Pub Date : 2025-10-09DOI: 10.3390/membranes15100307
Ahmed H El-Shazly, Yomna A Fahmy
The main objective of this work is to develop a cost-effective and durable ceramic membrane for water purification. The low-cost ceramic membrane was fabricated using readily available materials, such as clays, aluminum oxide, and calcium carbonate, The membrane was fabricated by uniaxial pressing at different pressures and sintering temperatures, then tested using a scanning electron microscope (SEM) and XRD. The porosity of the resulting membrane was 38.7%, and the contact angle was 65° indicating good hydrophilicity for filtration applications. The main composition was 70% clay, 25% CaCO3, and 5% alumina. The removal % for methylene blue was tested at varying concentrations, achieving up to 99% removal, an initial flux of 496.8 L m-2 h-1, and an average pore size of 2 µm. Furthermore, the research explores the effect of backwashing cycles and techniques on the membrane long-term performance. The results indicated that washing the membrane for four cycles to cleanness has achieved an improved efficiency of the membrane and % dye rejection. Back washing was achieved using no chemicals; only distilled water and drying were used. A preliminary costs assessment of the production for affordable membrane resulted in a value of 170 USD/m2. The findings demonstrate that optimizing backwashing cycles is essential for prolonging the membrane lifespan and lowering operation costs.
本工作的主要目的是开发一种具有成本效益和耐用性的水净化陶瓷膜。采用粘土、氧化铝和碳酸钙等材料制备了低成本的陶瓷膜,在不同压力和烧结温度下采用单轴压法制备了膜,并用扫描电镜(SEM)和x射线衍射仪(XRD)对膜进行了测试。所得膜的孔隙率为38.7%,接触角为65°,具有良好的亲水性。主要成分为70%粘土、25%碳酸钙和5%氧化铝。在不同浓度下测试亚甲基蓝的去除率,去除率高达99%,初始通量为496.8 L m-2 h-1,平均孔径为2µm。此外,研究还探讨了反冲洗周期和反冲洗技术对膜长期性能的影响。结果表明,对膜进行4次清洗后,膜的去除率和去除率均有所提高。不使用任何化学品进行反洗;只使用蒸馏水和干燥。对价格合理的膜的生产进行了初步成本评估,其价值为170美元/平方米。研究结果表明,优化反冲洗循环对于延长膜的使用寿命和降低操作成本至关重要。
{"title":"Cost-Effective and Durable Ceramic Membrane: Fabrication and Performance Optimization.","authors":"Ahmed H El-Shazly, Yomna A Fahmy","doi":"10.3390/membranes15100307","DOIUrl":"10.3390/membranes15100307","url":null,"abstract":"<p><p>The main objective of this work is to develop a cost-effective and durable ceramic membrane for water purification. The low-cost ceramic membrane was fabricated using readily available materials, such as clays, aluminum oxide, and calcium carbonate, The membrane was fabricated by uniaxial pressing at different pressures and sintering temperatures, then tested using a scanning electron microscope (SEM) and XRD. The porosity of the resulting membrane was 38.7%, and the contact angle was 65° indicating good hydrophilicity for filtration applications. The main composition was 70% clay, 25% CaCO<sub>3</sub>, and 5% alumina. The removal % for methylene blue was tested at varying concentrations, achieving up to 99% removal, an initial flux of 496.8 L m<sup>-2</sup> h<sup>-1</sup>, and an average pore size of 2 µm. Furthermore, the research explores the effect of backwashing cycles and techniques on the membrane long-term performance. The results indicated that washing the membrane for four cycles to cleanness has achieved an improved efficiency of the membrane and % dye rejection. Back washing was achieved using no chemicals; only distilled water and drying were used. A preliminary costs assessment of the production for affordable membrane resulted in a value of 170 USD/m<sup>2</sup>. The findings demonstrate that optimizing backwashing cycles is essential for prolonging the membrane lifespan and lowering operation costs.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 10","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12566305/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145391039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Highly permeable and selective membranes are crucial for energy-efficient gas separation. Two-dimensional (2D) graphitic carbon nitride (g-C3N4) has attracted significant attention due to its unique structural characteristics, including ultra-thin thickness, inherent surface porosity, and abundant amine groups. However, the interfacial defects caused by poor compatibility between g-C3N4 and polymers deteriorate the separation performance of membrane materials. In this study, amino-functionalized g-C3N4 nanosheets (CN@PEI) was prepared by a post-synthesis method, then blended with the polymer Pebax to fabricate Pebax/CN@PEI mixed matrix membranes (MMMs). Compared to g-C3N4, MMMs with CN@PEI loading of 20 wt% as nanofiller exhibited a CO2 permeance of 241 Barrer as well as the CO2/CH4 and CO2/N2 selectivity of 39.7 and 61.2, respectively, at the feed gas pressure of 2 bar, which approaches the 2008 Robeson upper bound and exceeded the 1991 Robeson upper bound. The Pebax/CN@PEI (20) membrane showed robust stability performance over 70 h continuous gas permeability testing, and no significant decline was observed. SEM characterization revealed a uniform dispersion of CN@PEI throughout the Pebax matrix, demonstrating excellent interfacial compatibility between the components. The increased free volume fraction, enhanced solubility, and higher diffusion coefficient demonstrated that the incorporation of CN@PEI nanosheets introduced more CO2-philic amino groups and disrupted the chain packing of the Pebax matrix, thereby creating additional diffusion channels and facilitating CO2 transport.
{"title":"Enhanced CO<sub>2</sub> Separation Performance of Mixed Matrix Membranes with Pebax and Amino-Functionalized Carbon Nitride Nanosheets.","authors":"Mengran Hua, Qinqin Sun, Na Li, Mingchao Zhu, Yongze Lu, Zhaoxia Hu, Shouwen Chen","doi":"10.3390/membranes15100306","DOIUrl":"10.3390/membranes15100306","url":null,"abstract":"<p><p>Highly permeable and selective membranes are crucial for energy-efficient gas separation. Two-dimensional (2D) graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) has attracted significant attention due to its unique structural characteristics, including ultra-thin thickness, inherent surface porosity, and abundant amine groups. However, the interfacial defects caused by poor compatibility between g-C<sub>3</sub>N<sub>4</sub> and polymers deteriorate the separation performance of membrane materials. In this study, amino-functionalized g-C<sub>3</sub>N<sub>4</sub> nanosheets (CN@PEI) was prepared by a post-synthesis method, then blended with the polymer Pebax to fabricate Pebax/CN@PEI mixed matrix membranes (MMMs). Compared to g-C<sub>3</sub>N<sub>4</sub>, MMMs with CN@PEI loading of 20 wt% as nanofiller exhibited a CO<sub>2</sub> permeance of 241 Barrer as well as the CO<sub>2</sub>/CH<sub>4</sub> and CO<sub>2</sub>/N<sub>2</sub> selectivity of 39.7 and 61.2, respectively, at the feed gas pressure of 2 bar, which approaches the 2008 Robeson upper bound and exceeded the 1991 Robeson upper bound. The Pebax/CN@PEI (20) membrane showed robust stability performance over 70 h continuous gas permeability testing, and no significant decline was observed. SEM characterization revealed a uniform dispersion of CN@PEI throughout the Pebax matrix, demonstrating excellent interfacial compatibility between the components. The increased free volume fraction, enhanced solubility, and higher diffusion coefficient demonstrated that the incorporation of CN@PEI nanosheets introduced more CO<sub>2</sub>-philic amino groups and disrupted the chain packing of the Pebax matrix, thereby creating additional diffusion channels and facilitating CO<sub>2</sub> transport.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 10","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12566534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145390995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-07DOI: 10.3390/membranes15100305
Panna Solyom, Thomas Nauser, Tamas Nemeth
We adapted two photochemical methods to generate radicals and assess their impact on anion exchange membrane stability, independent of base-induced degradation. Through the exposure of aqueous solutions of potassium nitrite or suspensions of TiO2 to UV light at 365 nm, we generated hydroxyl radicals or a combination of hydroxyl and superoxide radicals. The methods' applicability to anion exchange membranes (AEMs) is demonstrated on three commercial AEMs: PiperION-40, FM-FAA-3-PK-75, and PNB-R45. Changes in ion-exchange capacity, along with FT-IR and NMR analyses, revealed significant degradation in thinner, non-reinforced membranes, while thicker and reinforced membranes showed greater resistance. We attribute this to the limited penetration depth of highly reactive radicals into the membrane. Both methods are practical and inexpensive tools for benchmarking AEM stability against radical attack.
我们采用了两种光化学方法来产生自由基,并评估了它们对阴离子交换膜稳定性的影响,不依赖于碱诱导的降解。通过将亚硝酸钾水溶液或TiO2悬浮液暴露在365 nm紫外光下,我们产生了羟基自由基或羟基和超氧自由基的组合。在PiperION-40、fm - fa -3- pk -75和PNB-R45三种商用阴离子交换膜上验证了该方法对阴离子交换膜(AEMs)的适用性。离子交换容量的变化,以及FT-IR和NMR分析显示,较薄的非增强膜明显降解,而较厚的增强膜表现出更大的阻力。我们将此归因于高活性自由基进入膜的渗透深度有限。这两种方法都是实用且廉价的工具,可以对AEM抗自由基攻击的稳定性进行基准测试。
{"title":"Photochemical Methods to Study the Radical-Induced Degradation of Anion-Exchange Membranes.","authors":"Panna Solyom, Thomas Nauser, Tamas Nemeth","doi":"10.3390/membranes15100305","DOIUrl":"10.3390/membranes15100305","url":null,"abstract":"<p><p>We adapted two photochemical methods to generate radicals and assess their impact on anion exchange membrane stability, independent of base-induced degradation. Through the exposure of aqueous solutions of potassium nitrite or suspensions of TiO<sub>2</sub> to UV light at 365 nm, we generated hydroxyl radicals or a combination of hydroxyl and superoxide radicals. The methods' applicability to anion exchange membranes (AEMs) is demonstrated on three commercial AEMs: PiperION-40, FM-FAA-3-PK-75, and PNB-R45. Changes in ion-exchange capacity, along with FT-IR and NMR analyses, revealed significant degradation in thinner, non-reinforced membranes, while thicker and reinforced membranes showed greater resistance. We attribute this to the limited penetration depth of highly reactive radicals into the membrane. Both methods are practical and inexpensive tools for benchmarking AEM stability against radical attack.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 10","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12566383/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145391114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-06DOI: 10.3390/membranes15100303
Maria C Klaiss-Luna, Małgorzata Jemioła-Rzemińska, Marcela Manrique-Moreno, Kazimierz Strzałka
Breast cancer continues to be the leading cancer diagnosis among women worldwide, affecting populations in both industrialized and developing regions. Given the rising number of diagnosed cases each year, there is an urgent need to explore novel compounds with potential anticancer properties. One group of such candidates includes cationic peptides, which have shown promise due to their unique membrane-targeting mechanisms that are difficult for cancer cells to resist. This study presents an initial biophysical assessment of NA-CATH:ATRA-1-ATRA-1, a synthetic peptide modeled after NA-CATH, originally sourced from the venom of the Chinese cobra (Naja atra). The peptide's interactions with lipid bilayers mimicking cancerous and healthy cell membranes were examined using differential scanning calorimetry and Fourier-transform infrared spectroscopy. Findings revealed a pronounced affinity of NA-CATH:ATRA-1-ATRA-1 for eukaryotic membrane lipids, particularly phosphatidylserine, indicating that its mechanism likely involves electrostatic attraction to negatively charged lipids characteristic of cancer cell membranes. Such biophysical insights are vital for understanding how membrane-active peptides could be harnessed in future cancer therapies.
{"title":"Electrostatic Targeting of Cancer Cell Membrane Models by NA-CATH:ATRA-1-ATRA-1: A Biophysical Perspective.","authors":"Maria C Klaiss-Luna, Małgorzata Jemioła-Rzemińska, Marcela Manrique-Moreno, Kazimierz Strzałka","doi":"10.3390/membranes15100303","DOIUrl":"10.3390/membranes15100303","url":null,"abstract":"<p><p>Breast cancer continues to be the leading cancer diagnosis among women worldwide, affecting populations in both industrialized and developing regions. Given the rising number of diagnosed cases each year, there is an urgent need to explore novel compounds with potential anticancer properties. One group of such candidates includes cationic peptides, which have shown promise due to their unique membrane-targeting mechanisms that are difficult for cancer cells to resist. This study presents an initial biophysical assessment of NA-CATH:ATRA-1-ATRA-1, a synthetic peptide modeled after NA-CATH, originally sourced from the venom of the Chinese cobra (<i>Naja atra</i>). The peptide's interactions with lipid bilayers mimicking cancerous and healthy cell membranes were examined using differential scanning calorimetry and Fourier-transform infrared spectroscopy. Findings revealed a pronounced affinity of NA-CATH:ATRA-1-ATRA-1 for eukaryotic membrane lipids, particularly phosphatidylserine, indicating that its mechanism likely involves electrostatic attraction to negatively charged lipids characteristic of cancer cell membranes. Such biophysical insights are vital for understanding how membrane-active peptides could be harnessed in future cancer therapies.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 10","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12566102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145390958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellulose, the most abundant polysaccharide on earth, possesses desirable properties such as biodegradability, low cost, and low toxicity, making it suitable for a wide range of applications. Being a non-conductive material, the structure of the nanocellulose can be modified or incorporated with conductive filler to facilitate charge transport between the polymer matrix and conductive components. Recently, cellulose-based ion exchange membranes (IEMs) have gained strong attention as alternatives to environmentally burdening synthetic polymers in electrochemical energy systems, owing to their renewable nature and versatile chemical structure. This article provides a comprehensive review of the structures, fabrication aspects and properties of various cellulose-based membranes for fuel cells and water electrolyzers, batteries, supercapacitors, and reverse electrodialysis (RED) applications. The scope includes an overview of various cellulose-based membrane fabrication methods, different forms of cellulose, and their applications in energy conversion and energy storage systems. The review also discusses the fundamentals of electrochemical energy systems, the role of IEMs, and recent advancements in the cellulose-based membranes' research and development. Finally, it highlights current challenges to their performance and sustainability, along with recommendations for future research directions.
{"title":"Cellulose-Based Ion Exchange Membranes for Electrochemical Energy Systems: A Review.","authors":"Nur Syahirah Faiha Shawalludin, Saidatul Sophia Sha'rani, Mohamed Azlan Suhot, Shamsul Sarip, Mohamed Mahmoud Nasef","doi":"10.3390/membranes15100304","DOIUrl":"10.3390/membranes15100304","url":null,"abstract":"<p><p>Cellulose, the most abundant polysaccharide on earth, possesses desirable properties such as biodegradability, low cost, and low toxicity, making it suitable for a wide range of applications. Being a non-conductive material, the structure of the nanocellulose can be modified or incorporated with conductive filler to facilitate charge transport between the polymer matrix and conductive components. Recently, cellulose-based ion exchange membranes (IEMs) have gained strong attention as alternatives to environmentally burdening synthetic polymers in electrochemical energy systems, owing to their renewable nature and versatile chemical structure. This article provides a comprehensive review of the structures, fabrication aspects and properties of various cellulose-based membranes for fuel cells and water electrolyzers, batteries, supercapacitors, and reverse electrodialysis (RED) applications. The scope includes an overview of various cellulose-based membrane fabrication methods, different forms of cellulose, and their applications in energy conversion and energy storage systems. The review also discusses the fundamentals of electrochemical energy systems, the role of IEMs, and recent advancements in the cellulose-based membranes' research and development. Finally, it highlights current challenges to their performance and sustainability, along with recommendations for future research directions.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 10","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12566570/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145390865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-06DOI: 10.3390/membranes15100302
Vadim N Nurminsky, Svetlana I Shamanova, Olga I Grabelnych, Natalia V Ozolina, Yuguang Wang, Alla I Perfileva
Microviscosity and lipid order are the main parameters characterizing the phase states of the membrane. Variations in microviscosity and lipid composition in a living cell may indicate serious disturbances, including various kinds of stress. In this work, the effect of hyperosmotic stress on the microviscosity of mitochondrial membranes was investigated, using potato (Solanum tuberosum L.) tuber mitochondria. The microviscosity of mitochondrial membranes isolated from check and stressed (9 days at 34-36 °C) tubers was estimated by determining the generalized polarization (GP) values using a Laurdan fluorescent probe in confocal microscopy studies. It was revealed that the GP distribution in mitochondria isolated from stressed tubers contained new component-characterizing membrane domains with an increased lipid order compared to the rest of the membrane. We have mapped the microviscosity of mitochondrial membranes for the first time and observed the dynamics of the membrane microviscosity of an individual mitochondrion. The hyperosmotic stress significantly influences the functional state of potato mitochondria, decreasing the substrate oxidation rate and respiratory control coefficient but increasing MitoTracker Orange fluorescence. Under hyperosmotic stress, the microviscosity of mitochondrial membranes changes, and membrane domains with increased lipid order are formed. The revealed changes open up prospects for further research on the participation of raft-like microdomains of mitochondria in plant resistance to stress factors.
{"title":"Dynamic Imaging of Lipid Order and Heterogeneous Microviscosity in Mitochondrial Membranes of Potato Tubers Under Abiotic Stress.","authors":"Vadim N Nurminsky, Svetlana I Shamanova, Olga I Grabelnych, Natalia V Ozolina, Yuguang Wang, Alla I Perfileva","doi":"10.3390/membranes15100302","DOIUrl":"10.3390/membranes15100302","url":null,"abstract":"<p><p>Microviscosity and lipid order are the main parameters characterizing the phase states of the membrane. Variations in microviscosity and lipid composition in a living cell may indicate serious disturbances, including various kinds of stress. In this work, the effect of hyperosmotic stress on the microviscosity of mitochondrial membranes was investigated, using potato (<i>Solanum tuberosum</i> L.) tuber mitochondria. The microviscosity of mitochondrial membranes isolated from check and stressed (9 days at 34-36 °C) tubers was estimated by determining the generalized polarization (GP) values using a Laurdan fluorescent probe in confocal microscopy studies. It was revealed that the GP distribution in mitochondria isolated from stressed tubers contained new component-characterizing membrane domains with an increased lipid order compared to the rest of the membrane. We have mapped the microviscosity of mitochondrial membranes for the first time and observed the dynamics of the membrane microviscosity of an individual mitochondrion. The hyperosmotic stress significantly influences the functional state of potato mitochondria, decreasing the substrate oxidation rate and respiratory control coefficient but increasing MitoTracker Orange fluorescence. Under hyperosmotic stress, the microviscosity of mitochondrial membranes changes, and membrane domains with increased lipid order are formed. The revealed changes open up prospects for further research on the participation of raft-like microdomains of mitochondria in plant resistance to stress factors.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 10","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12566359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145390964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-02DOI: 10.3390/membranes15100301
Katarzyna Bizon, Dominika Boroń, Bolesław Tabiś
A versatile, clear, and accurate method for determining the steady states of multi-component diffusion through composite membranes is presented in this study. This method can be used for simulating and designing membranes with any support orientation with respect to the zeolite film. In the mathematical model of the membrane, it was assumed that mass transport in the zeolite layer occurs by surface diffusion in accordance with the generalized Maxwell-Stefan model. Diffusion in the macroporous support was described by the dusty gas model (DGM). An alternative model of diffusion in the zeolite was proposed to the universally accepted model, which uses a matrix of thermodynamic factors Γ. Thus, the difficulty of analytically determining this matrix for more complex adsorption equilibria was eliminated. This article is dedicated to methodological and cognitive aspects. The practical features of the method are illustrated using two gas mixtures as examples, namely {H2, CO2} and {H2, n-C4H10}. The roles of zeolite and support in the separation of these mixtures are discussed. It was demonstrated under what circumstances the presence of the support can be neglected in the steady-state analysis of the membrane. The effect of the alternative application of the dusty gas model or viscous flow only in the microporous support was discussed.
{"title":"Assessment and Discussion of the Steady-State Determination in Zeolite Composite Membranes for Multi-Component Diffusion.","authors":"Katarzyna Bizon, Dominika Boroń, Bolesław Tabiś","doi":"10.3390/membranes15100301","DOIUrl":"10.3390/membranes15100301","url":null,"abstract":"<p><p>A versatile, clear, and accurate method for determining the steady states of multi-component diffusion through composite membranes is presented in this study. This method can be used for simulating and designing membranes with any support orientation with respect to the zeolite film. In the mathematical model of the membrane, it was assumed that mass transport in the zeolite layer occurs by surface diffusion in accordance with the generalized Maxwell-Stefan model. Diffusion in the macroporous support was described by the dusty gas model (DGM). An alternative model of diffusion in the zeolite was proposed to the universally accepted model, which uses a matrix of thermodynamic factors <b>Γ</b>. Thus, the difficulty of analytically determining this matrix for more complex adsorption equilibria was eliminated. This article is dedicated to methodological and cognitive aspects. The practical features of the method are illustrated using two gas mixtures as examples, namely {H<sub>2</sub>, CO<sub>2</sub>} and {H<sub>2</sub>, <i>n</i>-C<sub>4</sub>H<sub>10</sub>}. The roles of zeolite and support in the separation of these mixtures are discussed. It was demonstrated under what circumstances the presence of the support can be neglected in the steady-state analysis of the membrane. The effect of the alternative application of the dusty gas model or viscous flow only in the microporous support was discussed.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 10","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12566351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145390933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-02DOI: 10.3390/membranes15100300
Manseeb M Mannaf, Md Mahbubur Rahman, Sonkorson Talukder Sabuj, Niladri Talukder, Eon Soo Lee
As water pollution from dyes, pharmaceuticals, heavy metals, and other emerging contaminants continues to rise at an alarming rate, ensuring access to clean and safe water has become a pressing global challenge. Conventional water treatment methods, though widely used, often fall short in effectively addressing these complex pollutants. In response, researchers have turned to Advanced Functional Membranes (AFMs) as promising alternatives, owing to their customizable structures and enhanced performance. Among the most explored AFMs are those based on metal-organic frameworks (MOFs), carbon nanotubes (CNTs), and electro-catalytic systems, each offering unique advantages such as high permeability, selective pollutant removal, and compatibility with advanced oxidation processes (AOPs). Notably, hybrid systems combining AFMs with electrochemical or photocatalytic technologies have demonstrated remarkable efficiency in laboratory settings. However, translating these successes to real-world applications remains a challenge due to issues related to cost, scalability, and long-term stability. This review explores the recent progress in AFM development, particularly MOF-based, CNT-based, and electro-Fenton (EF)-based membranes, highlighting their material aspects, pollutant filtration mechanisms, benefits, and limitations. It also offers insights into how these next-generation materials can contribute to more sustainable, practical, and economically viable water purification solutions in the near future.
{"title":"Current Progress in Advanced Functional Membranes for Water-Pollutant Removal: A Critical Review.","authors":"Manseeb M Mannaf, Md Mahbubur Rahman, Sonkorson Talukder Sabuj, Niladri Talukder, Eon Soo Lee","doi":"10.3390/membranes15100300","DOIUrl":"10.3390/membranes15100300","url":null,"abstract":"<p><p>As water pollution from dyes, pharmaceuticals, heavy metals, and other emerging contaminants continues to rise at an alarming rate, ensuring access to clean and safe water has become a pressing global challenge. Conventional water treatment methods, though widely used, often fall short in effectively addressing these complex pollutants. In response, researchers have turned to Advanced Functional Membranes (AFMs) as promising alternatives, owing to their customizable structures and enhanced performance. Among the most explored AFMs are those based on metal-organic frameworks (MOFs), carbon nanotubes (CNTs), and electro-catalytic systems, each offering unique advantages such as high permeability, selective pollutant removal, and compatibility with advanced oxidation processes (AOPs). Notably, hybrid systems combining AFMs with electrochemical or photocatalytic technologies have demonstrated remarkable efficiency in laboratory settings. However, translating these successes to real-world applications remains a challenge due to issues related to cost, scalability, and long-term stability. This review explores the recent progress in AFM development, particularly MOF-based, CNT-based, and electro-Fenton (EF)-based membranes, highlighting their material aspects, pollutant filtration mechanisms, benefits, and limitations. It also offers insights into how these next-generation materials can contribute to more sustainable, practical, and economically viable water purification solutions in the near future.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 10","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12565979/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145390976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01DOI: 10.3390/membranes15100299
Puya Zhao, Yue Qi, Kai Gao
In the production of recombinant antibody/Fc-fusion proteins using mammalian cells, many aggregates often form alongside the target proteins, particularly with bispecific antibodies. To ensure the safety of biological products, it is essential to control the amount of aggregates within a specific range. A traditional downstream process typically involves using Protein A (ProA) resin to capture the target antibody, followed by two polishing steps to ensure purity; for instance, using an anion exchange chromatography (AEX) in flow-through mode and a cation exchange chromatography (CEX) in binding-elution mode. In this study, we choose a Dual Action Fab (DAF), which can bind two antigens and is prone to aggregation when expression in CHO (Chinese Hamster Ovary) cells. We introduce hydrophobic interaction membrane chromatography (HIMC) operating in flow-through mode, which enhances production efficiency while reducing costs and the risks associated with column packing. We evaluated the impact of the operating buffer system, as well as the pH and conductivity of the loading samples, on aggregate removal using HIMC. Additionally, we investigated the mechanism of aggregate binding and found that loading conditions had a limited impact on this process. Overall, our findings indicate that employing HIMC can achieve a 20% reduction in aggregate levels. These results demonstrate that HIMC in flow-through mode is an effective and robust approach for reducing aggregates during antibody purification.
{"title":"Removal of Aggregates During Bispecific Antibody Purification Using Hydrophobic Interaction Chromatography.","authors":"Puya Zhao, Yue Qi, Kai Gao","doi":"10.3390/membranes15100299","DOIUrl":"10.3390/membranes15100299","url":null,"abstract":"<p><p>In the production of recombinant antibody/Fc-fusion proteins using mammalian cells, many aggregates often form alongside the target proteins, particularly with bispecific antibodies. To ensure the safety of biological products, it is essential to control the amount of aggregates within a specific range. A traditional downstream process typically involves using Protein A (ProA) resin to capture the target antibody, followed by two polishing steps to ensure purity; for instance, using an anion exchange chromatography (AEX) in flow-through mode and a cation exchange chromatography (CEX) in binding-elution mode. In this study, we choose a Dual Action Fab (DAF), which can bind two antigens and is prone to aggregation when expression in CHO (Chinese Hamster Ovary) cells. We introduce hydrophobic interaction membrane chromatography (HIMC) operating in flow-through mode, which enhances production efficiency while reducing costs and the risks associated with column packing. We evaluated the impact of the operating buffer system, as well as the pH and conductivity of the loading samples, on aggregate removal using HIMC. Additionally, we investigated the mechanism of aggregate binding and found that loading conditions had a limited impact on this process. Overall, our findings indicate that employing HIMC can achieve a 20% reduction in aggregate levels. These results demonstrate that HIMC in flow-through mode is an effective and robust approach for reducing aggregates during antibody purification.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 10","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12566258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145391235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01DOI: 10.3390/membranes15100298
Ana Vitória Santos Marques, Antusia Dos Santos Barbosa, Larissa Fernandes Maia, Meiry Gláucia Freire Rodrigues, Tellys Lins Almeida Barbosa, Carlos Bruno Barreto Luna
Membranes were assessed on a bench scale for their performance in methylene blue dye separation. The sawdust, along with Brazilian clay and kaolin, were mixed and compacted by uniaxial pressing and sintered at 650 °C. The membranes were characterized by several techniques, including X-ray diffraction, scanning electron microscopy, porosity, mechanical strength, water uptake, and membrane hydrodynamic permeability. The results demonstrated that the incorporation of sawdust not only altered the pore morphology but also significantly improved water permeation and dye removal efficiency. The ceramic membrane had an average pore diameter of 0.346-0.622 µm and porosities ranging from 40.85 to 42.96%. The membranes were applied to the microfiltration of synthetic effluent containing methylene blue (MB) and, additionally, subjected to investigation of their adsorptive capacity. All membrane variants showed high hydrophilicity (contact angles < 60°) and achieved MB rejection efficiencies higher than 96%, demonstrating their efficiency in treating dye-contaminated effluents. Batch adsorption using ceramic membranes (M0-M3) removed 34.0-41.2% of methylene blue. Adsorption behavior fitted both Langmuir and Freundlich models, indicating mixed mono- and multilayer mechanisms. FTIR confirmed electrostatic interactions, hydrogen bonding, and possible π-π interactions in dye retention.
{"title":"Development and Characterization of Sawdust-Based Ceramic Membranes for Textile Effluent Treatment.","authors":"Ana Vitória Santos Marques, Antusia Dos Santos Barbosa, Larissa Fernandes Maia, Meiry Gláucia Freire Rodrigues, Tellys Lins Almeida Barbosa, Carlos Bruno Barreto Luna","doi":"10.3390/membranes15100298","DOIUrl":"10.3390/membranes15100298","url":null,"abstract":"<p><p>Membranes were assessed on a bench scale for their performance in methylene blue dye separation. The sawdust, along with Brazilian clay and kaolin, were mixed and compacted by uniaxial pressing and sintered at 650 °C. The membranes were characterized by several techniques, including X-ray diffraction, scanning electron microscopy, porosity, mechanical strength, water uptake, and membrane hydrodynamic permeability. The results demonstrated that the incorporation of sawdust not only altered the pore morphology but also significantly improved water permeation and dye removal efficiency. The ceramic membrane had an average pore diameter of 0.346-0.622 µm and porosities ranging from 40.85 to 42.96%. The membranes were applied to the microfiltration of synthetic effluent containing methylene blue (MB) and, additionally, subjected to investigation of their adsorptive capacity. All membrane variants showed high hydrophilicity (contact angles < 60°) and achieved MB rejection efficiencies higher than 96%, demonstrating their efficiency in treating dye-contaminated effluents. Batch adsorption using ceramic membranes (M0-M3) removed 34.0-41.2% of methylene blue. Adsorption behavior fitted both Langmuir and Freundlich models, indicating mixed mono- and multilayer mechanisms. FTIR confirmed electrostatic interactions, hydrogen bonding, and possible π-π interactions in dye retention.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 10","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12566508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145391000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}