Cytoreg is an ionic therapeutic agent comprising a mixture of hydrochloric, sulfuric, phosphoric, hydrofluoric, oxalic, and citric acids. In diluted form, it has demonstrated efficacy against human cancers in vitro and in vivo. Although Cytoreg is well tolerated in mice, rats, rabbits, and dogs by oral and intravenous administration, its mechanism of action is not documented. The acidic nature of Cytoreg could potentially disrupt the pH and levels of ions and dissolved gases in the blood. Here, we report the effects of the intravenous administration of Cytoreg on the arterial pH, oxygen and carbon dioxide pressures, and bicarbonate, sodium, potassium, and chloride concentrations. Our results demonstrate that Cytoreg does not disturb the normal blood pH, ion levels, or carbon dioxide content, but increases oxygen levels in rats. These data are consistent with the excellent tolerability of intravenous Cytoreg observed in rabbits, and dogs. The study was approved by the Bioethics Committee of the University of the Andes, Venezuela (CEBIOULA) (approval No. 125) on November 3, 2019.
Oxygen application and apneic oxygenation may reduce the risk of hypoxemia due to apnea during awake fiberoptic intubation or failed endotracheal intubation. High flow devices are recommended, but their effect compared to moderate deep oropharyngeal oxygen application is unknown. Designed as an experimental manikin trial, we made a comparison between oxygen application via nasal prongs at 10 L/min (control group), applying oxygen via oropharyngeal oxygenation device (at 10 L/min), oxygen application via high flow nasal oxygen with 20 L/min and 90% oxygen (20 L/90% group), oxygen application via high flow nasal oxygen with 60 L/min and 45% oxygen (60 L/45% group), and oxygen application via sealed face mask with a special adapter to allow for fiberoptic entering of the airway. We preoxygenated the lung of a manikin and measured the decrease in oxygen level during the following 20 minutes for each way of oxygen application. Oxygen levels fell from 97 ± 1% at baseline to 75 ± 1% in control group, and to 86 ± 1% in oropharyngeal oxygenation device group. In the high flow nasal oxygen group, oxygen level dropped to 72 ± 1% in the 20 L/90% group and to 44 ± 1% in the 60 L/45% group. Oxygen level remained at 98 ± 0% in the face mask group. In conclusion, in this manikin simulation study of apneic oxygenation, oxygen insufflation using a sealed face mask kept oxygen levels in the test lung at 98% over 20 minutes, oral oxygenation device led to oxygen levels at 86%, whereas all other methods resulted in the decrease of oxygen levels below 75%.
Gliomas are common brain mass with a high mortality rate. Patients with gliomas have a severely bad outcome, with an average survive duration less 15 months because of high recurrent rate and being resistant to radio-therapy and chemistry drugs therapy. Hyperbaric oxygen is extensively taken as an adjuvant treatment for various disease conditions. To know the characteristics of hyperbaric oxygen as a remedy for gliomas, we find that, in general, hyperbaric oxygen shows an obviously positive effect on the treatment of gliomas, and it can also relieve the complications caused by postoperative radiotherapy and chemotherapy of gliomas. Whereas, several researches have shown that hyperbaric oxygen promotes glioma progression.
General anesthesia and surgery are associated with an increase in neural injury biomarkers. Elevations of these neural injury biomarkers in the perioperative period are associated with postoperative delirium. Xenon has been shown to be protective against a range of neurological insults in animal models. It remains to be seen if xenon anesthesia is neuroprotective in the perioperative setting in humans. Twenty-four participants scheduled for lithotripsy were randomized to receive either xenon or sevoflurane general anesthesia. There was no statistically significant difference in the concentrations of postoperative neural injury biomarkers between the xenon and sevoflurane group. Following the procedure there was a significant increase in the concentration from baseline of all three biomarkers at 1 hour post-induction with a return to baseline at 5 hours. General anesthesia for lithotripsy was associated with a significant increase at 1 hour post-induction in the neural injury biomarkers total tau, neurofilament light and tau phosphorylated at threonine 181, a marker of tau phosphorylation. The protocol was approved by the St. Vincent's Hospital Melbourne Ethics Committee (approval No. HREC/18/SVHM/221) on July 20, 2018 and was registered with the Australia New Zealand Clinical Trials Registry (registration No. ACTRN12618000916246) on May 31, 2018.
Xenon is confirmed to diffuse readily through membranes and has properties of transdermal enhancer. In this study, the ability of xenon to regulate the transdermal diffusion of niacinamide was investigated using a model of an artificial skin analogue of Strat-M™ membranes in Franz cells. Based on the data obtained, we found that in the simplified biophysical model of Strat-M™ membranes xenon exerts its enhancer effect based on the heterogeneous nucleation of xenon at the interfaces in the microporous structures of Strat-M™ membranes.
Central nervous system tumors are classified as diseases of special clinical significance with high disability and high mortality. In addition to cerebrovascular diseases and craniocerebral injuries, tumors are the most common diseases of the central nervous system. Hydrogen sulfide, the third endogenous gas signaling molecule discovered in humans besides nitric oxide and carbon monoxide, plays an important role in the pathophysiology of human diseases. It is reported that hydrogen sulfide not only exerts a wide range of biological effects, but also develops a certain relationship with tumor development and neovascularization. A variety of studies have shown that hydrogen sulfide acts as a vasodilator and angiogenetic factor to facilitate growth, proliferation, migration and invasion of cancer cells. In this review, the pathological mechanisms and the effect of hydrogen sulfide on the central nervous system tumors are introduced.
A relationship between Bifidobacterium and defecation has previously been reported. Our hypothesis on the effectiveness of alkaline electrolyzed water (AEW) proposes that ingestion of AEW, considered possessing antioxidative properties, increases the number of Bifidobacteria and improves stool hardness and gastrointestinal symptoms. A double-blind, randomized study was conducted to evaluate the connection between stool consistency and change in gut microbiota composition induced by drinking hydrogen-dissolved AEW. The participants drank 500 mL of purified tap water or AEW every day for 2 weeks. In this study, drinking AEW did not drastically change gut microbiota, but it appeared to act on a specific bacterial species. Drinking AEW was confirmed to cause an increase in Bifidobacterium. The AEW group also saw stool consistency significantly converge to Bristol stool scale Type 4 ("normal"). Therefore, it is highly likely that the gut microbiota will be changed by drinking AEW. This study was retrospectively registered in University Hospital Medical Information Network (UMIN) Clinical Trials Registry (UMIN ID: UMIN000039507) on February 18, 2020, and was approved by the Ethics Committee of University of Yamanashi (approval No. H30-25) on January 9, 2018.
Lactate, historically considered a waste product of anerobic metabolism, is a metabolite in whole-body metabolism needed for normal central nervous system (CNS) functions and a potent signaling molecule and hormone in the CNS. Neuronal activity signals normally induce its formation primarily in astrocytes and production is dependent on anerobic and aerobic metabolisms. Functions are dependent on normal dynamic, expansive, and evolving CNS functions. Levels can change under normal physiologic conditions and with CNS pathology. A readily combusted fuel that is sshuttled throughout the body, lactate is used as an energy source and is needed for CNS hemostasis, plasticity, memory, and excitability. Diffusion beyond the neuron active zone impacts activity of neurons and astrocytes in other areas of the brain. Barriergenesis, function of the blood-brain barrier, and buffering between oxidative metabolism and glycolysis and brain metabolism are affected by lactate. Important to neuroprotection, presence or absence is associated with L-lactate and heme oxygenase/carbon monoxide (a gasotransmitter) neuroprotective systems. Effects of carbon monoxide on L-lactate affect neuroprotection - interactions of the gasotransmitter with L-lactate are important to CNS stability, which will be reviewed in this article.