Pub Date : 2024-06-22DOI: 10.1016/j.micinf.2024.105380
Heng Heng, Ling Yang, Zhiwei Zheng, Chen Yang, Xuemei Yang, Wenxing Zhao, Ruanyang Sun, Kaichao Chen, Lianwei Ye, Jun Li, Edward Wai-Chi Chan, Sheng Chen
Acinetobacter baumannii (AB) infections have become a global public health concern due to the continued increase in the incidence of infection and the rate of resistance to carbapenems. This study aimed to investigate the genomic features of AB strains recovered from a tertiary hospital and assess the clinical implications of the findings. A total of 217 AB strains were collected between 2016 and 2018 at a tertiary hospital in Guangzhou, with 183 (84.33%) being carbapenem-resistant AB (CRAB), with the main mechanism being the carriage of the blaOXA-23 gene. The overall mortality rate of patients caused by such strains was 15.21% (n = 33). Artificial lung ventilation and the use of meropenem were mortality risk factors in AB-infected patients, while KL2 AB infection was negatively associated. Core genome multilocus sequence typing and clustering analysis were performed on the integrated AB genome collection from the NCBI database and this study to illustrate the population structure among China. The results revealed diverse core genome profiles (n = 17) among AB strains from China, and strains from this single hospital exhibited most of the core genome profiles (n = 13), suggesting genetic variability within the hospital and transmission across the country. These findings show that the high transmission potential of the CRAB strains and meropenem usage that confers a selective advantage of CRAB clinically are two major factors that pose significant challenges to the effective clinical management of AB infections. Understanding the genetic features and transmission patterns of clinical AB strains is crucial for the effective control of infections caused by this pathogen.
由于感染率和对碳青霉烯类抗生素的耐药率持续上升,鲍曼不动杆菌(AB)感染已成为全球关注的公共卫生问题。本研究旨在调查从一家三级医院回收的鲍曼不动杆菌菌株的基因组特征,并评估调查结果的临床意义。2016年至2018年期间,广州某三甲医院共收集到217株AB菌株,其中183株(84.33%)为耐碳青霉烯类AB(CRAB),主要机制为携带blaOXA-23基因。由此类菌株引起的患者总死亡率为 15.21%(33 人)。人工肺通气和使用美罗培南是AB感染患者的死亡风险因素,而KL2 AB感染与之呈负相关。本研究对来自 NCBI 数据库和本研究的综合 AB 基因组进行了核心基因组多焦点序列分型和聚类分析,以说明中国的种群结构。结果显示,来自中国的AB菌株具有不同的核心基因组图谱(n=17),而来自该单一医院的菌株表现出大多数核心基因组图谱(n=13),这表明医院内部存在遗传变异,并在全国范围内传播。这些研究结果表明,CRAB菌株的高传播潜力和美罗培南的使用在临床上赋予了CRAB选择性优势,这两个主要因素对AB感染的有效临床管理构成了重大挑战。了解临床 AB 菌株的遗传特征和传播模式对于有效控制该病原体引起的感染至关重要。
{"title":"Characterization of Acinetobacter baumannii at a tertiary hospital in Guangzhou: a genomic and clinical study.","authors":"Heng Heng, Ling Yang, Zhiwei Zheng, Chen Yang, Xuemei Yang, Wenxing Zhao, Ruanyang Sun, Kaichao Chen, Lianwei Ye, Jun Li, Edward Wai-Chi Chan, Sheng Chen","doi":"10.1016/j.micinf.2024.105380","DOIUrl":"10.1016/j.micinf.2024.105380","url":null,"abstract":"<p><p>Acinetobacter baumannii (AB) infections have become a global public health concern due to the continued increase in the incidence of infection and the rate of resistance to carbapenems. This study aimed to investigate the genomic features of AB strains recovered from a tertiary hospital and assess the clinical implications of the findings. A total of 217 AB strains were collected between 2016 and 2018 at a tertiary hospital in Guangzhou, with 183 (84.33%) being carbapenem-resistant AB (CRAB), with the main mechanism being the carriage of the bla<sub>OXA-23</sub> gene. The overall mortality rate of patients caused by such strains was 15.21% (n = 33). Artificial lung ventilation and the use of meropenem were mortality risk factors in AB-infected patients, while KL2 AB infection was negatively associated. Core genome multilocus sequence typing and clustering analysis were performed on the integrated AB genome collection from the NCBI database and this study to illustrate the population structure among China. The results revealed diverse core genome profiles (n = 17) among AB strains from China, and strains from this single hospital exhibited most of the core genome profiles (n = 13), suggesting genetic variability within the hospital and transmission across the country. These findings show that the high transmission potential of the CRAB strains and meropenem usage that confers a selective advantage of CRAB clinically are two major factors that pose significant challenges to the effective clinical management of AB infections. Understanding the genetic features and transmission patterns of clinical AB strains is crucial for the effective control of infections caused by this pathogen.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-22DOI: 10.1016/j.micinf.2024.105381
Shun Li, Jinxuan Wang, Xiaozhen Dai, Churong Li, Tao Li, Long Chen
Background: In both lung adenocarcinoma (LUAD) and severe acute respiratory syndrome (SARS), uncontrolled inflammation can be detected in lung tissue. The PDZ-binding motif (PBM) in the SARS-CoV-1 E protein has been demonstrated to be a virulence factor that induces a cytokine storm.
Methods: To identify gene expression fluctuations induced by PBM, microarray sequencing data of lung tissue infected with wild-type (SARS-CoV-1-E-wt) or recombinant virus (SARS-CoV-1-E-mutPBM) were analyzed, followed by functional enrichment analysis. To understand the role of the screened genes in LUAD, overall survival and immune correlation were calculated.
Results: A total of 12 genes might participate in the initial and developmental stages of LUAD through expression variation and mutation. Moreover, dysregulation of a total of 12 genes could lead to a poorer prognosis. In addition, the downregulation of MAMDC2 and ITGA8 by PBM could also affect patient prognosis. Although the conserved PBM (-D-L-L-V-) can be found at the end of the carboxyl terminus in multiple E proteins of coronaviruses, the specific function of each protein depends on the entire amino acid sequence.
Conclusions: In summary, PBM containing the SARS-CoV-1 E protein promoted the carcinogenesis of LUAD by dysregulating important gene expression profiles and subsequently influencing the immune response and overall prognosis.
{"title":"The PDZ domain of the E protein in SARS-CoV induces carcinogenesis and poor prognosis in LUAD.","authors":"Shun Li, Jinxuan Wang, Xiaozhen Dai, Churong Li, Tao Li, Long Chen","doi":"10.1016/j.micinf.2024.105381","DOIUrl":"10.1016/j.micinf.2024.105381","url":null,"abstract":"<p><strong>Background: </strong>In both lung adenocarcinoma (LUAD) and severe acute respiratory syndrome (SARS), uncontrolled inflammation can be detected in lung tissue. The PDZ-binding motif (PBM) in the SARS-CoV-1 E protein has been demonstrated to be a virulence factor that induces a cytokine storm.</p><p><strong>Methods: </strong>To identify gene expression fluctuations induced by PBM, microarray sequencing data of lung tissue infected with wild-type (SARS-CoV-1-E-wt) or recombinant virus (SARS-CoV-1-E-mutPBM) were analyzed, followed by functional enrichment analysis. To understand the role of the screened genes in LUAD, overall survival and immune correlation were calculated.</p><p><strong>Results: </strong>A total of 12 genes might participate in the initial and developmental stages of LUAD through expression variation and mutation. Moreover, dysregulation of a total of 12 genes could lead to a poorer prognosis. In addition, the downregulation of MAMDC2 and ITGA8 by PBM could also affect patient prognosis. Although the conserved PBM (-D-L-L-V-) can be found at the end of the carboxyl terminus in multiple E proteins of coronaviruses, the specific function of each protein depends on the entire amino acid sequence.</p><p><strong>Conclusions: </strong>In summary, PBM containing the SARS-CoV-1 E protein promoted the carcinogenesis of LUAD by dysregulating important gene expression profiles and subsequently influencing the immune response and overall prognosis.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1016/j.micinf.2024.105378
Alana B Byrne, Florencia A Bonnin, Eduardo L López, Fernando P Polack, Laura B Talarico
Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is one of the mechanisms contributing to increased severity during heterotypic, secondary infection. The complement protein C1q has been shown to reduce the magnitude of ADE in vitro. Therefore, we investigated the mechanisms of C1q modulation of ADE, focusing on processes of viral entry. Using a model of ADE of DENV-1 infection in human myeloid cell lines in the presence of monoclonal antibodies, 4G2 and 2H2, we found that C1q produced nearly a 40-fold reduction of ADE of DENV-1 in K562 cells, but had no effect in U937 cells. In K562 cells, C1q reduced adsorption of DENV-1/4G2 and exerted a dual inhibitory effect on adsorption and internalization of DENV-1/2H2. Distinct endocytic pathways in the presence of antibody corresponded to conditions where C1q produced a differential action. Also, C1q did not affect the intrinsic cell response mediated by FcγR in human myeloid cells. The modulation of ADE of DENV-1 by C1q is dependent on the FcγR expressed on immune cells and the specificity of the antibody comprising the immune complex. Understanding protective and pathogenic mechanisms in the humoral response to DENV infections is crucial for the successful design of antivirals and vaccines.
{"title":"C1q modulation of antibody-dependent enhancement of dengue virus infection in human myeloid cell lines is dependent on cell type and antibody specificity.","authors":"Alana B Byrne, Florencia A Bonnin, Eduardo L López, Fernando P Polack, Laura B Talarico","doi":"10.1016/j.micinf.2024.105378","DOIUrl":"10.1016/j.micinf.2024.105378","url":null,"abstract":"<p><p>Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is one of the mechanisms contributing to increased severity during heterotypic, secondary infection. The complement protein C1q has been shown to reduce the magnitude of ADE in vitro. Therefore, we investigated the mechanisms of C1q modulation of ADE, focusing on processes of viral entry. Using a model of ADE of DENV-1 infection in human myeloid cell lines in the presence of monoclonal antibodies, 4G2 and 2H2, we found that C1q produced nearly a 40-fold reduction of ADE of DENV-1 in K562 cells, but had no effect in U937 cells. In K562 cells, C1q reduced adsorption of DENV-1/4G2 and exerted a dual inhibitory effect on adsorption and internalization of DENV-1/2H2. Distinct endocytic pathways in the presence of antibody corresponded to conditions where C1q produced a differential action. Also, C1q did not affect the intrinsic cell response mediated by FcγR in human myeloid cells. The modulation of ADE of DENV-1 by C1q is dependent on the FcγR expressed on immune cells and the specificity of the antibody comprising the immune complex. Understanding protective and pathogenic mechanisms in the humoral response to DENV infections is crucial for the successful design of antivirals and vaccines.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1016/j.micinf.2024.105377
Jeanne Malet-Villemagne, Jasmina Vidic
Bacteria in genus Campylobacter are the leading cause of foodborne infections worldwide. Here we describe the roles of extracellular vesicles in the pathogenesis of these bacteria and current knowledge of vesicle biogenesis. We also discuss the advantages of this alternative secretion pathway for bacterial virulence.
{"title":"Extracellular vesicles in the pathogenesis of Campylobacter jejuni.","authors":"Jeanne Malet-Villemagne, Jasmina Vidic","doi":"10.1016/j.micinf.2024.105377","DOIUrl":"10.1016/j.micinf.2024.105377","url":null,"abstract":"<p><p>Bacteria in genus Campylobacter are the leading cause of foodborne infections worldwide. Here we describe the roles of extracellular vesicles in the pathogenesis of these bacteria and current knowledge of vesicle biogenesis. We also discuss the advantages of this alternative secretion pathway for bacterial virulence.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141311094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut microbiota dysbiosis increases the susceptibility to Clostridioides difficile infection (CDI). In this study, we monitored C. difficile colonization (CDC) patients from no CDC status (CDN) to CDC status (CDCp) and CDI patients from asymptomatic status before CDI (PRECDI), CDI status (ONCDI), to asymptomatic status after CDI (POSTCDI). Based on metagenomic sequencing, we aimed to investigate the interaction pattern between gut microbiota and C. difficile. There was no significant difference of microbiota diversity between CDN and CDCp. In CDCp, Bacteroidetes and short-chain fatty acid (SCFA)-producing bacteria increased, with a positive correlation between SCFA-producing bacteria and C. difficile colonization. Compared with PRECDI, ONCDI and POSTCDI showed a significant decrease in microbiota diversity, particularly in Bacteroidetes and SCFA-producing bacteria, with a positive correlation between opportunistic pathogen and C. difficile. Fatty acid metabolism, and amino acid biosynthesis were enriched in CDN, CDCp, and PRECDI, while bile secretion was enriched in ONCDI and POSTCDI. Microbiota and metabolic pathways interaction networks in CDN and CDCp were more complex, particularly pathways in fatty acid and bile acid metabolism. Increasing of Bacteroidetes and SCFA-producing bacteria, affecting amino acid and fatty acid metabolism, is associated with colonization resistance to C. difficile and inhibiting the development of CDI.
{"title":"Characterization and dynamics of intestinal microbiota in patients with Clostridioides difficile colonization and infection.","authors":"Yanzi Zhou, Lihua Guo, Tingting Xiao, Yunbo Chen, Tao Lv, Yuan Wang, Shuntian Zhang, Hongliu Cai, Xiaohui Chi, Xiaoyang Kong, Kai Zhou, Ping Shen, Yonghong Xiao","doi":"10.1016/j.micinf.2024.105373","DOIUrl":"10.1016/j.micinf.2024.105373","url":null,"abstract":"<p><p>Gut microbiota dysbiosis increases the susceptibility to Clostridioides difficile infection (CDI). In this study, we monitored C. difficile colonization (CDC) patients from no CDC status (CDN) to CDC status (CDCp) and CDI patients from asymptomatic status before CDI (PRECDI), CDI status (ONCDI), to asymptomatic status after CDI (POSTCDI). Based on metagenomic sequencing, we aimed to investigate the interaction pattern between gut microbiota and C. difficile. There was no significant difference of microbiota diversity between CDN and CDCp. In CDCp, Bacteroidetes and short-chain fatty acid (SCFA)-producing bacteria increased, with a positive correlation between SCFA-producing bacteria and C. difficile colonization. Compared with PRECDI, ONCDI and POSTCDI showed a significant decrease in microbiota diversity, particularly in Bacteroidetes and SCFA-producing bacteria, with a positive correlation between opportunistic pathogen and C. difficile. Fatty acid metabolism, and amino acid biosynthesis were enriched in CDN, CDCp, and PRECDI, while bile secretion was enriched in ONCDI and POSTCDI. Microbiota and metabolic pathways interaction networks in CDN and CDCp were more complex, particularly pathways in fatty acid and bile acid metabolism. Increasing of Bacteroidetes and SCFA-producing bacteria, affecting amino acid and fatty acid metabolism, is associated with colonization resistance to C. difficile and inhibiting the development of CDI.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07DOI: 10.1016/j.micinf.2024.105376
Boris Nikonenko, Nadezhda Logunova, Anna Egorova, Marina Kapina, Natalia Sterzhanova, Irina Bocharova, Elena Kondratieva, Olga Riabova, Lyudmila Semyonova, Vadim Makarov
Host heterogeneity in pulmonary tuberculosis leads to varied responses to infection and drug treatment. The present portfolio of anti-TB drugs needs to be boosted with new drugs and drug regimens. Macozinone, a clinical-stage molecule targeting the essential enzyme, DprE1, represents an attractive option. Mice (I/St, B6, (AKRxI/St)F1, B6.I-100 and B6.I-139) genetically diverse susceptibility to Mycobacterium tuberculosis (Mtb) H37Rv infection were subjected to aerosol- or intravenous infection to determine the efficacy of macozinone (MCZ). They were treated with macozinone or reference drugs (isoniazid, rifampicin). Lung and spleen bacterial burdens were measured at four and eight weeks post-infection. Lung histology was evaluated at four weeks of treatment. Treatment with macozinone resulted in a statistically significant reduction in the bacterial load in the lungs and spleen as early as four weeks after treatment initiation in mice susceptible or resistant to Mtb infection. In the TB hypoxic granuloma model, macozinone was more potent than rifampicin in reducing the CFU counts. However, histopathological analysis revealed significant lung changes in I/St mice after eight weeks of treatment initiation. Macozinone demonstrated efficacy to varying degrees across all mouse models of Mtb infection used. These results should facilitate its further development and potential introduction into clinical practice.
{"title":"Efficacy of macozinone in mice with genetically diverse susceptibility to Mycobacterium tuberculosis infection.","authors":"Boris Nikonenko, Nadezhda Logunova, Anna Egorova, Marina Kapina, Natalia Sterzhanova, Irina Bocharova, Elena Kondratieva, Olga Riabova, Lyudmila Semyonova, Vadim Makarov","doi":"10.1016/j.micinf.2024.105376","DOIUrl":"10.1016/j.micinf.2024.105376","url":null,"abstract":"<p><p>Host heterogeneity in pulmonary tuberculosis leads to varied responses to infection and drug treatment. The present portfolio of anti-TB drugs needs to be boosted with new drugs and drug regimens. Macozinone, a clinical-stage molecule targeting the essential enzyme, DprE1, represents an attractive option. Mice (I/St, B6, (AKRxI/St)F1, B6.I-100 and B6.I-139) genetically diverse susceptibility to Mycobacterium tuberculosis (Mtb) H37Rv infection were subjected to aerosol- or intravenous infection to determine the efficacy of macozinone (MCZ). They were treated with macozinone or reference drugs (isoniazid, rifampicin). Lung and spleen bacterial burdens were measured at four and eight weeks post-infection. Lung histology was evaluated at four weeks of treatment. Treatment with macozinone resulted in a statistically significant reduction in the bacterial load in the lungs and spleen as early as four weeks after treatment initiation in mice susceptible or resistant to Mtb infection. In the TB hypoxic granuloma model, macozinone was more potent than rifampicin in reducing the CFU counts. However, histopathological analysis revealed significant lung changes in I/St mice after eight weeks of treatment initiation. Macozinone demonstrated efficacy to varying degrees across all mouse models of Mtb infection used. These results should facilitate its further development and potential introduction into clinical practice.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: The lung microbiota of patients with pulmonary diseases is disrupted and impacts the immunity. The microbiological and immune landscape of the lungs in patients with pneumocystis pneumonia (PCP) remains poorly understood.
Methods: Multi-omics analysis and machine learning were performed on bronchoalveolar lavage fluid to explore interaction between the lung microbiota and host immunity in PCP. Then we constructed a diagnostic model using differential genes with LASSO regression and validated by qPCR. The immune infiltration analysis was performed to explore the landscape of lung immunity in patients with PCP.
Results: Patients with PCP showed a low alpha diversity of lung microbiota, accompanied by the elevated abundance of Firmicutes, and the differential expressed genes (DEGs) analysis displayed a downregulation of MAPK signaling. The MAPK10, TGFB1, and EFNA3 indicated a potential to predict PCP (AUC = 0.86). The lung immune landscape in PCP showed the lower levels of naïve CD4+ T cells and activated dendritic cells. The correlation analysis of the MAPK signaling pathway-related DEGs and the differential microorganisms at the level of phylum showed that the Firmicutes was negatively correlated with these DEGs.
Conclusion: We profiled the characteristics of lung microbiota and immune landscape in PCP, which may contribute to elucidating the mechanism of PCP.
{"title":"Integrated analysis of microbiome and host transcriptome unveils correlations between lung microbiota and host immunity in bronchoalveolar lavage fluid of pneumocystis pneumonia patients.","authors":"Ling Zhang, Miaotian Cai, Xin Zhang, Sitong Wang, Lijun Pang, Xue Chen, Caopei Zheng, Yuqing Sun, Ying Liang, Shan Guo, Feili Wei, Yulin Zhang","doi":"10.1016/j.micinf.2024.105374","DOIUrl":"10.1016/j.micinf.2024.105374","url":null,"abstract":"<p><strong>Objective: </strong>The lung microbiota of patients with pulmonary diseases is disrupted and impacts the immunity. The microbiological and immune landscape of the lungs in patients with pneumocystis pneumonia (PCP) remains poorly understood.</p><p><strong>Methods: </strong>Multi-omics analysis and machine learning were performed on bronchoalveolar lavage fluid to explore interaction between the lung microbiota and host immunity in PCP. Then we constructed a diagnostic model using differential genes with LASSO regression and validated by qPCR. The immune infiltration analysis was performed to explore the landscape of lung immunity in patients with PCP.</p><p><strong>Results: </strong>Patients with PCP showed a low alpha diversity of lung microbiota, accompanied by the elevated abundance of Firmicutes, and the differential expressed genes (DEGs) analysis displayed a downregulation of MAPK signaling. The MAPK10, TGFB1, and EFNA3 indicated a potential to predict PCP (AUC = 0.86). The lung immune landscape in PCP showed the lower levels of naïve CD4<sup>+</sup> T cells and activated dendritic cells. The correlation analysis of the MAPK signaling pathway-related DEGs and the differential microorganisms at the level of phylum showed that the Firmicutes was negatively correlated with these DEGs.</p><p><strong>Conclusion: </strong>We profiled the characteristics of lung microbiota and immune landscape in PCP, which may contribute to elucidating the mechanism of PCP.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1016/j.micinf.2024.105375
Jimena Alvarez Hayes, Bruno Blancá, Juan Pablo Gorgojo, Carlos Baroli, Mariela Del Carmen Carrica, Maria Eugenia Rodriguez
Neutrophils constitute the primary defense against bacterial infections, yet certain pathogens express virulence factors that enable them to subvert neutrophils-mediated killing. Outer membrane vesicles (OMVs) have emerged as a secretory system through which bacteria deliver virulence factors to host cells. OMVs from Bordetella pertussis, the etiological agent of whooping cough, are loaded with most of bacterial virulence factors, including CyaA, which plays a key role in B. pertussis evasion of neutrophils bactericidal activity. In our study, we investigated the role of B. pertussis OMVs in bacterial interaction with neutrophils. We observed that interaction of OMVs with neutrophils led to a decrease in the expression of cell surface CR3 and FcγRs, an effect dependent on the CyaA toxin delivered by these vesicles. This decreased receptor expression led to reduced bacterial uptake by neutrophils, irrespective of the presence of opsonic antibodies. Moreover, CyaA delivered by OMVs hindered intracellular bactericidal trafficking, promoting bacterial intracellular survival. When both bacteria and OMVs were opsonized, competition between opsonized OMVs and B. pertussis for FcγRs on neutrophils led to a significant decrease in bacterial uptake. Overall, our findings suggest that B. pertussis OMVs promote bacterial survival to the encounter with neutrophils in both naïve and immunized individuals.
{"title":"Bordetella pertussis outer membrane vesicles impair neutrophil bactericidal activity.","authors":"Jimena Alvarez Hayes, Bruno Blancá, Juan Pablo Gorgojo, Carlos Baroli, Mariela Del Carmen Carrica, Maria Eugenia Rodriguez","doi":"10.1016/j.micinf.2024.105375","DOIUrl":"10.1016/j.micinf.2024.105375","url":null,"abstract":"<p><p>Neutrophils constitute the primary defense against bacterial infections, yet certain pathogens express virulence factors that enable them to subvert neutrophils-mediated killing. Outer membrane vesicles (OMVs) have emerged as a secretory system through which bacteria deliver virulence factors to host cells. OMVs from Bordetella pertussis, the etiological agent of whooping cough, are loaded with most of bacterial virulence factors, including CyaA, which plays a key role in B. pertussis evasion of neutrophils bactericidal activity. In our study, we investigated the role of B. pertussis OMVs in bacterial interaction with neutrophils. We observed that interaction of OMVs with neutrophils led to a decrease in the expression of cell surface CR3 and FcγRs, an effect dependent on the CyaA toxin delivered by these vesicles. This decreased receptor expression led to reduced bacterial uptake by neutrophils, irrespective of the presence of opsonic antibodies. Moreover, CyaA delivered by OMVs hindered intracellular bactericidal trafficking, promoting bacterial intracellular survival. When both bacteria and OMVs were opsonized, competition between opsonized OMVs and B. pertussis for FcγRs on neutrophils led to a significant decrease in bacterial uptake. Overall, our findings suggest that B. pertussis OMVs promote bacterial survival to the encounter with neutrophils in both naïve and immunized individuals.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pathobionts are commensal intestinal microbiota capable of causing systemic infections under specific conditions, such as environmental changes or aging. However, it is unclear how pathobionts are recognized by the intestinal mucosal immune system under physiological conditions. This study demonstrates that the gut pathobiont Klebsiella pneumoniae causes injury to the epithelium and translocates to the liver in specific pathogen-free mice treated with clodronate-liposomes that depleted macrophages. In the clodronate-liposome-treated mice, indigenous classical K. pneumoniae (cKp) with non-K1/K2 capsular serotypes were isolated from the liver, indicating that gut commensal cKp translocated from the gastrointestinal tract to the liver due to the depletion of intestinal macrophages. Oral inoculation of isolated cKp to clodronate-liposome-treated mice significantly reduced the survival rates compared to that of non-treated mice. Our findings demonstrate that intestinal mucosal macrophages play a pivotal role in sensing commensal cKp and suppressing their translocation to the liver. This study demonstrates that clodronate-liposome-treated mouse models are effective for screening and evaluating drugs that prevent the translocation of cKp to the liver, providing new insights into the development of preventive protocols against K. pneumoniae infection.
{"title":"Macrophage-depleted young mice are beneficial in vivo models to assess the translocation of Klebsiella pneumonia from the gastrointestinal tract to the liver in the elderly.","authors":"Hitoshi Tsugawa, Shogo Tsubaki, Rika Tanaka, Sho Nashimoto, Jin Imai, Juntaro Matsuzaki, Katsuto Hozumi","doi":"10.1016/j.micinf.2024.105371","DOIUrl":"10.1016/j.micinf.2024.105371","url":null,"abstract":"<p><p>Pathobionts are commensal intestinal microbiota capable of causing systemic infections under specific conditions, such as environmental changes or aging. However, it is unclear how pathobionts are recognized by the intestinal mucosal immune system under physiological conditions. This study demonstrates that the gut pathobiont Klebsiella pneumoniae causes injury to the epithelium and translocates to the liver in specific pathogen-free mice treated with clodronate-liposomes that depleted macrophages. In the clodronate-liposome-treated mice, indigenous classical K. pneumoniae (cKp) with non-K1/K2 capsular serotypes were isolated from the liver, indicating that gut commensal cKp translocated from the gastrointestinal tract to the liver due to the depletion of intestinal macrophages. Oral inoculation of isolated cKp to clodronate-liposome-treated mice significantly reduced the survival rates compared to that of non-treated mice. Our findings demonstrate that intestinal mucosal macrophages play a pivotal role in sensing commensal cKp and suppressing their translocation to the liver. This study demonstrates that clodronate-liposome-treated mouse models are effective for screening and evaluating drugs that prevent the translocation of cKp to the liver, providing new insights into the development of preventive protocols against K. pneumoniae infection.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1016/j.micinf.2024.105370
Ming Lei, Yanheng Tan, Jingyi Ke, Mengqi Wang, Zeyang He, Guangshuo Ou, Haijun Tu, Weihong Tan
Pathogen avoidance is a crucial and evolutionarily conserved behavior that enhances survival by preventing infection in diverse species, including Caenorhabditis elegans (C. elegans). This behavior relies on multiple chemosensory neurons equipped with cilia that are exposed to the external environment. However, the specific role of neuronal cilia in pathogen avoidance has not been completely elucidated. Herein, we discovered that osm-3(p802) mutants, which lack chemosensory neuronal cilia, exhibit slower avoidance of the pathogen Pseudomonas aeruginosa PA14, but not Escherichia coli OP50. This observation was consistent when osm-3(p802) mutants were exposed to P. aeruginosa PAO1. Following an encounter with PA14, the pumping, thrashing, and defecation behaviors of osm-3 mutants were comparable to those of the wild-type. However, the osm-3 mutants demonstrated reduced intestinal colonization of PA14, suggesting that they have stronger intestinal clearance ability. We conducted RNA-seq to identify genes responding to external stimuli that were differentially expressed owing to the loss of osm-3 and PA14 infection. Using RNAi, we demonstrated that three of these genes were essential for normal pathogen avoidance. In conclusion, our findings demonstrate that the loss of chemosensory neuronal cilia reduces pathogen avoidance in C. elegans while delaying intestinal colonization.
{"title":"Loss of cilia in chemosensory neurons inhibits pathogen avoidance in Caenorhabditis elegans.","authors":"Ming Lei, Yanheng Tan, Jingyi Ke, Mengqi Wang, Zeyang He, Guangshuo Ou, Haijun Tu, Weihong Tan","doi":"10.1016/j.micinf.2024.105370","DOIUrl":"10.1016/j.micinf.2024.105370","url":null,"abstract":"<p><p>Pathogen avoidance is a crucial and evolutionarily conserved behavior that enhances survival by preventing infection in diverse species, including Caenorhabditis elegans (C. elegans). This behavior relies on multiple chemosensory neurons equipped with cilia that are exposed to the external environment. However, the specific role of neuronal cilia in pathogen avoidance has not been completely elucidated. Herein, we discovered that osm-3(p802) mutants, which lack chemosensory neuronal cilia, exhibit slower avoidance of the pathogen Pseudomonas aeruginosa PA14, but not Escherichia coli OP50. This observation was consistent when osm-3(p802) mutants were exposed to P. aeruginosa PAO1. Following an encounter with PA14, the pumping, thrashing, and defecation behaviors of osm-3 mutants were comparable to those of the wild-type. However, the osm-3 mutants demonstrated reduced intestinal colonization of PA14, suggesting that they have stronger intestinal clearance ability. We conducted RNA-seq to identify genes responding to external stimuli that were differentially expressed owing to the loss of osm-3 and PA14 infection. Using RNAi, we demonstrated that three of these genes were essential for normal pathogen avoidance. In conclusion, our findings demonstrate that the loss of chemosensory neuronal cilia reduces pathogen avoidance in C. elegans while delaying intestinal colonization.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}