首页 > 最新文献

Medical Gas Research最新文献

英文 中文
Not a laughing matter: revisiting nitric oxide as a potential target for glaucoma therapy. 并非笑谈:重新审视一氧化氮作为青光眼治疗的潜在靶点。
IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-01 Epub Date: 2024-06-26 DOI: 10.4103/mgr.MEDGASRES-D-24-00004
Ayobami Adebayo, Eyitayo Adebayo
{"title":"Not a laughing matter: revisiting nitric oxide as a potential target for glaucoma therapy.","authors":"Ayobami Adebayo, Eyitayo Adebayo","doi":"10.4103/mgr.MEDGASRES-D-24-00004","DOIUrl":"10.4103/mgr.MEDGASRES-D-24-00004","url":null,"abstract":"","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"112-113"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the link: exploring muscle oxygen saturation in fibromyalgia and its implications for symptomatology and therapeutic strategies. 揭示联系:探索纤维肌痛中的肌肉氧饱和度及其对症状学和治疗策略的影响。
IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-01 Epub Date: 2024-04-21 DOI: 10.4103/mgr.MEDGASRES-D-24-00013
Alejandro Rubio-Zarapuz, Jose A Parraca, José Francisco Tornero-Aguilera, Vicente J Clemente-Suárez

Fibromyalgia, characterized as a complex chronic pain syndrome, presents with symptoms of pervasive musculoskeletal pain, significant fatigue, and pronounced sensitivity at specific anatomical sites. Despite extensive research efforts, the origins of fibromyalgia remain enigmatic. This narrative review explores the intricate relationship between muscle oxygen saturation and fibromyalgia, positing that disruptions in the oxygenation processes within muscle tissues markedly influence the symptom profile of this disorder. Muscle oxygen saturation, crucial for muscle function, has been meticulously investigated in fibromyalgia patients through non-invasive techniques such as near-infrared spectroscopy and magnetic resonance imaging. The body of evidence consistently indicates substantial alterations in oxygen utilization within muscle fibers, manifesting as reduced efficiency in oxygen uptake during both rest and physical activity. These anomalies play a significant role in fibromyalgia's symptomatology, especially in terms of chronic pain and severe fatigue, potentially creating conditions that heighten pain sensitivity and accumulate metabolic byproducts. Hypothesized mechanisms for these findings encompass dysfunctions in microcirculation, mitochondrial irregularities, and autonomic nervous system disturbances, all meriting further research. Understanding the dynamics of muscle oxygen saturation in fibromyalgia is of paramount clinical importance, offering the potential for tailored therapeutic approaches to alleviate symptoms and improve the quality of life for sufferers. This investigation not only opens new avenues for innovative research but also fosters hope for more effective treatment strategies and improved outcomes for individuals with fibromyalgia.

纤维肌痛是一种复杂的慢性疼痛综合征,表现为普遍的肌肉骨骼疼痛、明显的疲劳和特定解剖部位的明显敏感。尽管进行了广泛的研究,纤维肌痛的起源仍是一个谜。这篇叙述性综述探讨了肌肉氧饱和度与纤维肌痛之间错综复杂的关系,认为肌肉组织内氧合过程的紊乱明显影响了这种疾病的症状特征。肌肉氧饱和度对肌肉功能至关重要,已通过近红外光谱和磁共振成像等非侵入性技术对纤维肌痛患者的肌肉氧饱和度进行了细致的研究。大量证据一致表明,肌肉纤维内的氧利用率发生了重大改变,表现为在休息和体力活动期间摄氧效率降低。这些异常在纤维肌痛的症状学中扮演着重要角色,尤其是在慢性疼痛和严重疲劳方面,有可能造成疼痛敏感度升高和代谢副产品累积的情况。这些发现的假设机制包括微循环功能障碍、线粒体异常和自律神经系统紊乱,所有这些都值得进一步研究。了解纤维肌痛患者肌肉血氧饱和度的动态变化具有重要的临床意义,它为量身定制的治疗方法提供了可能性,可减轻症状并改善患者的生活质量。这项研究不仅为创新性研究开辟了新途径,还为纤维肌痛患者制定更有效的治疗策略和改善治疗效果带来了希望。
{"title":"Unveiling the link: exploring muscle oxygen saturation in fibromyalgia and its implications for symptomatology and therapeutic strategies.","authors":"Alejandro Rubio-Zarapuz, Jose A Parraca, José Francisco Tornero-Aguilera, Vicente J Clemente-Suárez","doi":"10.4103/mgr.MEDGASRES-D-24-00013","DOIUrl":"10.4103/mgr.MEDGASRES-D-24-00013","url":null,"abstract":"<p><p>Fibromyalgia, characterized as a complex chronic pain syndrome, presents with symptoms of pervasive musculoskeletal pain, significant fatigue, and pronounced sensitivity at specific anatomical sites. Despite extensive research efforts, the origins of fibromyalgia remain enigmatic. This narrative review explores the intricate relationship between muscle oxygen saturation and fibromyalgia, positing that disruptions in the oxygenation processes within muscle tissues markedly influence the symptom profile of this disorder. Muscle oxygen saturation, crucial for muscle function, has been meticulously investigated in fibromyalgia patients through non-invasive techniques such as near-infrared spectroscopy and magnetic resonance imaging. The body of evidence consistently indicates substantial alterations in oxygen utilization within muscle fibers, manifesting as reduced efficiency in oxygen uptake during both rest and physical activity. These anomalies play a significant role in fibromyalgia's symptomatology, especially in terms of chronic pain and severe fatigue, potentially creating conditions that heighten pain sensitivity and accumulate metabolic byproducts. Hypothesized mechanisms for these findings encompass dysfunctions in microcirculation, mitochondrial irregularities, and autonomic nervous system disturbances, all meriting further research. Understanding the dynamics of muscle oxygen saturation in fibromyalgia is of paramount clinical importance, offering the potential for tailored therapeutic approaches to alleviate symptoms and improve the quality of life for sufferers. This investigation not only opens new avenues for innovative research but also fosters hope for more effective treatment strategies and improved outcomes for individuals with fibromyalgia.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"58-72"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515064/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gas-related pathological events and therapeutic failures: a case of oxygen at the microcirculatory and lymphatic level. 与气体有关的病理事件和治疗失败:微循环和淋巴层面的氧气案例。
IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-01 Epub Date: 2024-09-25 DOI: 10.4103/mgr.MEDGASRES-D-24-00047
Gerardo Tricarico, Mauro Poggialini, Valter Travagli
{"title":"Gas-related pathological events and therapeutic failures: a case of oxygen at the microcirculatory and lymphatic level.","authors":"Gerardo Tricarico, Mauro Poggialini, Valter Travagli","doi":"10.4103/mgr.MEDGASRES-D-24-00047","DOIUrl":"10.4103/mgr.MEDGASRES-D-24-00047","url":null,"abstract":"","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"124-125"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen sulfide: an emerging gasotransmitter involved in the survival of pancreatic islets during diabetes therapy. 硫化氢:糖尿病治疗过程中与胰岛存活有关的一种新兴气体递质。
IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-01 Epub Date: 2024-10-02 DOI: 10.4103/mgr.MEDGASRES-D-24-00067
Udayakumar Karunakaran
{"title":"Hydrogen sulfide: an emerging gasotransmitter involved in the survival of pancreatic islets during diabetes therapy.","authors":"Udayakumar Karunakaran","doi":"10.4103/mgr.MEDGASRES-D-24-00067","DOIUrl":"10.4103/mgr.MEDGASRES-D-24-00067","url":null,"abstract":"","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"136-138"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New approach of modern pharmacology: from gasotransmitters to traditional mineral drugs. 现代药理学的新方法:从气体递质到传统矿物药。
IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-01 Epub Date: 2024-06-26 DOI: 10.4103/mgr.MEDGASRES-D-24-00022
Yefan Duan, Jianfei Sun
{"title":"New approach of modern pharmacology: from gasotransmitters to traditional mineral drugs.","authors":"Yefan Duan, Jianfei Sun","doi":"10.4103/mgr.MEDGASRES-D-24-00022","DOIUrl":"10.4103/mgr.MEDGASRES-D-24-00022","url":null,"abstract":"","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"139-141"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Warm alkaline hydrogen peroxide solution as an oxygen-releasing antihypoxic drug: potential benefits and applications. 温碱性过氧化氢溶液作为一种释放氧气的抗缺氧药物:潜在的益处和应用。
IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-01 Epub Date: 2024-10-02 DOI: 10.4103/mgr.MEDGASRES-D-24-00058
Anatoly N Osipov, Natalya A Urakova, Aleksandr L Urakov, Petr D Shabanov
{"title":"Warm alkaline hydrogen peroxide solution as an oxygen-releasing antihypoxic drug: potential benefits and applications.","authors":"Anatoly N Osipov, Natalya A Urakova, Aleksandr L Urakov, Petr D Shabanov","doi":"10.4103/mgr.MEDGASRES-D-24-00058","DOIUrl":"10.4103/mgr.MEDGASRES-D-24-00058","url":null,"abstract":"","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"134-135"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. 不同氧疗方案对脂多糖诱发的小鼠急性肺损伤的抗炎和保护作用的比较研究。
IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-01 Epub Date: 2024-09-25 DOI: 10.4103/mgr.MEDGASRES-D-24-00044
Xinhe Wu, Yanan Shao, Yongmei Chen, Wei Zhang, Shirong Dai, Yajun Wu, Xiaoge Jiang, Xinjian Song, Hao Shen

Oxygen therapy after acute lung injury can regulate the inflammatory response and reduce lung tissue injury. However, the optimal exposure pressure, duration, and frequency of oxygen therapy for acute lung injury remain unclear. In the present study, after intraperitoneal injection of lipopolysaccharide in ICR mice, 1.0 atmosphere absolute (ATA) pure oxygen and 2.0 ATA hyperbaric oxygen treatment for 1 hour decreased the levels of proinflammatory factors (interleukin-1beta and interleukin-6) in peripheral blood and lung tissues. However, only 2.0 ATA hyperbaric oxygen increased the mRNA levels of anti-inflammatory factors (interleukin-10 and arginase-1) in lung tissue; 3.0 ATA hyperbaric oxygen treatment had no significant effect. We also observed that at 2.0 ATA, the anti-inflammatory effect of a single exposure to hyperbaric oxygen for 3 hours was greater than that of a single exposure to hyperbaric oxygen for 1 hour. The protective effect of two exposures for 1.5 hours was similar to that of a single exposure for 3 hours. These results suggest that hyperbaric oxygen alleviates lipopolysaccharide-induced acute lung injury by regulating the expression of inflammatory factors in an acute lung injury model and that appropriately increasing the duration and frequency of hyperbaric oxygen exposure has a better tissue-protective effect on lipopolysaccharide-induced acute lung injury. These results could guide the development of more effective oxygen therapy regimens for acute lung injury patients.

急性肺损伤后的氧疗可以调节炎症反应,减轻肺组织损伤。然而,急性肺损伤后氧疗的最佳暴露压力、持续时间和频率仍不清楚。在本研究中,ICR 小鼠腹腔注射脂多糖后,1.0 ATA 纯氧和 2.0 ATA 高压氧治疗 1 小时可降低外周血和肺组织中促炎因子(白细胞介素-1beta 和白细胞介素-6)的水平。然而,只有 2.0 ATA 高压氧能提高肺组织中抗炎因子(白细胞介素-10 和精氨酸酶-1)的 mRNA 水平;3.0 ATA 高压氧没有显著影响。我们还观察到,在 2.0 ATA 条件下,单次暴露于高压氧 3 小时的抗炎效果大于单次暴露于高压氧 1 小时的效果。两次暴露于高压氧 1.5 小时的保护作用与一次暴露于高压氧 3 小时的保护作用相似。这些结果表明,在急性肺损伤模型中,高压氧通过调节炎症因子的表达减轻了脂多糖诱导的急性肺损伤,适当增加高压氧暴露的时间和频率对脂多糖诱导的急性肺损伤有更好的组织保护作用。这些结果可指导为急性肺损伤患者制定更有效的氧疗方案。
{"title":"Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice.","authors":"Xinhe Wu, Yanan Shao, Yongmei Chen, Wei Zhang, Shirong Dai, Yajun Wu, Xiaoge Jiang, Xinjian Song, Hao Shen","doi":"10.4103/mgr.MEDGASRES-D-24-00044","DOIUrl":"10.4103/mgr.MEDGASRES-D-24-00044","url":null,"abstract":"<p><p>Oxygen therapy after acute lung injury can regulate the inflammatory response and reduce lung tissue injury. However, the optimal exposure pressure, duration, and frequency of oxygen therapy for acute lung injury remain unclear. In the present study, after intraperitoneal injection of lipopolysaccharide in ICR mice, 1.0 atmosphere absolute (ATA) pure oxygen and 2.0 ATA hyperbaric oxygen treatment for 1 hour decreased the levels of proinflammatory factors (interleukin-1beta and interleukin-6) in peripheral blood and lung tissues. However, only 2.0 ATA hyperbaric oxygen increased the mRNA levels of anti-inflammatory factors (interleukin-10 and arginase-1) in lung tissue; 3.0 ATA hyperbaric oxygen treatment had no significant effect. We also observed that at 2.0 ATA, the anti-inflammatory effect of a single exposure to hyperbaric oxygen for 3 hours was greater than that of a single exposure to hyperbaric oxygen for 1 hour. The protective effect of two exposures for 1.5 hours was similar to that of a single exposure for 3 hours. These results suggest that hyperbaric oxygen alleviates lipopolysaccharide-induced acute lung injury by regulating the expression of inflammatory factors in an acute lung injury model and that appropriately increasing the duration and frequency of hyperbaric oxygen exposure has a better tissue-protective effect on lipopolysaccharide-induced acute lung injury. These results could guide the development of more effective oxygen therapy regimens for acute lung injury patients.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":" ","pages":"171-179"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515059/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A narrative review of gas separation and conservation technologies during xenon anesthesia. 氙气麻醉过程中气体分离和保存技术综述。
IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-01 Epub Date: 2024-06-26 DOI: 10.4103/mgr.MEDGASRES-D-24-00002
Steven McGuigan, Brendan F Abrahams, David A Scott

Xenon gas has significant advantages over conventional general anesthetic agents but its use has been limited by the cost associated with its production. Xenon also has significant potential for medical use in the treatment of acquired brain injuries and for mental health disorders. As the demand for xenon gas from other industries increases, the costs associated with its medical use are only likely to increase. One solution to mitigate the significant cost of xenon use in research or medical care is the conservation of xenon gas. During delivery of xenon anesthesia, this can be achieved either by separating xenon from the other gases within the anesthetic circuit, conserving xenon and allowing other gases to be excluded from the circuit, or by selectively recapturing xenon utilized during the anesthetic episode at the conclusion of the case. Several technologies, including the pressurization and cooling of gas mixtures, the utilization of gas selective membranes and the utilization of gas selective adsorbents have been described in the literature for this purpose. These techniques are described in this narrative review along with important clinical context that informs how these technologies might be best applied. Whilst these technologies are discussed in the context of xenon general anesthesia, they could be applied in the delivery of xenon gas inhalation for other therapeutic purposes.

与传统的全身麻醉剂相比,氙气具有明显的优势,但其使用一直受到生产成本的限制。氙气在治疗后天性脑损伤和精神疾病方面也有很大的医疗用途潜力。随着其他行业对氙气需求的增加,与氙气医疗用途相关的成本也会随之增加。要降低氙气用于研究或医疗的高昂成本,一种解决方案是节约氙气。在氙气麻醉过程中,可以通过将氙气与麻醉回路中的其他气体分离,节约氙气并将其他气体排除回路,或者在麻醉结束时选择性地回收麻醉过程中使用的氙气,来实现节约氙气的目的。为此,文献中介绍了几种技术,包括气体混合物的加压和冷却、气体选择性膜的使用以及气体选择性吸附剂的使用。本综述将介绍这些技术以及重要的临床背景,为如何更好地应用这些技术提供参考。虽然这些技术是在氙气全身麻醉的背景下讨论的,但它们也可用于其他治疗目的的氙气吸入输送。
{"title":"A narrative review of gas separation and conservation technologies during xenon anesthesia.","authors":"Steven McGuigan, Brendan F Abrahams, David A Scott","doi":"10.4103/mgr.MEDGASRES-D-24-00002","DOIUrl":"10.4103/mgr.MEDGASRES-D-24-00002","url":null,"abstract":"<p><p>Xenon gas has significant advantages over conventional general anesthetic agents but its use has been limited by the cost associated with its production. Xenon also has significant potential for medical use in the treatment of acquired brain injuries and for mental health disorders. As the demand for xenon gas from other industries increases, the costs associated with its medical use are only likely to increase. One solution to mitigate the significant cost of xenon use in research or medical care is the conservation of xenon gas. During delivery of xenon anesthesia, this can be achieved either by separating xenon from the other gases within the anesthetic circuit, conserving xenon and allowing other gases to be excluded from the circuit, or by selectively recapturing xenon utilized during the anesthetic episode at the conclusion of the case. Several technologies, including the pressurization and cooling of gas mixtures, the utilization of gas selective membranes and the utilization of gas selective adsorbents have been described in the literature for this purpose. These techniques are described in this narrative review along with important clinical context that informs how these technologies might be best applied. Whilst these technologies are discussed in the context of xenon general anesthesia, they could be applied in the delivery of xenon gas inhalation for other therapeutic purposes.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"93-100"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen sulfide: a rising star for cancer treatment. 硫化氢:治疗癌症的新星。
IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-01 Epub Date: 2024-08-02 DOI: 10.4103/mgr.MEDGASRES-D-24-00016
Zixin Wang, Yin Wang
{"title":"Hydrogen sulfide: a rising star for cancer treatment.","authors":"Zixin Wang, Yin Wang","doi":"10.4103/mgr.MEDGASRES-D-24-00016","DOIUrl":"10.4103/mgr.MEDGASRES-D-24-00016","url":null,"abstract":"","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"114-116"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515077/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular hydrogen gas and its therapeutic potential in recent disease progression. 分子氢气及其在近期疾病进展中的治疗潜力。
IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-03-01 Epub Date: 2024-09-25 DOI: 10.4103/mgr.MEDGASRES-D-24-00012
Md Habibur Rahman, Cheol-Su Kim, Kyu-Jae Lee
{"title":"Molecular hydrogen gas and its therapeutic potential in recent disease progression.","authors":"Md Habibur Rahman, Cheol-Su Kim, Kyu-Jae Lee","doi":"10.4103/mgr.MEDGASRES-D-24-00012","DOIUrl":"10.4103/mgr.MEDGASRES-D-24-00012","url":null,"abstract":"","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"120-121"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Medical Gas Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1