Phase change materials (PCMs) offer promising solutions for efficient thermal management in electronic devices, energy storage systems, and renewable energy applications due to their capacity to store and release significant thermal energy during phase transitions. This study investigates the thermal and physical properties of Bi-In-Sn/WO3 composites, specifically for their use as phase change thermal interface materials (PCM-TIMs). The Bi-In-Sn/WO3 composite was synthesized through mechanochemical grinding, which enabled the uniform dispersion of WO3 particles within the Bi-In-Sn alloy matrix. The addition of WO3 particles markedly improved the composite's thermal conductivity and transformed its physical form into a putty-like consistency, addressing leakage issues typically associated with pure Bi-In-Sn alloys. Microstructural analyses demonstrated the existence of a continuous interface between the liquid metal and WO3 phases, with no gaps, ensuring structural stability. Thermal performance tests demonstrated that the Bi-In-Sn/WO3 composite achieved improved thermal conductivity, and reduced volumetric latent heat, and there was a slight increase in thermal contact resistance with higher WO3 content. These findings highlight the potential of Bi-In-Sn/WO3 composites for utilization as advanced PCM-TIMs, offering enhanced heat dissipation, stability, and physical integrity for high-performance electronic and energy systems.
{"title":"Evaluation of Thermal and Mechanical Properties of Bi-In-Sn/WO<sub>3</sub> Composites for Efficient Heat Dissipation.","authors":"Die Wu, Zhen Ning, Yanlin Zhu, Rui Yuan","doi":"10.3390/ma17215315","DOIUrl":"10.3390/ma17215315","url":null,"abstract":"<p><p>Phase change materials (PCMs) offer promising solutions for efficient thermal management in electronic devices, energy storage systems, and renewable energy applications due to their capacity to store and release significant thermal energy during phase transitions. This study investigates the thermal and physical properties of Bi-In-Sn/WO<sub>3</sub> composites, specifically for their use as phase change thermal interface materials (PCM-TIMs). The Bi-In-Sn/WO<sub>3</sub> composite was synthesized through mechanochemical grinding, which enabled the uniform dispersion of WO<sub>3</sub> particles within the Bi-In-Sn alloy matrix. The addition of WO<sub>3</sub> particles markedly improved the composite's thermal conductivity and transformed its physical form into a putty-like consistency, addressing leakage issues typically associated with pure Bi-In-Sn alloys. Microstructural analyses demonstrated the existence of a continuous interface between the liquid metal and WO<sub>3</sub> phases, with no gaps, ensuring structural stability. Thermal performance tests demonstrated that the Bi-In-Sn/WO<sub>3</sub> composite achieved improved thermal conductivity, and reduced volumetric latent heat, and there was a slight increase in thermal contact resistance with higher WO<sub>3</sub> content. These findings highlight the potential of Bi-In-Sn/WO<sub>3</sub> composites for utilization as advanced PCM-TIMs, offering enhanced heat dissipation, stability, and physical integrity for high-performance electronic and energy systems.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Izabela Betlej, Marek Barlak, Karolina Lipska, Piotr Borysiuk, Piotr Boruszewski
Wood-plastic composites (WPCs) combine the properties of plastics and lignocellulosic fillers. A particular limitation in their use is usually a hydrophobic, poorly wettable surface. The surface properties of materials can be modified using ion implantation. The research involved using composites based on polyethylene (PE) filled with sawdust or bark (40%, 50%, and 60%). Their surfaces were modified by argon ion implantation in three fluencies (1 × 1015, 1 × 1016, and 1 × 1017 cm-2) at an accelerating voltage of 60 kV. Changes in the wettability, surface energy, and surface colour of the WPCs were analysed. It was shown that argon ion implantation affects the distinct colour change in the WPC surface. The nature of the colour changes depends on the filler used. Implantation also affects the colour balance between the individual variants. Implantation of the WPC surface with argon ions resulted in a decrease in the wetting angle. In most of the variants tested, the most significant effect on the wetting angle changes was the ion fluence of 1 × 1017 cm-2. Implantation of the WPC surface also increased the surface free energy of the composites. The highest surface free energy values were also recorded for the argon ion fluence of 1 × 1017 cm-2.
{"title":"Argon Ion Implantation as a Method of Modifying the Surface Properties of Wood-Plastic Composites.","authors":"Izabela Betlej, Marek Barlak, Karolina Lipska, Piotr Borysiuk, Piotr Boruszewski","doi":"10.3390/ma17215347","DOIUrl":"10.3390/ma17215347","url":null,"abstract":"<p><p>Wood-plastic composites (WPCs) combine the properties of plastics and lignocellulosic fillers. A particular limitation in their use is usually a hydrophobic, poorly wettable surface. The surface properties of materials can be modified using ion implantation. The research involved using composites based on polyethylene (PE) filled with sawdust or bark (40%, 50%, and 60%). Their surfaces were modified by argon ion implantation in three fluencies (1 × 10<sup>15</sup>, 1 × 10<sup>16</sup>, and 1 × 10<sup>17</sup> cm<sup>-2</sup>) at an accelerating voltage of 60 kV. Changes in the wettability, surface energy, and surface colour of the WPCs were analysed. It was shown that argon ion implantation affects the distinct colour change in the WPC surface. The nature of the colour changes depends on the filler used. Implantation also affects the colour balance between the individual variants. Implantation of the WPC surface with argon ions resulted in a decrease in the wetting angle. In most of the variants tested, the most significant effect on the wetting angle changes was the ion fluence of 1 × 10<sup>17</sup> cm<sup>-2</sup>. Implantation of the WPC surface also increased the surface free energy of the composites. The highest surface free energy values were also recorded for the argon ion fluence of 1 × 10<sup>17</sup> cm<sup>-2</sup>.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547569/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents the in-plane deformation and cyclic mechanical properties of CF/PEEK (Carbon Fiber-Reinforced Polyetheretherketone)-reinforced TPU (thermoplastic polyurethanes) flexible composites with a zero Poisson ratio. A novel CF/PEEK honeycomb reinforcement with a zero Poisson ratio was fabricated by using 3D-printing technology. Then, TPU was bonded in the two sides of the CF/PEEK honeycomb reinforcement. The in-plane deformation ability and cyclic mechanical properties were evaluated. The results show that the zero Poisson ratio flexible composite can achieve a large in-plane plastic deformation of more than 50% and can better maintain the zero Poisson ratio superstructure. By collecting and comparing the mechanical characteristic values of the CF/PEEK flexible composite under a cyclic load, the CF/PEEK flexible composite MH22-t0.6-CT has the best structural stability. The length of the structure was increased by about 12.53%. By studying the deformation mechanism and failure mechanisms of the flexible composites, the in-plane recyclability of the flexible composites was evaluated, which provides the basic research basis for large-scale in-plane deformation composites.
{"title":"In-Plane Cyclic Mechanical Properties of CF/PEEK/TPU Flexible Composite with Zero Poisson Ratio.","authors":"Junpeng Gao, Tingting Wang, Hu Xu, Laisheng Han, Baoyan Zhang, Niudong Han, Diantang Zhang","doi":"10.3390/ma17215302","DOIUrl":"10.3390/ma17215302","url":null,"abstract":"<p><p>This paper presents the in-plane deformation and cyclic mechanical properties of CF/PEEK (Carbon Fiber-Reinforced Polyetheretherketone)-reinforced TPU (thermoplastic polyurethanes) flexible composites with a zero Poisson ratio. A novel CF/PEEK honeycomb reinforcement with a zero Poisson ratio was fabricated by using 3D-printing technology. Then, TPU was bonded in the two sides of the CF/PEEK honeycomb reinforcement. The in-plane deformation ability and cyclic mechanical properties were evaluated. The results show that the zero Poisson ratio flexible composite can achieve a large in-plane plastic deformation of more than 50% and can better maintain the zero Poisson ratio superstructure. By collecting and comparing the mechanical characteristic values of the CF/PEEK flexible composite under a cyclic load, the CF/PEEK flexible composite MH22-t0.6-CT has the best structural stability. The length of the structure was increased by about 12.53%. By studying the deformation mechanism and failure mechanisms of the flexible composites, the in-plane recyclability of the flexible composites was evaluated, which provides the basic research basis for large-scale in-plane deformation composites.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547809/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A mild and highly selective hydrosilylation method was employed to synthesize five novel well-defined Janus ring siloxanes bearing terpenes and terpenoids, which are the main bioactive components of essential oils. The characterization of these new bio-sourced molecular materials, derived from hydrosilyl-substituted all-cis-cyclotetrasiloxane, was conducted through comprehensive analyses using multinuclear NMR, infrared spectroscopy, elemental analysis, and mass spectroscopy. The thermal stability of the newly synthesized Janus rings was investigated, and the siloxane skeleton was shown to confer an enhanced thermal stability compared with free terpenes and terpenoids.
{"title":"Synthesis and Thermal Properties of Bio-Based Janus Ring Siloxanes Incorporating Terpenes and Terpenoids.","authors":"Niyaz Yagafarov, Jiaorong Kuang, Nobuhiro Takeda, Yujia Liu, Armelle Ouali, Masafumi Unno","doi":"10.3390/ma17215348","DOIUrl":"10.3390/ma17215348","url":null,"abstract":"<p><p>A mild and highly selective hydrosilylation method was employed to synthesize five novel well-defined Janus ring siloxanes bearing terpenes and terpenoids, which are the main bioactive components of essential oils. The characterization of these new bio-sourced molecular materials, derived from hydrosilyl-substituted all-<i>cis</i>-cyclotetrasiloxane, was conducted through comprehensive analyses using multinuclear NMR, infrared spectroscopy, elemental analysis, and mass spectroscopy. The thermal stability of the newly synthesized Janus rings was investigated, and the siloxane skeleton was shown to confer an enhanced thermal stability compared with free terpenes and terpenoids.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lingyan Qin, Li Zhao, Bo Yuan, Hongwei Wang, Guojie Liang, Kai Li, Qiang Xie, Lele Gong
Mesophase pitch is regarded as a profoundly promising candidate for the production of advanced carbon-based multifunctional materials such as carbon fibers, carbon microspheres, and carbon foams owing to its excellent intrinsic properties. Consequently, a deeper understanding of pyrolytic chemistry is indispensable for the efficient and environmentally friendly utilization of mesophase pitch. In this study, details about the structure compositions and microscopic morphologies of petroleum-driven mesophase pitch (pMP) were investigated through ultimate, FTIR, XPS, and 13C-NMR analyses. Furthermore, a large-scale molecular model of typical pMP with 11,835 atoms was constructed to unveil the comprehensive pyrolysis behaviors and the underlying reactions. Significantly, the evolution of specific chemical bonds and the decomposition of crucial molecular fragments were elucidated within an amalgamation of experimental TG-FTIR/MS and ReaxFF MD simulation. Accordingly, three fundamental reaction stages were artificially divided, including the low-temperature reaction, rapid thermal decomposition, and the molecular condensation reaction. During the rapid thermal decomposition stage, the cleavages of C-C and C-O bonds cooperatively contributed to the formation of C2H4 and H2O gaseous products. As the temperature escalated to the molecular condensation stage, the pyrolysis process was governed by the dehydrogenation condensation, accompanied by an augmentation of C-C and H-H bonds and a diminution of C-O and C-H bonds. Additionally, the rare graphitization phenomenon was observed, suggesting a remarkable degree of structural organization in pMP. Overall, the results of ReaxFF MD simulations complement experimental observations, successfully reproducing the microstructure of pMP and atomic-scale pyrolysis behavior, thereby providing invaluable insights for the rational guidance of efficient utilization of pMP and other related carbonaceous precursors.
{"title":"Insight into the Pyrolysis Behaviors of Petroleum-Driven Mesophase Pitch via ReaxFF Molecular Dynamics and In Situ TG-FTIR/MS.","authors":"Lingyan Qin, Li Zhao, Bo Yuan, Hongwei Wang, Guojie Liang, Kai Li, Qiang Xie, Lele Gong","doi":"10.3390/ma17215318","DOIUrl":"10.3390/ma17215318","url":null,"abstract":"<p><p>Mesophase pitch is regarded as a profoundly promising candidate for the production of advanced carbon-based multifunctional materials such as carbon fibers, carbon microspheres, and carbon foams owing to its excellent intrinsic properties. Consequently, a deeper understanding of pyrolytic chemistry is indispensable for the efficient and environmentally friendly utilization of mesophase pitch. In this study, details about the structure compositions and microscopic morphologies of petroleum-driven mesophase pitch (pMP) were investigated through ultimate, FTIR, XPS, and <sup>13</sup>C-NMR analyses. Furthermore, a large-scale molecular model of typical pMP with 11,835 atoms was constructed to unveil the comprehensive pyrolysis behaviors and the underlying reactions. Significantly, the evolution of specific chemical bonds and the decomposition of crucial molecular fragments were elucidated within an amalgamation of experimental TG-FTIR/MS and ReaxFF MD simulation. Accordingly, three fundamental reaction stages were artificially divided, including the low-temperature reaction, rapid thermal decomposition, and the molecular condensation reaction. During the rapid thermal decomposition stage, the cleavages of C-C and C-O bonds cooperatively contributed to the formation of C<sub>2</sub>H<sub>4</sub> and H<sub>2</sub>O gaseous products. As the temperature escalated to the molecular condensation stage, the pyrolysis process was governed by the dehydrogenation condensation, accompanied by an augmentation of C-C and H-H bonds and a diminution of C-O and C-H bonds. Additionally, the rare graphitization phenomenon was observed, suggesting a remarkable degree of structural organization in pMP. Overall, the results of ReaxFF MD simulations complement experimental observations, successfully reproducing the microstructure of pMP and atomic-scale pyrolysis behavior, thereby providing invaluable insights for the rational guidance of efficient utilization of pMP and other related carbonaceous precursors.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547812/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lattice structures, characterized by their repetitive, interlocking patterns, provide an efficient balance of strength, flexibility, and reduced weight, making them essential in fields such as aerospace and automotive engineering. These structures use minimal material while effectively distributing stress, providing high resilience, energy absorption, and impact resistance. Composed of unit cells, lattice structures are highly customizable, from simple 2D honeycomb designs to complex 3D TPMS forms, and they adapt well to additive manufacturing, which minimizes material waste and production costs. In compression tests, lattice structures maintain stiffness even when filled with powder, suggesting minimal effect from the filler material. This paper shows the principles of creating finite element simulations with 3D-printed specimens and with usage of the lattice structure. The comparing of simulation and real testing is also shown in this research. The efficiency in material and energy use underscores the ecological and economic benefits of lattice-based designs, positioning them as a sustainable choice across multiple industries. This research analyzes three selected structures-solid material, pure latices structure, and boxed lattice structure with internal powder. The experimental findings reveal that the simulation error is less than 8% compared to the real measurement. This error is caused by the simplified material model, which is considering the isotropic behavior of the used material PA12GB (not the anisotropic model). The used and analyzed production method was multi jet fusion.
晶格结构的特点是重复性的连锁模式,可有效平衡强度、灵活性和减轻重量,因此在航空航天和汽车工程等领域非常重要。这些结构使用最少的材料,同时有效地分散应力,具有较高的弹性、能量吸收和抗冲击能力。晶格结构由单元格组成,可高度定制,从简单的二维蜂窝设计到复杂的三维 TPMS 形状,都能很好地适应快速成型制造,从而最大限度地减少材料浪费和生产成本。在压缩测试中,即使填充了粉末,晶格结构也能保持刚度,这表明填充材料的影响微乎其微。本文介绍了利用 3D 打印试样和网格结构创建有限元模拟的原理。本研究还展示了模拟与实际测试的比较。材料和能源的高效利用凸显了基于晶格的设计的生态和经济效益,使其成为多个行业的可持续选择。本研究分析了三种选定的结构--固体材料、纯晶格结构和带内部粉末的箱形晶格结构。实验结果表明,与实际测量相比,模拟误差小于 8%。造成这一误差的原因是简化了材料模型,即考虑了所用材料 PA12GB 的各向同性行为(而非各向异性模型)。所使用和分析的生产方法是多射流熔融。
{"title":"Lattice Structures-Mechanical Description with Respect to Additive Manufacturing.","authors":"Karel Ráž, Zdeněk Chval, Mathis Pereira","doi":"10.3390/ma17215298","DOIUrl":"10.3390/ma17215298","url":null,"abstract":"<p><p>Lattice structures, characterized by their repetitive, interlocking patterns, provide an efficient balance of strength, flexibility, and reduced weight, making them essential in fields such as aerospace and automotive engineering. These structures use minimal material while effectively distributing stress, providing high resilience, energy absorption, and impact resistance. Composed of unit cells, lattice structures are highly customizable, from simple 2D honeycomb designs to complex 3D TPMS forms, and they adapt well to additive manufacturing, which minimizes material waste and production costs. In compression tests, lattice structures maintain stiffness even when filled with powder, suggesting minimal effect from the filler material. This paper shows the principles of creating finite element simulations with 3D-printed specimens and with usage of the lattice structure. The comparing of simulation and real testing is also shown in this research. The efficiency in material and energy use underscores the ecological and economic benefits of lattice-based designs, positioning them as a sustainable choice across multiple industries. This research analyzes three selected structures-solid material, pure latices structure, and boxed lattice structure with internal powder. The experimental findings reveal that the simulation error is less than 8% compared to the real measurement. This error is caused by the simplified material model, which is considering the isotropic behavior of the used material PA12GB (not the anisotropic model). The used and analyzed production method was multi jet fusion.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The use of a rapid heating method to achieve heterogeneity of Mn in medium-manganese steel and improve its comprehensive performance has been widely studied and these techniques have been widely applied. However, the heating rate (from α to γ) has not received sufficient attention with respect to its microstructure-evolution mechanism. In this study, the effect of heating rate on the microstructure evolution and hardness of heterogeneous medium-manganese steel was investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and DICTRA simulation. The results showed that the Mn distribution was heterogeneous in the initial microstructure of pearlite due to strong partitioning of Mn between ferrite and cementite. At low heating rates (<10 °C/s), the heterogeneity of Mn distribution was diminished to some extent due to the long-distance diffusion of Mn in high-temperature austenite. Contrastingly, at high heating rates, the initial heterogeneity of the Mn element could be largely preserved due to insufficient diffusion of Mn, which resulted in more ghost pearlite (GP: pearlite-like microstructure with film martensite/RA). Moreover, the high heating rate not only refines the prior austenite grain but also increases the total RA content, which is mainly composed of additional film RA. As the heating rate increases, the hardness gradually increases from 628.1 HV to 663.3 HV, due to grain refinement and increased dislocation density. Dynamic simulations have also demonstrated a strong correlation between this interesting microstructure and the non-equilibrium diffusion of Mn.
{"title":"The Effect of Heating Rate on the Microstructure Evolution and Hardness of Heterogeneous Manganese Steel.","authors":"Wubin Ren, Peiyu Zhao, Menghu Wang, Shuai Tong, Xiaokai Liang, Xinjun Sun, Huibin Wu","doi":"10.3390/ma17215321","DOIUrl":"10.3390/ma17215321","url":null,"abstract":"<p><p>The use of a rapid heating method to achieve heterogeneity of Mn in medium-manganese steel and improve its comprehensive performance has been widely studied and these techniques have been widely applied. However, the heating rate (from α to γ) has not received sufficient attention with respect to its microstructure-evolution mechanism. In this study, the effect of heating rate on the microstructure evolution and hardness of heterogeneous medium-manganese steel was investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and DICTRA simulation. The results showed that the Mn distribution was heterogeneous in the initial microstructure of pearlite due to strong partitioning of Mn between ferrite and cementite. At low heating rates (<10 °C/s), the heterogeneity of Mn distribution was diminished to some extent due to the long-distance diffusion of Mn in high-temperature austenite. Contrastingly, at high heating rates, the initial heterogeneity of the Mn element could be largely preserved due to insufficient diffusion of Mn, which resulted in more ghost pearlite (GP: pearlite-like microstructure with film martensite/RA). Moreover, the high heating rate not only refines the prior austenite grain but also increases the total RA content, which is mainly composed of additional film RA. As the heating rate increases, the hardness gradually increases from 628.1 HV to 663.3 HV, due to grain refinement and increased dislocation density. Dynamic simulations have also demonstrated a strong correlation between this interesting microstructure and the non-equilibrium diffusion of Mn.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yicheng Cao, Wei Luo, Zhen Yang, Haofeng Xie, Wenjing Zhang, Zengde Li, Lijun Peng, Yunqing Zhu, Jun Liu
In this study, isothermal annealing experiments were conducted on copper-nickel-silicon alloys containing continuous precipitates (CP) and discontinuous precipitates (DP) to investigate the effects of different types of precipitate phases on the microstructural evolution and softening temperature during annealing, as well as to analyze the differences in softening mechanisms. The experimental results revealed that the softening temperature of the CP alloy, subjected to 75% cold deformation, was 505 °C. In contrast, the DP alloy achieved softening temperatures of 575 °C and 515 °C after 75% and 97.5% cold deformation, respectively. This indicates that the DP alloy exhibits significantly superior softening resistance compared to the CP alloy, attributed to the distinct softening mechanisms of the two alloys. In the CP alloy, softening is primarily influenced by factors such as the coarsening of the precipitate phase, the occurrence of recrystallization, and the reduction in dislocation density. In the DP alloy, the balling phenomenon of the DP phase is more pronounced, and its unique microstructure exerts a stronger hindrance to dislocation and grain boundary motion. This hindrance effect reduces the extent of recrystallization and results in a smaller decrease in dislocation density. In summary, the DP alloy, due to its unique microstructure and softening mechanisms, demonstrates better softening resistance, providing higher durability and stability for high-temperature applications.
{"title":"Investigation of the Softening Resistance Behavior and Its Mechanism in Cu-Ni-Si Alloys with Discontinuous Precipitates.","authors":"Yicheng Cao, Wei Luo, Zhen Yang, Haofeng Xie, Wenjing Zhang, Zengde Li, Lijun Peng, Yunqing Zhu, Jun Liu","doi":"10.3390/ma17215323","DOIUrl":"10.3390/ma17215323","url":null,"abstract":"<p><p>In this study, isothermal annealing experiments were conducted on copper-nickel-silicon alloys containing continuous precipitates (CP) and discontinuous precipitates (DP) to investigate the effects of different types of precipitate phases on the microstructural evolution and softening temperature during annealing, as well as to analyze the differences in softening mechanisms. The experimental results revealed that the softening temperature of the CP alloy, subjected to 75% cold deformation, was 505 °C. In contrast, the DP alloy achieved softening temperatures of 575 °C and 515 °C after 75% and 97.5% cold deformation, respectively. This indicates that the DP alloy exhibits significantly superior softening resistance compared to the CP alloy, attributed to the distinct softening mechanisms of the two alloys. In the CP alloy, softening is primarily influenced by factors such as the coarsening of the precipitate phase, the occurrence of recrystallization, and the reduction in dislocation density. In the DP alloy, the balling phenomenon of the DP phase is more pronounced, and its unique microstructure exerts a stronger hindrance to dislocation and grain boundary motion. This hindrance effect reduces the extent of recrystallization and results in a smaller decrease in dislocation density. In summary, the DP alloy, due to its unique microstructure and softening mechanisms, demonstrates better softening resistance, providing higher durability and stability for high-temperature applications.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radosław Nowak, Dominik Rodak, Stefan Pytel, Przemysław Rumianek, Paweł Wawrzyniak, Daniel Krzysztof Dębski, Agnieszka Dudziak, Jacek Caban
This article presents the concept, research, and modeling of a sandwich composite made from ULTEM 9085 and polycarbonate (PC). ULTEM 9085 is relatively expensive compared to polycarbonate, and the composite structure made of these two materials allows for maintaining the physical properties of ULTEM while reducing the overall costs. The composite consisted of outer layers made of ULTEM 9085 and a core made of polycarbonate. Each layer was 3D-printed using the fused filament fabrication (FFF) technology, which enables nearly unlimited design flexibility. The geometry of the test specimens corresponds to the ISO 527-4 standard. Tensile and three-point bending tests were conducted. The structure was modeled in a simplified manner using averaged stiffness values, and with the classical laminate theory (CLT). The models were calibrated through tensile and bending tests on ULTEM and polycarbonate prints. The simulation results were compared with experimental data, demonstrating good accuracy. The 3D-printed ULTEM-PC-ULTEM composite exhibits favorable mechanical properties, making it a promising material for cost-effective engineering applications.
{"title":"Experiments and Modeling of Three-Dimensionally Printed Sandwich Composite Based on ULTEM 9085.","authors":"Radosław Nowak, Dominik Rodak, Stefan Pytel, Przemysław Rumianek, Paweł Wawrzyniak, Daniel Krzysztof Dębski, Agnieszka Dudziak, Jacek Caban","doi":"10.3390/ma17215341","DOIUrl":"10.3390/ma17215341","url":null,"abstract":"<p><p>This article presents the concept, research, and modeling of a sandwich composite made from ULTEM 9085 and polycarbonate (PC). ULTEM 9085 is relatively expensive compared to polycarbonate, and the composite structure made of these two materials allows for maintaining the physical properties of ULTEM while reducing the overall costs. The composite consisted of outer layers made of ULTEM 9085 and a core made of polycarbonate. Each layer was 3D-printed using the fused filament fabrication (FFF) technology, which enables nearly unlimited design flexibility. The geometry of the test specimens corresponds to the ISO 527-4 standard. Tensile and three-point bending tests were conducted. The structure was modeled in a simplified manner using averaged stiffness values, and with the classical laminate theory (CLT). The models were calibrated through tensile and bending tests on ULTEM and polycarbonate prints. The simulation results were compared with experimental data, demonstrating good accuracy. The 3D-printed ULTEM-PC-ULTEM composite exhibits favorable mechanical properties, making it a promising material for cost-effective engineering applications.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547547/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The evolution of microstructures and mechanical properties with tempering temperature of a novel 2.5 GPa grade ultra-high strength steel with synergistic precipitation strengthening was investigated. With increasing tempering temperature, the experimental steel initially progressed from ε-carbides to M3C and then to M2C, followed by further coarsening of the M2C carbides and β-NiAl. Concurrently, the martensite matrix gradually decomposed and austenitized. The ultimate tensile strength and yield strength initially increased and subsequently decreased with rising tempering temperature, reaching peak value at 460 and 470 °C, respectively. Conversely, the ductility and toughness initially decreased and then increased with rising tempering temperature, reaching a minimum at 440 °C. The increase in strength was attributed to the secondary hardening effects resulting from carbide evolution and the precipitation of β-NiAl. The subsequent decrease in strength was due to the recovery of martensite and coarsening of precipitates. The decrease in ductility and toughness was linked to the precipitation of M3C, while their subsequent increase was primarily attributed to the dissolution of M3C and an increase in the volume fraction of reverted austenite. The high dislocation density of martensite, the film of reverted austenite, nanoscale M2C carbides, and ultrafine β-NiAl obtained during tempering at 480 °C resulted in the optimal mechanical properties of the experimental steel. The strength contributions from M2C carbides and β-NiAl were 1081 and 597 MPa, respectively.
{"title":"Evolution of Microstructures and Mechanical Properties with Tempering Temperature in a Novel Synergistic Precipitation Strengthening Ultra-High Strength Steel.","authors":"Yue Liu, Shun Han, Chao Yang, Ruming Geng, Xiaoyuan Yuan, Yong Li, Chunxu Wang","doi":"10.3390/ma17215314","DOIUrl":"10.3390/ma17215314","url":null,"abstract":"<p><p>The evolution of microstructures and mechanical properties with tempering temperature of a novel 2.5 GPa grade ultra-high strength steel with synergistic precipitation strengthening was investigated. With increasing tempering temperature, the experimental steel initially progressed from ε-carbides to M<sub>3</sub>C and then to M<sub>2</sub>C, followed by further coarsening of the M<sub>2</sub>C carbides and β-NiAl. Concurrently, the martensite matrix gradually decomposed and austenitized. The ultimate tensile strength and yield strength initially increased and subsequently decreased with rising tempering temperature, reaching peak value at 460 and 470 °C, respectively. Conversely, the ductility and toughness initially decreased and then increased with rising tempering temperature, reaching a minimum at 440 °C. The increase in strength was attributed to the secondary hardening effects resulting from carbide evolution and the precipitation of β-NiAl. The subsequent decrease in strength was due to the recovery of martensite and coarsening of precipitates. The decrease in ductility and toughness was linked to the precipitation of M<sub>3</sub>C, while their subsequent increase was primarily attributed to the dissolution of M<sub>3</sub>C and an increase in the volume fraction of reverted austenite. The high dislocation density of martensite, the film of reverted austenite, nanoscale M<sub>2</sub>C carbides, and ultrafine β-NiAl obtained during tempering at 480 °C resulted in the optimal mechanical properties of the experimental steel. The strength contributions from M<sub>2</sub>C carbides and β-NiAl were 1081 and 597 MPa, respectively.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}