Pub Date : 2014-12-01DOI: 10.5702/massspectrometry.A0032
K. Yonebayashi, Naoya Katsumi, Tomoe Nishi, M. Okazaki
Endophytic nitrogen-fixing organisms have been isolated from the aerial parts of field-grown sweet potato (Ipomoea batatas). The (15)N dilution method, which is based on the differences in stable nitrogen isotope ratios, is useful for measuring nitrogen fixation in the field. In this study, seedlings of two sweet potato cultivars, 'Beniazuma' and 'Benikomachi,' were transplanted into an alluvial soil that had been treated with organic improving material in advance. Whole plants were sampled every 2 or 3 weeks. After separating plants into tuberous roots and leaves, the fresh weights of the samples were measured, and the nitrogen content and natural (15)N content of leaves were determined with an elemental analyzer and an isotope ratio mass spectrometer linked to an elemental analyzer, respectively. The contribution of nitrogen fixation derived from atmospheric N2 in sweet potato was calculated by assuming that leaves at 2 weeks after transplanting were in a non-nitrogen-fixing state. The contribution ratios of nitrogen fixation by nitrogen-fixing endophytes in leaves of both sweet potato cultivars increased rapidly from 35 to 61 days after transplanting and then increased gradually to 55-57% at 90 days after transplanting. Over the course of the sweet potato growing season, the activity of nitrogen-fixing endophytes in leaves began to increase at about 47 days after transplanting, the weight of leaves increased rapidly, and then growth of tuberous roots began a few weeks later. Our findings indicate that nitrogen-fixing endophytes will be activated under inorganic nitrogen-free sweet potato cultivation, allowing for growth of the tuberous roots.
{"title":"Activation of Nitrogen-Fixing Endophytes Is Associated with the Tuber Growth of Sweet Potato.","authors":"K. Yonebayashi, Naoya Katsumi, Tomoe Nishi, M. Okazaki","doi":"10.5702/massspectrometry.A0032","DOIUrl":"https://doi.org/10.5702/massspectrometry.A0032","url":null,"abstract":"Endophytic nitrogen-fixing organisms have been isolated from the aerial parts of field-grown sweet potato (Ipomoea batatas). The (15)N dilution method, which is based on the differences in stable nitrogen isotope ratios, is useful for measuring nitrogen fixation in the field. In this study, seedlings of two sweet potato cultivars, 'Beniazuma' and 'Benikomachi,' were transplanted into an alluvial soil that had been treated with organic improving material in advance. Whole plants were sampled every 2 or 3 weeks. After separating plants into tuberous roots and leaves, the fresh weights of the samples were measured, and the nitrogen content and natural (15)N content of leaves were determined with an elemental analyzer and an isotope ratio mass spectrometer linked to an elemental analyzer, respectively. The contribution of nitrogen fixation derived from atmospheric N2 in sweet potato was calculated by assuming that leaves at 2 weeks after transplanting were in a non-nitrogen-fixing state. The contribution ratios of nitrogen fixation by nitrogen-fixing endophytes in leaves of both sweet potato cultivars increased rapidly from 35 to 61 days after transplanting and then increased gradually to 55-57% at 90 days after transplanting. Over the course of the sweet potato growing season, the activity of nitrogen-fixing endophytes in leaves began to increase at about 47 days after transplanting, the weight of leaves increased rapidly, and then growth of tuberous roots began a few weeks later. Our findings indicate that nitrogen-fixing endophytes will be activated under inorganic nitrogen-free sweet potato cultivation, allowing for growth of the tuberous roots.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"14 1","pages":"A0032"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83298756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-12-01DOI: 10.5702/massspectrometry.A0033
Katsuhito Hori, K. Tsumura, E. Fukusaki, T. Bamba
Supercritical fluid chromatography (SFC) coupled with triple quadrupole mass spectrometry was applied to the profiling of sucrose fatty acid esters (SEs). The SFC conditions (column and modifier gradient) were optimized for the effective separation of SEs. In the column test, a silica gel reversed-phase column was selected. Then, the method was used for the detailed characterization of commercial SEs and the successful analysis of SEs containing different fatty acids. The present method allowed for fast and high-resolution separation of monoesters to tetra-esters within a shorter time (15 min) as compared to the conventional high-performance liquid chromatography. The applicability of our method for the analysis of SEs was thus demonstrated.
{"title":"High-Throughput Analysis of Sucrose Fatty Acid Esters by Supercritical Fluid Chromatography/Tandem Mass Spectrometry.","authors":"Katsuhito Hori, K. Tsumura, E. Fukusaki, T. Bamba","doi":"10.5702/massspectrometry.A0033","DOIUrl":"https://doi.org/10.5702/massspectrometry.A0033","url":null,"abstract":"Supercritical fluid chromatography (SFC) coupled with triple quadrupole mass spectrometry was applied to the profiling of sucrose fatty acid esters (SEs). The SFC conditions (column and modifier gradient) were optimized for the effective separation of SEs. In the column test, a silica gel reversed-phase column was selected. Then, the method was used for the detailed characterization of commercial SEs and the successful analysis of SEs containing different fatty acids. The present method allowed for fast and high-resolution separation of monoesters to tetra-esters within a shorter time (15 min) as compared to the conventional high-performance liquid chromatography. The applicability of our method for the analysis of SEs was thus demonstrated.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"30 1","pages":"A0033"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84074798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-12-01DOI: 10.5702/massspectrometry.S0044
Y. Kodera, Yuya Hido, Rika Kato, Tatsuya Saito, Y. Kawashima, Satoru Minamida, Kazumasa Matsumoto, M. Iwamura
Serum and plasma contain thousands of different proteins and peptides, which can provide valuable information about the numerous processes that take place within the body. However, detailed analysis of proteins and peptides in serum and plasma remains challenging due to the presence of many high-abundance proteins, the large dynamic range of protein and peptide concentrations, the extensive complexity caused by posttranslational modifications, and considerable individual variability. In particular, detailed analysis and identification of native peptides is extremely difficult due to the tremendous variety of cleavage possibilities and posttranslational modifications, which results in extremely high complexity. Therefore, widely ranging searches based on peptide identification are difficult. Herein, we describe the highly accurate and sensitive quantitative analysis of over 2,500 peptides with the concentration limit of about 10 pM. The strategy combined isobaric tag labeling, amine-reactive 6-plex tandem mass tag labeling, and a modified differential solubilization method for high-yield peptide extraction [Saito, T. et al. J. Electrophoresis 2013 57: 1-9]. Using this strategy, we quantitatively analyzed six pooled plasma samples (three pre-surgery and three post-surgery) to discover potential candidate biomarker peptides of renal cell carcinoma. The concentrations of 27 peptides were found to be altered following surgery. A preliminary validation study was conducted using about 80 plasma samples to demonstrate the possibility that even unidentified potential candidate biomarker peptides can be verified using the isotope tag/dimethyl labeling method. We also discuss technical consideration and potential of this strategy for facilitating native peptide research.
{"title":"Establishment of a Strategy for the Discovery and Verification of Low-Abundance Biomarker Peptides in Plasma Using Two Types of Stable-Isotope Tags.","authors":"Y. Kodera, Yuya Hido, Rika Kato, Tatsuya Saito, Y. Kawashima, Satoru Minamida, Kazumasa Matsumoto, M. Iwamura","doi":"10.5702/massspectrometry.S0044","DOIUrl":"https://doi.org/10.5702/massspectrometry.S0044","url":null,"abstract":"Serum and plasma contain thousands of different proteins and peptides, which can provide valuable information about the numerous processes that take place within the body. However, detailed analysis of proteins and peptides in serum and plasma remains challenging due to the presence of many high-abundance proteins, the large dynamic range of protein and peptide concentrations, the extensive complexity caused by posttranslational modifications, and considerable individual variability. In particular, detailed analysis and identification of native peptides is extremely difficult due to the tremendous variety of cleavage possibilities and posttranslational modifications, which results in extremely high complexity. Therefore, widely ranging searches based on peptide identification are difficult. Herein, we describe the highly accurate and sensitive quantitative analysis of over 2,500 peptides with the concentration limit of about 10 pM. The strategy combined isobaric tag labeling, amine-reactive 6-plex tandem mass tag labeling, and a modified differential solubilization method for high-yield peptide extraction [Saito, T. et al. J. Electrophoresis 2013 57: 1-9]. Using this strategy, we quantitatively analyzed six pooled plasma samples (three pre-surgery and three post-surgery) to discover potential candidate biomarker peptides of renal cell carcinoma. The concentrations of 27 peptides were found to be altered following surgery. A preliminary validation study was conducted using about 80 plasma samples to demonstrate the possibility that even unidentified potential candidate biomarker peptides can be verified using the isotope tag/dimethyl labeling method. We also discuss technical consideration and potential of this strategy for facilitating native peptide research.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"10 1","pages":"S0044"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84202337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-12-01DOI: 10.5702/massspectrometry.S0043
K. Ohshimo, T. Komukai, Tohru Takahashi, Naoya Norimasa, Jenna W. J. Wu, R. Moriyama, K. Koyasu, F. Misaizu
Stable cluster sizes and compositions have been investigated for cations and anions of ionic bond clusters such as alkali halides and transition metal oxides by ion mobility-mass spectrometry (IM-MS). Usually structural information of ions can be obtained from collision cross sections determined in IM-MS. In addition, we have found that stable ion sizes or compositions were predominantly produced in a total ion mass spectrum, which was constructed from the IM-MS measurement. These stable species were produced as a result of collision induced dissociations of the ions in a drift cell. We have confirmed this result in the sodium fluoride cluster ions, in which cuboid magic number cluster ions were predominantly observed. Next the stable compositions, which were obtained for the oxide systems of the first row transition metals, Ti, Fe, and Co, are characteristic for each of the metal oxide cluster ions.
{"title":"Application of Ion Mobility-Mass Spectrometry to the Study of Ionic Clusters: Investigation of Cluster Ions with Stable Sizes and Compositions.","authors":"K. Ohshimo, T. Komukai, Tohru Takahashi, Naoya Norimasa, Jenna W. J. Wu, R. Moriyama, K. Koyasu, F. Misaizu","doi":"10.5702/massspectrometry.S0043","DOIUrl":"https://doi.org/10.5702/massspectrometry.S0043","url":null,"abstract":"Stable cluster sizes and compositions have been investigated for cations and anions of ionic bond clusters such as alkali halides and transition metal oxides by ion mobility-mass spectrometry (IM-MS). Usually structural information of ions can be obtained from collision cross sections determined in IM-MS. In addition, we have found that stable ion sizes or compositions were predominantly produced in a total ion mass spectrum, which was constructed from the IM-MS measurement. These stable species were produced as a result of collision induced dissociations of the ions in a drift cell. We have confirmed this result in the sodium fluoride cluster ions, in which cuboid magic number cluster ions were predominantly observed. Next the stable compositions, which were obtained for the oxide systems of the first row transition metals, Ti, Fe, and Co, are characteristic for each of the metal oxide cluster ions.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"205 1","pages":"S0043"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76961753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-12-01DOI: 10.5702/massspectrometry.S0045
E. Fukusaki
Metabolome, a total profile of whole metabolites, is placed on downstream of proteome. Metabolome is thought to be results of implementation of genomic information. In other words, metabolome can be called as high resolution phenotype. The easiest operation of metabolomics is the integration to the upstream ome information including transcriptome and/or proteome. Those trials have been reported at a certain scientific level. In addition, metabolomics can be operated in stand-alone mode without any other ome information. Among metabolomics tactics, the author's group is particularly focusing on metabolic fingerprinting, in which metabolome information is employed as explanatory variant to evaluate response variant. Metabolic fingerprinting technique is expected not only for analyzing slight difference depending on genotype difference but also for expressing dynamic variation of living organisms. The author introduces several good examples which he performed. Those are useful for easy understanding of the power of metabolomics. In addition, the author mentions the latest technology for analysis of metabolic dynamism. The author's group developed a facile analytical method for semi-quantitative metabolic dynamism. The author introduces the novel method that uses time dependent variation of isotope distribution based on stable isotope dilution.
{"title":"Application of Metabolomics for High Resolution Phenotype Analysis.","authors":"E. Fukusaki","doi":"10.5702/massspectrometry.S0045","DOIUrl":"https://doi.org/10.5702/massspectrometry.S0045","url":null,"abstract":"Metabolome, a total profile of whole metabolites, is placed on downstream of proteome. Metabolome is thought to be results of implementation of genomic information. In other words, metabolome can be called as high resolution phenotype. The easiest operation of metabolomics is the integration to the upstream ome information including transcriptome and/or proteome. Those trials have been reported at a certain scientific level. In addition, metabolomics can be operated in stand-alone mode without any other ome information. Among metabolomics tactics, the author's group is particularly focusing on metabolic fingerprinting, in which metabolome information is employed as explanatory variant to evaluate response variant. Metabolic fingerprinting technique is expected not only for analyzing slight difference depending on genotype difference but also for expressing dynamic variation of living organisms. The author introduces several good examples which he performed. Those are useful for easy understanding of the power of metabolomics. In addition, the author mentions the latest technology for analysis of metabolic dynamism. The author's group developed a facile analytical method for semi-quantitative metabolic dynamism. The author introduces the novel method that uses time dependent variation of isotope distribution based on stable isotope dilution.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"51 1","pages":"S0045"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76649258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-12-01DOI: 10.5702/massspectrometry.S0046
D. Saigusa, Michiyo Okudaira, Jiao Wang, K. Kano, M. Kurano, B. Uranbileg, H. Ikeda, Y. Yatomi, H. Motohashi, J. Aoki
Sph, S1P, and Cer, derived from the membrane sphingolipids, act as intracellular and intercellular mediators, involved in various (path) physiological functions. Accordingly, determining the distributions and concentrations of these sphingolipid mediators in body tissues is an important task. Consequently, a method for determination of sphingolipids in small quantities of tissue is required. Sphingolipids analysis has been dependent on improvements in mass spectrometry (MS) technology. Additionally, decomposition of sphingosine-1-phosphate (S1P) in the tissue samples before preparation for MS has hindered analysis. In the present study, a method for stabilization of liver samples before MS preparation was developed using a heat stabilizer (Stabilizor™ T1). Then, a LC-MS/MS method using a triple-quadrupole mass spectrometer with a C8 column was developed for simultaneous determination of sphingolipids in small quantities of liver specimens. This method showed good separation and validation results. Separation was performed with a gradient elution of solvent A (5 mmol L(-1) ammonium formate in water, pH 4.0) and solvent B (5 mmol L(-1) ammonium formate in 95% acetonitrile, pH 4.0) at 300 μL min(-1). The lower limit of quantification was less than 132 pmol L(-1), and this method was accurate (∼13.5%) and precise (∼7.13%) for S1P analysis. The method can be used to show the tissue distribution of sphingolipids.
{"title":"Simultaneous Quantification of Sphingolipids in Small Quantities of Liver by LC-MS/MS.","authors":"D. Saigusa, Michiyo Okudaira, Jiao Wang, K. Kano, M. Kurano, B. Uranbileg, H. Ikeda, Y. Yatomi, H. Motohashi, J. Aoki","doi":"10.5702/massspectrometry.S0046","DOIUrl":"https://doi.org/10.5702/massspectrometry.S0046","url":null,"abstract":"Sph, S1P, and Cer, derived from the membrane sphingolipids, act as intracellular and intercellular mediators, involved in various (path) physiological functions. Accordingly, determining the distributions and concentrations of these sphingolipid mediators in body tissues is an important task. Consequently, a method for determination of sphingolipids in small quantities of tissue is required. Sphingolipids analysis has been dependent on improvements in mass spectrometry (MS) technology. Additionally, decomposition of sphingosine-1-phosphate (S1P) in the tissue samples before preparation for MS has hindered analysis. In the present study, a method for stabilization of liver samples before MS preparation was developed using a heat stabilizer (Stabilizor™ T1). Then, a LC-MS/MS method using a triple-quadrupole mass spectrometer with a C8 column was developed for simultaneous determination of sphingolipids in small quantities of liver specimens. This method showed good separation and validation results. Separation was performed with a gradient elution of solvent A (5 mmol L(-1) ammonium formate in water, pH 4.0) and solvent B (5 mmol L(-1) ammonium formate in 95% acetonitrile, pH 4.0) at 300 μL min(-1). The lower limit of quantification was less than 132 pmol L(-1), and this method was accurate (∼13.5%) and precise (∼7.13%) for S1P analysis. The method can be used to show the tissue distribution of sphingolipids.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"37 1","pages":"S0046"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85360468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-11-01DOI: 10.5702/massspectrometry.S0040
H. Sasaki, Yoshifumi Kobashi, T. Nagai, M. Maeda
For the development and optimization of materials processing a collection of thermodynamic information concerning substances that participate in the reactions is important. One fundamental way to obtain such information is to measure the vapor pressure of gas species under conditions where they are in equilibrium with the condensed phases. Over the past 60 years Knudsen cell mass spectrometry has been used to identify and quantitatively determine gas species at high temperatures. This article describes thermodynamic foundation and examples of measurements in order to demonstrate the use of mass spectrometry focusing on the field of process metallurgy and recycling processes.
{"title":"Thermodynamic Measurements of Alloys and Compounds by Double Knudsen Cell Mass Spectrometry and Their Application to Materials Processing.","authors":"H. Sasaki, Yoshifumi Kobashi, T. Nagai, M. Maeda","doi":"10.5702/massspectrometry.S0040","DOIUrl":"https://doi.org/10.5702/massspectrometry.S0040","url":null,"abstract":"For the development and optimization of materials processing a collection of thermodynamic information concerning substances that participate in the reactions is important. One fundamental way to obtain such information is to measure the vapor pressure of gas species under conditions where they are in equilibrium with the condensed phases. Over the past 60 years Knudsen cell mass spectrometry has been used to identify and quantitatively determine gas species at high temperatures. This article describes thermodynamic foundation and examples of measurements in order to demonstrate the use of mass spectrometry focusing on the field of process metallurgy and recycling processes.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"28 1","pages":"S0040"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78848709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-10-01DOI: 10.5702/massspectrometry.A0031
Yuki Ohta, Shinichi Iwamoto, S. Kawabata, Ritsuko Tanimura, Koichi Tanaka
Mass spectrometry (MS) is a highly sensitive analytical technique that is often coupled with liquid chromatography (LC). However, some buffering salts used in LC (e.g., phosphate and tris(hydroxymethyl)aminomethane (Tris)) are incompatible with MS since they cause ion-source contamination and signal suppression. In this study, we examined salt tolerance of MALDI and applied a matrix additive methylenediphosphonic acid (MDPNA) to reduce salt-induced signal suppression. MDPNA significantly improved the salt tolerance of MALDI-MS. Using ammonium formate buffer at pH 5.0, the effective range of buffering salt concentration in MALDI-MS using MDPNA was estimated up to 250 mM. MDPNA reduced signal suppression caused by buffering salts at pH 4.0 to 8.0. We observed that MDPNA effectively worked over a wide range of buffer conditions. MDPNA was further applied to hydrophilic interaction chromatography (HILIC) and chromatofocusing-MALDI-MS. As a result, the analytes in the eluent containing high-concentration salts were detected with high sensitivity. Thus, our study provides simple and fast LC-MALDI-MS analysis technique not having strict limitation of buffering condition in LC by using matrix additive MDPNA.
{"title":"Salt Tolerance Enhancement of Liquid Chromatography-Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Using Matrix Additive Methylenediphosphonic Acid.","authors":"Yuki Ohta, Shinichi Iwamoto, S. Kawabata, Ritsuko Tanimura, Koichi Tanaka","doi":"10.5702/massspectrometry.A0031","DOIUrl":"https://doi.org/10.5702/massspectrometry.A0031","url":null,"abstract":"Mass spectrometry (MS) is a highly sensitive analytical technique that is often coupled with liquid chromatography (LC). However, some buffering salts used in LC (e.g., phosphate and tris(hydroxymethyl)aminomethane (Tris)) are incompatible with MS since they cause ion-source contamination and signal suppression. In this study, we examined salt tolerance of MALDI and applied a matrix additive methylenediphosphonic acid (MDPNA) to reduce salt-induced signal suppression. MDPNA significantly improved the salt tolerance of MALDI-MS. Using ammonium formate buffer at pH 5.0, the effective range of buffering salt concentration in MALDI-MS using MDPNA was estimated up to 250 mM. MDPNA reduced signal suppression caused by buffering salts at pH 4.0 to 8.0. We observed that MDPNA effectively worked over a wide range of buffer conditions. MDPNA was further applied to hydrophilic interaction chromatography (HILIC) and chromatofocusing-MALDI-MS. As a result, the analytes in the eluent containing high-concentration salts were detected with high sensitivity. Thus, our study provides simple and fast LC-MALDI-MS analysis technique not having strict limitation of buffering condition in LC by using matrix additive MDPNA.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"51 1","pages":"A0031"},"PeriodicalIF":0.0,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79802517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-08-01DOI: 10.5702/massspectrometry.S0035
D. L. Sweeney
The combination of partitioning and systematic bond disconnection has been used to identify compounds from accurate-mass fragmentation data. This combination is very effective in excluding wrong answers that occur by chance. However, both processes are CPU intensive. This paper describes a novel data structure for representing molecules in a computer readable format that is conducive to very rapid mass spectral searching while still retaining the advantages of partitioning and systematic bond disconnection.
{"title":"A Data Structure for Rapid Mass Spectral Searching.","authors":"D. L. Sweeney","doi":"10.5702/massspectrometry.S0035","DOIUrl":"https://doi.org/10.5702/massspectrometry.S0035","url":null,"abstract":"The combination of partitioning and systematic bond disconnection has been used to identify compounds from accurate-mass fragmentation data. This combination is very effective in excluding wrong answers that occur by chance. However, both processes are CPU intensive. This paper describes a novel data structure for representing molecules in a computer readable format that is conducive to very rapid mass spectral searching while still retaining the advantages of partitioning and systematic bond disconnection.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"22 1","pages":"S0035"},"PeriodicalIF":0.0,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78058839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-08-01DOI: 10.5702/massspectrometry.S0037
Kai Dührkop, Franziska Hufsky, Sebastian Böcker
We present the results of a fully automated de novo approach for identification of molecular formulas in the CASMI 2013 contest. Only results for Category 1 (molecular formula identification) were submitted. Our approach combines isotope pattern analysis and fragmentation pattern analysis and is completely independent from any (spectral and structural) database. We correctly identified the molecular formula for ten out of twelve challenges, being the best automated method competing in this category.
{"title":"Molecular Formula Identification Using Isotope Pattern Analysis and Calculation of Fragmentation Trees.","authors":"Kai Dührkop, Franziska Hufsky, Sebastian Böcker","doi":"10.5702/massspectrometry.S0037","DOIUrl":"https://doi.org/10.5702/massspectrometry.S0037","url":null,"abstract":"We present the results of a fully automated de novo approach for identification of molecular formulas in the CASMI 2013 contest. Only results for Category 1 (molecular formula identification) were submitted. Our approach combines isotope pattern analysis and fragmentation pattern analysis and is completely independent from any (spectral and structural) database. We correctly identified the molecular formula for ten out of twelve challenges, being the best automated method competing in this category.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"1 3","pages":"S0037"},"PeriodicalIF":0.0,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5702/massspectrometry.S0037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72406532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}