, T. Wada, Atsushi Yamamoto, N. Fujiwara
Mycolic acids (MAs) are characteristic components of bacteria in the suborder Corynebacterineae, such as Mycobacterium. MAs are categorized into subclasses based on their functional bases (cyclopropane ring, methoxy, keto, and epoxy group). Since MAs have heterogeneity among bacterial species, analyzing of MAs are required in the chemotaxonomic field. However, their structural analysis is not easy because of their long carbon-chain lengths and several functional groups. In this study, total fatty acid (FA) methyl ester (ME) fraction of M. tuberculosis H37Rv was analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOFMS) with a spiral ion trajectory (MALDI spiral-TOFMS). The distributions of carbon-chain length and their relative peak intensities were confirmed with those obtained by analysis of each subclass fraction which was separated from total FA ME fraction using thin-layer chromatography (TLC). The observed major peaks were reliably assigned as MAs owing to the high mass accuracy (error<3 ppm). The types of MA subclasses, their distributions of carbon-chain lengths, their relative peak intensities, and the ratio of even- and odd-numbered carbon-chain MAs for the total FA ME fraction were consistent with those of MA subclass fractions. To visualize whole MAs, contour maps of relative peak intensities for whole MAs were created. The contour maps indicated the MA subclasses and their distributions of carbon-chains with relative peak intensities at a glance. Our proposed method allows simple characterization in a short time and thus enables the analysis of large numbers of samples, and it would contribute to the chemotaxonomy.
{"title":"Characterization of Mycolic Acids in Total Fatty Acid Methyl Ester Fractions from Mycobacterium Species by High Resolution MALDI-TOFMS.","authors":"K. Teramoto, M. Suga, Takafumi Sato, T. Wada, Atsushi Yamamoto, N. Fujiwara","doi":"10.5702/massspectrometry.A0035","DOIUrl":"https://doi.org/10.5702/massspectrometry.A0035","url":null,"abstract":"Mycolic acids (MAs) are characteristic components of bacteria in the suborder Corynebacterineae, such as Mycobacterium. MAs are categorized into subclasses based on their functional bases (cyclopropane ring, methoxy, keto, and epoxy group). Since MAs have heterogeneity among bacterial species, analyzing of MAs are required in the chemotaxonomic field. However, their structural analysis is not easy because of their long carbon-chain lengths and several functional groups. In this study, total fatty acid (FA) methyl ester (ME) fraction of M. tuberculosis H37Rv was analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOFMS) with a spiral ion trajectory (MALDI spiral-TOFMS). The distributions of carbon-chain length and their relative peak intensities were confirmed with those obtained by analysis of each subclass fraction which was separated from total FA ME fraction using thin-layer chromatography (TLC). The observed major peaks were reliably assigned as MAs owing to the high mass accuracy (error<3 ppm). The types of MA subclasses, their distributions of carbon-chain lengths, their relative peak intensities, and the ratio of even- and odd-numbered carbon-chain MAs for the total FA ME fraction were consistent with those of MA subclass fractions. To visualize whole MAs, contour maps of relative peak intensities for whole MAs were created. The contour maps indicated the MA subclasses and their distributions of carbon-chains with relative peak intensities at a glance. Our proposed method allows simple characterization in a short time and thus enables the analysis of large numbers of samples, and it would contribute to the chemotaxonomy.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"133 1","pages":"A0035"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80011947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-01DOI: 10.5702/massspectrometry.A0036
Tairo Ogura, T. Bamba, A. Tai, E. Fukusaki
Owing to biotransformation, xenobiotics are often found in conjugated form in biological samples such as urine and plasma. Liquid chromatography coupled with accurate mass spectrometry with multistage collision-induced dissociation provides spectral information concerning these metabolites in complex materials. Unfortunately, compound databases typically do not contain a sufficient number of records for such conjugates. We report here on the development of a novel protocol, referred to as ChemProphet, to annotate compounds, including conjugates, using compound databases such as PubChem and ChemSpider. The annotation of conjugates involves three steps: 1. Recognition of the type and number of conjugates in the sample; 2. Compound search and annotation of the deconjugated form; and 3. In silico evaluation of the candidate conjugate. ChemProphet assigns a spectrum to each candidate by automatically exploring the substructures corresponding to the observed product ion spectrum. When finished, it annotates the candidates assigning a rank for each candidate based on the calculated score that ranks its relative likelihood. We assessed our protocol by annotating a benchmark dataset by including the product ion spectra for 102 compounds, annotating the commercially available standard for quercetin 3-glucuronide, and by conducting a model experiment using urine from mice that had been administered a green tea extract. The results show that by using the ChemProphet approach, it is possible to annotate not only the deconjugated molecules but also the conjugated molecules using an automatic interpretation method based on deconjugation that involves multistage collision-induced dissociation and in silico calculated conjugation.
{"title":"Method for the Compound Annotation of Conjugates in Nontargeted Metabolomics Using Accurate Mass Spectrometry, Multistage Product Ion Spectra and Compound Database Searching.","authors":"Tairo Ogura, T. Bamba, A. Tai, E. Fukusaki","doi":"10.5702/massspectrometry.A0036","DOIUrl":"https://doi.org/10.5702/massspectrometry.A0036","url":null,"abstract":"Owing to biotransformation, xenobiotics are often found in conjugated form in biological samples such as urine and plasma. Liquid chromatography coupled with accurate mass spectrometry with multistage collision-induced dissociation provides spectral information concerning these metabolites in complex materials. Unfortunately, compound databases typically do not contain a sufficient number of records for such conjugates. We report here on the development of a novel protocol, referred to as ChemProphet, to annotate compounds, including conjugates, using compound databases such as PubChem and ChemSpider. The annotation of conjugates involves three steps: 1. Recognition of the type and number of conjugates in the sample; 2. Compound search and annotation of the deconjugated form; and 3. In silico evaluation of the candidate conjugate. ChemProphet assigns a spectrum to each candidate by automatically exploring the substructures corresponding to the observed product ion spectrum. When finished, it annotates the candidates assigning a rank for each candidate based on the calculated score that ranks its relative likelihood. We assessed our protocol by annotating a benchmark dataset by including the product ion spectra for 102 compounds, annotating the commercially available standard for quercetin 3-glucuronide, and by conducting a model experiment using urine from mice that had been administered a green tea extract. The results show that by using the ChemProphet approach, it is possible to annotate not only the deconjugated molecules but also the conjugated molecules using an automatic interpretation method based on deconjugation that involves multistage collision-induced dissociation and in silico calculated conjugation.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"426 1","pages":"A0036"},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75043273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-03-13DOI: 10.5702/massspectrometry.S0050
Ryo Shimazu, Yoshinari Yamoto, Tomoya Kosaka, H. Kawasaki, R. Arakawa
We report the application of tapping-mode scanning probe electrospray ionization (t-SPESI) to mass spectrometry imaging of industrial materials. The t-SPESI parameters including tapping solvent composition, solvent flow rate, number of tapping at each spot, and step-size were optimized using a quadrupole mass spectrometer to improve mass spectrometry (MS) imaging of thin-layer chromatography (TLC) and additives in polymer films. Spatial resolution of approximately 100 μm was achieved by t-SPESI imaging mass spectrometry using a fused-silica capillary (50 μm i.d., 150 μm o.d.) with the flow rate set at 0.2 μL/min. This allowed us to obtain discriminable MS imaging profiles of three dyes separated by TLC and the additive stripe pattern of a PMMA model film depleted by UV irradiation.
{"title":"Application of Tapping-Mode Scanning Probe Electrospray Ionization to Mass Spectrometry Imaging of Additives in Polymer Films.","authors":"Ryo Shimazu, Yoshinari Yamoto, Tomoya Kosaka, H. Kawasaki, R. Arakawa","doi":"10.5702/massspectrometry.S0050","DOIUrl":"https://doi.org/10.5702/massspectrometry.S0050","url":null,"abstract":"We report the application of tapping-mode scanning probe electrospray ionization (t-SPESI) to mass spectrometry imaging of industrial materials. The t-SPESI parameters including tapping solvent composition, solvent flow rate, number of tapping at each spot, and step-size were optimized using a quadrupole mass spectrometer to improve mass spectrometry (MS) imaging of thin-layer chromatography (TLC) and additives in polymer films. Spatial resolution of approximately 100 μm was achieved by t-SPESI imaging mass spectrometry using a fused-silica capillary (50 μm i.d., 150 μm o.d.) with the flow rate set at 0.2 μL/min. This allowed us to obtain discriminable MS imaging profiles of three dyes separated by TLC and the additive stripe pattern of a PMMA model film depleted by UV irradiation.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"3 1","pages":"S0050"},"PeriodicalIF":0.0,"publicationDate":"2015-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90282592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-02-01DOI: 10.5702/massspectrometry.S0048
K. Yoshimura, L. Chen, H. Johno, Mayutaka Nakajima, K. Hiraoka, S. Takeda
Ambient ionization mass spectrometry is one of the most challenging analytical tools in the field of biomedical research. We previously demonstrated that probe electrospray ionization mass spectrometry (PESI-MS) could potentially be used in the rapid diagnosis of cancer. Although this technique does not require a tedious sample pretreatment process, it was not possible for our previously reported setup to be applied to cases involving the direct sampling of tissues from living animal and large animal subjects, because there would not be enough room to accommodate the larger bodies juxtaposed to the ion inlet. To make PESI-MS more applicable for the real-time analysis of living animals, a long auxiliary ion sampling tube has been connected to the ion inlet of the mass spectrometer to allow for the collection of ions and charged droplets from the PESI source (hereafter, referred to as non-proximate PESI). Furthermore, an additional ion sampling tube was connected to a small diaphragm pump to increase the uptake rate of air carrying the ions and charged droplets to the ion inlet. This modification allows for the extended ion sampling orifice to be positioned closer to the specimens, even when they are too large to be placed inside the ionization chamber. In this study, we have demonstrated the use of non-proximate PESI-MS for the real-time analysis for biological molecules and pharmacokinetic parameters from living animals.
{"title":"Development of Non-proximate Probe Electrospray Ionization for Real-Time Analysis of Living Animal.","authors":"K. Yoshimura, L. Chen, H. Johno, Mayutaka Nakajima, K. Hiraoka, S. Takeda","doi":"10.5702/massspectrometry.S0048","DOIUrl":"https://doi.org/10.5702/massspectrometry.S0048","url":null,"abstract":"Ambient ionization mass spectrometry is one of the most challenging analytical tools in the field of biomedical research. We previously demonstrated that probe electrospray ionization mass spectrometry (PESI-MS) could potentially be used in the rapid diagnosis of cancer. Although this technique does not require a tedious sample pretreatment process, it was not possible for our previously reported setup to be applied to cases involving the direct sampling of tissues from living animal and large animal subjects, because there would not be enough room to accommodate the larger bodies juxtaposed to the ion inlet. To make PESI-MS more applicable for the real-time analysis of living animals, a long auxiliary ion sampling tube has been connected to the ion inlet of the mass spectrometer to allow for the collection of ions and charged droplets from the PESI source (hereafter, referred to as non-proximate PESI). Furthermore, an additional ion sampling tube was connected to a small diaphragm pump to increase the uptake rate of air carrying the ions and charged droplets to the ion inlet. This modification allows for the extended ion sampling orifice to be positioned closer to the specimens, even when they are too large to be placed inside the ionization chamber. In this study, we have demonstrated the use of non-proximate PESI-MS for the real-time analysis for biological molecules and pharmacokinetic parameters from living animals.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"2 1","pages":"S0048"},"PeriodicalIF":0.0,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88705150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-02-01DOI: 10.5702/massspectrometry.A0034
Shoji Kakuta, Toshiyuki Yamashita, S. Nishiumi, Masaru Yoshida, E. Fukusaki, T. Bamba
A dynamic headspace extraction method (DHS) with high-pressure injection is described. This dynamic extraction method has superior sensitivity to solid phase micro extraction, SPME and is capable of extracting the entire gas phase by purging the headspace of a vial. Optimization of the DHS parameters resulted in a highly sensitive volatile profiling system with the ability to detect various volatile components including alcohols at nanogram levels. The average LOD for a standard volatile mixture was 0.50 ng mL(-1), and the average LOD for alcohols was 0.66 ng mL(-1). This method was used for the analysis of volatile components from biological samples and compared with acute and chronic inflammation models. The method permitted the identification of volatiles with the same profile pattern as in vitro oxidized lipid-derived volatiles. In addition, the concentration of alcohols and aldehydes from the acute inflammation model samples were significantly higher than that for the chronic inflammation model samples. The different profiles between these samples could also be identified by this method. Finally, it was possible to analyze alcohols and low-molecular-weight volatiles that are difficult to analyze by SPME in high sensitivity and to show volatile profiling based on multi-volatile simultaneous analysis.
介绍了一种高压注入的动态顶空萃取方法。这种动态萃取方法对固相微萃取,SPME具有优异的灵敏度,并且能够通过清洗瓶顶空间提取整个气相。对DHS参数的优化得到了一个高灵敏度的挥发性分析系统,该系统能够检测包括纳克级醇在内的各种挥发性成分。标准挥发性混合物的平均LOD为0.50 ng mL(-1),醇类的平均LOD为0.66 ng mL(-1)。该方法用于分析生物样品中的挥发性成分,并与急性和慢性炎症模型进行比较。该方法允许鉴定挥发物与体外氧化脂质衍生挥发物具有相同的谱图模式。此外,急性炎症模型样品中醇类和醛类的浓度明显高于慢性炎症模型样品。该方法还可以区分样品间的不同剖面。最后,它可以分析高灵敏度SPME难以分析的醇类和低分子量挥发物,并显示基于多挥发物同时分析的挥发物谱。
{"title":"Multi-Component Profiling of Trace Volatiles in Blood by Gas Chromatography/Mass Spectrometry with Dynamic Headspace Extraction.","authors":"Shoji Kakuta, Toshiyuki Yamashita, S. Nishiumi, Masaru Yoshida, E. Fukusaki, T. Bamba","doi":"10.5702/massspectrometry.A0034","DOIUrl":"https://doi.org/10.5702/massspectrometry.A0034","url":null,"abstract":"A dynamic headspace extraction method (DHS) with high-pressure injection is described. This dynamic extraction method has superior sensitivity to solid phase micro extraction, SPME and is capable of extracting the entire gas phase by purging the headspace of a vial. Optimization of the DHS parameters resulted in a highly sensitive volatile profiling system with the ability to detect various volatile components including alcohols at nanogram levels. The average LOD for a standard volatile mixture was 0.50 ng mL(-1), and the average LOD for alcohols was 0.66 ng mL(-1). This method was used for the analysis of volatile components from biological samples and compared with acute and chronic inflammation models. The method permitted the identification of volatiles with the same profile pattern as in vitro oxidized lipid-derived volatiles. In addition, the concentration of alcohols and aldehydes from the acute inflammation model samples were significantly higher than that for the chronic inflammation model samples. The different profiles between these samples could also be identified by this method. Finally, it was possible to analyze alcohols and low-molecular-weight volatiles that are difficult to analyze by SPME in high sensitivity and to show volatile profiling based on multi-volatile simultaneous analysis.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"4 3 1","pages":"A0034"},"PeriodicalIF":0.0,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79473923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-12-01DOI: 10.5702/massspectrometry.S0042
S. Amari
Presolar grains are stardust that condensed in stellar outflows or stellar ejecta, and was incorporated in meteorites. They remain mostly intact throughout the journey from stars to the earth, keeping information of their birthplaces. Studies of presolar grains, which started in 1987, have produced a wealth of information about nucleosynthesis in stars, mixing in stellar ejecta, and temporal variations of isotopic and elemental abundances in the Galaxy. Recent instrumental advancements in secondary ion mass spectrometry (SIMS) brought about the identification of presolar silicate grains. Isotopic and mineralogical investigations of sub-μm grains have been performed using a combination of SIMS, transmission electron microscopy (TEM) and focused ion beam (FIB) techniques. Two instruments have been developed to study even smaller grains (∼50 nm) and measure isotopes and elements of lower abundances than those in previous studies.
{"title":"Recent Progress in Presolar Grain Studies.","authors":"S. Amari","doi":"10.5702/massspectrometry.S0042","DOIUrl":"https://doi.org/10.5702/massspectrometry.S0042","url":null,"abstract":"Presolar grains are stardust that condensed in stellar outflows or stellar ejecta, and was incorporated in meteorites. They remain mostly intact throughout the journey from stars to the earth, keeping information of their birthplaces. Studies of presolar grains, which started in 1987, have produced a wealth of information about nucleosynthesis in stars, mixing in stellar ejecta, and temporal variations of isotopic and elemental abundances in the Galaxy. Recent instrumental advancements in secondary ion mass spectrometry (SIMS) brought about the identification of presolar silicate grains. Isotopic and mineralogical investigations of sub-μm grains have been performed using a combination of SIMS, transmission electron microscopy (TEM) and focused ion beam (FIB) techniques. Two instruments have been developed to study even smaller grains (∼50 nm) and measure isotopes and elements of lower abundances than those in previous studies.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"59 1","pages":"S0042"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73545580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-12-01DOI: 10.5702/massspectrometry.S0041
H. Ohtani, T. Iura
The end groups in radically polymerized poly(methyl methacrylate) samples with tert-butyl peroxy-2-ethylhexanoate as an aliphatic peroxide initiator and 1-octanethiol as a chain transfer reagent were complementarily characterized by high-resolution matrix assisted laser desorption/ionization (MALDI) spiral time-of-flight mass spectrometry (MS) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). The end groups comprised of three types of the initiator fragments and octylthio group originating from the chain transfer agent were confirmed by MALDI-MS measurements. In addition, their quantitative information was obtained by Py-GC-MS. Furthermore, combined with size exclusion chromatographic fractionation, the molar mass dependence of the end groups in the PMMA samples was also examined. It was suggested that the relative content of the octylthio end groups might increase with increase in the molar mass of the fractions. The observed results were interpreted in terms of the polymerization reactions of the PMMA samples.
{"title":"Complementary Characterization of End Groups in Radically Polymerized Poly(methyl methacrylate) by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry and Pyrolysis-Gas Chromatography-Mass Spectrometry.","authors":"H. Ohtani, T. Iura","doi":"10.5702/massspectrometry.S0041","DOIUrl":"https://doi.org/10.5702/massspectrometry.S0041","url":null,"abstract":"The end groups in radically polymerized poly(methyl methacrylate) samples with tert-butyl peroxy-2-ethylhexanoate as an aliphatic peroxide initiator and 1-octanethiol as a chain transfer reagent were complementarily characterized by high-resolution matrix assisted laser desorption/ionization (MALDI) spiral time-of-flight mass spectrometry (MS) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). The end groups comprised of three types of the initiator fragments and octylthio group originating from the chain transfer agent were confirmed by MALDI-MS measurements. In addition, their quantitative information was obtained by Py-GC-MS. Furthermore, combined with size exclusion chromatographic fractionation, the molar mass dependence of the end groups in the PMMA samples was also examined. It was suggested that the relative content of the octylthio end groups might increase with increase in the molar mass of the fractions. The observed results were interpreted in terms of the polymerization reactions of the PMMA samples.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"37 1","pages":"S0041"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78337792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-12-01DOI: 10.5702/massspectrometry.S0047
Shigeru Suzuki
The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan's Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and "MsMsFilter," an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32-71 times larger than those observed in conventional LC/MS.
{"title":"Recent Advance in Liquid Chromatography/Mass Spectrometry Techniques for Environmental Analysis in Japan.","authors":"Shigeru Suzuki","doi":"10.5702/massspectrometry.S0047","DOIUrl":"https://doi.org/10.5702/massspectrometry.S0047","url":null,"abstract":"The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan's Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and \"MsMsFilter,\" an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32-71 times larger than those observed in conventional LC/MS.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"30 1","pages":"S0047"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84670180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}