首页 > 最新文献

Medical Gas Research最新文献

英文 中文
H2-induced transient upregulation of phospholipids with suppression of energy metabolism. h2诱导的瞬时磷脂上调与能量代谢的抑制。
IF 2.9 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-07-01 DOI: 10.4103/2045-9912.344973
Masumi Iketani, Iwao Sakane, Yasunori Fujita, Masafumi Ito, Ikuroh Ohsawa

Molecular hydrogen (H2) is an antioxidant and anti-inflammatory agent; however, the molecular mechanisms underlying its biological effects are largely unknown. Similar to other gaseous molecules such as inhalation anesthetics, H2 is more soluble in lipids than in water. A recent study demonstrated that H2 reduces radical polymerization-induced cellular damage by suppressing fatty acid peroxidation and membrane permeability. Thus, we sought to examine the effects of short exposure to H2 on lipid composition and associated physiological changes in SH-SY5Y neuroblastoma cells. We analyzed cells by liquid chromatography-high-resolution mass spectrometry to define changes in lipid components. Lipid class analysis of cells exposed to H2 for 1 hour revealed transient increases in glycerophospholipids including phosphatidylethanolamine, phosphatidylinositol, and cardiolipin. Metabolomic analysis also showed that H2 exposure for 1 hour transiently suppressed overall energy metabolism accompanied by a decrease in glutathione. We further observed alterations to endosomal morphology by staining with specific antibodies. Endosomal transport of cholera toxin B to recycling endosomes localized around the Golgi body was delayed in H2-exposed cells. We speculate that H2-induced modification of lipid composition depresses energy production and endosomal transport concomitant with enhancement of oxidative stress, which transiently stimulates stress response pathways to protect cells.

分子氢(H2)是一种抗氧化剂和抗炎剂;然而,其生物学作用的分子机制在很大程度上是未知的。与其他气体分子(如吸入性麻醉剂)类似,H2在脂质中比在水中更易溶解。最近的一项研究表明,H2通过抑制脂肪酸过氧化和膜通透性来减少自由基聚合引起的细胞损伤。因此,我们试图研究短时间暴露于H2对SH-SY5Y神经母细胞瘤细胞脂质组成和相关生理变化的影响。我们通过液相色谱-高分辨率质谱分析细胞来确定脂质成分的变化。对暴露于H2 1小时的细胞进行脂质分类分析,发现甘油磷脂(包括磷脂酰乙醇胺、磷脂酰肌醇和心磷脂)瞬间升高。代谢组学分析还表明,H2暴露1小时会短暂抑制总能量代谢,并伴有谷胱甘肽的减少。我们通过特异性抗体染色进一步观察到内体形态的改变。在h2暴露的细胞中,霍乱毒素B向高尔基体周围的再循环内体的内体运输被延迟。我们推测,h2诱导的脂质成分修饰抑制了能量产生和内体运输,同时增强了氧化应激,从而短暂地刺激应激反应途径以保护细胞。
{"title":"H<sub>2</sub>-induced transient upregulation of phospholipids with suppression of energy metabolism.","authors":"Masumi Iketani,&nbsp;Iwao Sakane,&nbsp;Yasunori Fujita,&nbsp;Masafumi Ito,&nbsp;Ikuroh Ohsawa","doi":"10.4103/2045-9912.344973","DOIUrl":"https://doi.org/10.4103/2045-9912.344973","url":null,"abstract":"<p><p>Molecular hydrogen (H<sub>2</sub>) is an antioxidant and anti-inflammatory agent; however, the molecular mechanisms underlying its biological effects are largely unknown. Similar to other gaseous molecules such as inhalation anesthetics, H<sub>2</sub> is more soluble in lipids than in water. A recent study demonstrated that H<sub>2</sub> reduces radical polymerization-induced cellular damage by suppressing fatty acid peroxidation and membrane permeability. Thus, we sought to examine the effects of short exposure to H<sub>2</sub> on lipid composition and associated physiological changes in SH-SY5Y neuroblastoma cells. We analyzed cells by liquid chromatography-high-resolution mass spectrometry to define changes in lipid components. Lipid class analysis of cells exposed to H<sub>2</sub> for 1 hour revealed transient increases in glycerophospholipids including phosphatidylethanolamine, phosphatidylinositol, and cardiolipin. Metabolomic analysis also showed that H<sub>2</sub> exposure for 1 hour transiently suppressed overall energy metabolism accompanied by a decrease in glutathione. We further observed alterations to endosomal morphology by staining with specific antibodies. Endosomal transport of cholera toxin B to recycling endosomes localized around the Golgi body was delayed in H<sub>2</sub>-exposed cells. We speculate that H<sub>2</sub>-induced modification of lipid composition depresses energy production and endosomal transport concomitant with enhancement of oxidative stress, which transiently stimulates stress response pathways to protect cells.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"13 3","pages":"133-141"},"PeriodicalIF":2.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e9/48/MGR-13-133.PMC9979205.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9076377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Quantitative risk assessment of respiratory exposure to acrylonitrile vapor in petrochemical industry by U.S. Environmental Protection Agency method: a cross-sectional study. 美国环境保护署方法对石化工业中丙烯腈蒸气呼吸暴露的定量风险评估:一项横断面研究。
IF 2.9 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-07-01 DOI: 10.4103/2045-9912.350859
Ali Asghar Sajedian, Ali Karimi, Mohsen Sadeghi Yarandi, Vahid Ahmadi Moshiran, Aysa Ghasemi Koozekonan, Farideh Golbabaei

Acrylonitrile is a potential carcinogen for humans, and exposure to this substance can cause adverse effects for workers. This study aimed to carcinogenic and health risk assessment of acrylonitrile vapor exposure in exposed personnel of a petrochemical complex. This crosssectional study was performed in 2019 in a petrochemical complex. In this study, to sample and determine acrylonitrile's respiratory exposure, the method provided by the National Institute of Occupational Safety and Health (NIOSH 1601) was used, and a total of 45 inhaled air samples were sampled from men workers, aged 39.43 ± 9.37 years. All subjects' mean exposure to acrylonitrile vapors was 71.1 ± 122.8 μg/m3. Also, the mean exposure index among all subjects was 0.02 ± 0.034. The non-carcinogenic risk assessment results showed that the mean Hazard quotient index was 4.04 ± 6.93. The mean lifetime cancer risk index was also 2.1 × 10-3 ± 3.5 × 10-3 and was in the definite risk range. Considering that both carcinogenicity and health indicators of exposure to acrylonitrile in the studied petrochemical complex are more than the recommended limits, the necessary engineering and management measures to control and manage the risk to an acceptable level are essential to improving the worker's health.

丙烯腈是一种潜在的人类致癌物,接触这种物质会对工人造成不良影响。本研究旨在对某石化企业作业人员接触丙烯腈蒸气的致癌性和健康风险进行评价。这项横断面研究于2019年在一家石化综合企业进行。本研究采用美国国家职业安全卫生研究所(NIOSH 1601)提供的方法,采集了45份男性工人吸入空气样本,年龄39.43±9.37岁。所有受试者的丙烯腈蒸气平均暴露量为71.1±122.8 μg/m3。所有受试者的平均暴露指数为0.02±0.034。非致癌风险评价结果显示,平均危害商指数为4.04±6.93。平均终生癌症危险指数为2.1 × 10-3±3.5 × 10-3,处于明确的危险范围。考虑到所研究的石化企业丙烯腈暴露的致癌性和健康指标均超过建议限值,采取必要的工程和管理措施,将风险控制和管理到可接受的水平,对改善工人的健康至关重要。
{"title":"Quantitative risk assessment of respiratory exposure to acrylonitrile vapor in petrochemical industry by U.S. Environmental Protection Agency method: a cross-sectional study.","authors":"Ali Asghar Sajedian,&nbsp;Ali Karimi,&nbsp;Mohsen Sadeghi Yarandi,&nbsp;Vahid Ahmadi Moshiran,&nbsp;Aysa Ghasemi Koozekonan,&nbsp;Farideh Golbabaei","doi":"10.4103/2045-9912.350859","DOIUrl":"https://doi.org/10.4103/2045-9912.350859","url":null,"abstract":"<p><p>Acrylonitrile is a potential carcinogen for humans, and exposure to this substance can cause adverse effects for workers. This study aimed to carcinogenic and health risk assessment of acrylonitrile vapor exposure in exposed personnel of a petrochemical complex. This crosssectional study was performed in 2019 in a petrochemical complex. In this study, to sample and determine acrylonitrile's respiratory exposure, the method provided by the National Institute of Occupational Safety and Health (NIOSH 1601) was used, and a total of 45 inhaled air samples were sampled from men workers, aged 39.43 ± 9.37 years. All subjects' mean exposure to acrylonitrile vapors was 71.1 ± 122.8 μg/m<sup>3</sup>. Also, the mean exposure index among all subjects was 0.02 ± 0.034. The non-carcinogenic risk assessment results showed that the mean Hazard quotient index was 4.04 ± 6.93. The mean lifetime cancer risk index was also 2.1 × 10<sup>-3</sup> ± 3.5 × 10<sup>-3</sup> and was in the definite risk range. Considering that both carcinogenicity and health indicators of exposure to acrylonitrile in the studied petrochemical complex are more than the recommended limits, the necessary engineering and management measures to control and manage the risk to an acceptable level are essential to improving the worker's health.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"13 3","pages":"142-148"},"PeriodicalIF":2.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d3/65/MGR-13-142.PMC9979210.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10825631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitric oxide therapy is beneficial to rehabilitation in professional soccer players: clinical and experimental studies. 一氧化氮治疗对职业足球运动员康复有益:临床和实验研究。
IF 2.9 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-07-01 DOI: 10.4103/2045-9912.344983
Victoria A Zaborova, Alexandra V Butenko, Anatoly B Shekhter, Alexey L Fayzullin, Alexander V Pekshev, Natalia B Serejnikova, Ol'ga V Chigirintseva, Kira Yu Kryuchkova, Konstantin G Gurevich

Nitric oxide can activate neutrophils and macrophages, facilitate the synthesis of collagen, which allows significantly accelerating the regeneration of traumatized tissues. We studied the effects of nitric oxide-containing gas flow generated by plasma-chemical device "Plason" in a rat model of full-thickness wounds. Histological and morphometric analyses revealed that Plason treated wounds expressed significantly fewer signs of inflammation and contained a more mature granulation tissue on day 4 after the operation. Considering the results of the experimental study, we applied the Plason device in sports medicine for the treatment of lower limb bruises of 34 professional soccer players. Athletes were asked to assess the intensity of pain with the Visual Analogue Scale. Girths of their lower limbs were measured over the course of rehabilitation. Nitric oxide therapy of full-thickness wounds inhibited inflammation and accelerated the regeneration of skin and muscle tissues. Compared with the control, we observed a significant reduction in pain syndrome on days 2-7 after injuries, edema, and hematoma, and shortened treatment duration. This pilot study indicates that the use of nitric oxide is a promising treatment method for sports injuries.

一氧化氮可以激活中性粒细胞和巨噬细胞,促进胶原蛋白的合成,从而显著加速创伤组织的再生。我们研究了等离子体化学装置“等离子体”产生的含一氧化氮气体流对大鼠全层伤口模型的影响。组织学和形态计量学分析显示,等离子体治疗的伤口在手术后第4天炎症症状明显减少,肉芽组织更成熟。结合实验研究结果,我们将等离子体装置应用于运动医学,对34名职业足球运动员下肢擦伤进行治疗。运动员被要求用视觉模拟量表评估疼痛的强度。在康复过程中测量了他们的下肢周长。一氧化氮治疗全层创面能抑制炎症,促进皮肤和肌肉组织的再生。与对照组相比,我们观察到损伤后2-7天疼痛综合征、水肿和血肿明显减轻,治疗时间缩短。这项初步研究表明,使用一氧化氮是一种很有前途的治疗运动损伤的方法。
{"title":"Nitric oxide therapy is beneficial to rehabilitation in professional soccer players: clinical and experimental studies.","authors":"Victoria A Zaborova,&nbsp;Alexandra V Butenko,&nbsp;Anatoly B Shekhter,&nbsp;Alexey L Fayzullin,&nbsp;Alexander V Pekshev,&nbsp;Natalia B Serejnikova,&nbsp;Ol'ga V Chigirintseva,&nbsp;Kira Yu Kryuchkova,&nbsp;Konstantin G Gurevich","doi":"10.4103/2045-9912.344983","DOIUrl":"https://doi.org/10.4103/2045-9912.344983","url":null,"abstract":"<p><p>Nitric oxide can activate neutrophils and macrophages, facilitate the synthesis of collagen, which allows significantly accelerating the regeneration of traumatized tissues. We studied the effects of nitric oxide-containing gas flow generated by plasma-chemical device \"Plason\" in a rat model of full-thickness wounds. Histological and morphometric analyses revealed that Plason treated wounds expressed significantly fewer signs of inflammation and contained a more mature granulation tissue on day 4 after the operation. Considering the results of the experimental study, we applied the Plason device in sports medicine for the treatment of lower limb bruises of 34 professional soccer players. Athletes were asked to assess the intensity of pain with the Visual Analogue Scale. Girths of their lower limbs were measured over the course of rehabilitation. Nitric oxide therapy of full-thickness wounds inhibited inflammation and accelerated the regeneration of skin and muscle tissues. Compared with the control, we observed a significant reduction in pain syndrome on days 2-7 after injuries, edema, and hematoma, and shortened treatment duration. This pilot study indicates that the use of nitric oxide is a promising treatment method for sports injuries.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"13 3","pages":"128-132"},"PeriodicalIF":2.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/49/3a/MGR-13-128.PMC9979209.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10825632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hydrogen exerts neuroprotective effects by inhibiting oxidative stress in experimental diabetic peripheral neuropathy rats. 氢通过抑制实验性糖尿病周围神经病变大鼠氧化应激发挥神经保护作用。
IF 2.9 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-04-01 DOI: 10.4103/2045-9912.345171
Xiao-Chen Han, Zhou-Heng Ye, Hui-Jun Hu, Qiang Sun, Dan-Feng Fan

Diabetic peripheral neuropathy (DPN) is a complex disorder caused by long-standing diabetes. Oxidative stress was considered the critical creed in this DPN pathophysiology. Hydrogen has antioxidative effects on diabetes mellitus and related complications. However, there is still no concern on the beneficial effects of hydrogen in DPN. This paper aimed to evaluate the effects of exogenous hydrogen to reduce the severity of DPN in streptozotocin-induced diabetic rats. Compared with hydrogen-rich saline treatment, hydrogen inhalation significantly reduced blood glucose levels in diabetic rats in the 4th and 8th weeks. With regard to nerve function, hydrogen administration significantly attenuated the decrease in the velocity of motor nerve conduction in diabetic animals. In addition, hydrogen significantly attenuated oxidative stress by reducing the level of malondialdehyde, reactive oxygen species, and 8-hydroxy-2-deoxyguanosine and meaningfully enhanced the antioxidant capability by partially restoring the activities of superoxide dismutase. Further studies showed that hydrogen significantly upregulated the expression of nuclear factor erythroid-2-related factor 2 and downstream proteins such as catalase and hemeoxygenase-1 in the nerves of diabetic animals. Our paper showed that hydrogen exerts significant protective effects in DPN by downregulating oxidative stress via the pathway of nuclear factor erythroid-2-related factor 2, which suggests its potential value in clinical applications.

糖尿病周围神经病变(DPN)是一种由长期糖尿病引起的复杂疾病。氧化应激被认为是DPN病理生理学的关键因素。氢对糖尿病及其相关并发症具有抗氧化作用。然而,氢在DPN中的有益作用仍然没有得到关注。本文旨在评价外源性氢对链脲佐菌素诱导的糖尿病大鼠DPN严重程度的影响。与富氢盐水治疗相比,吸入氢在第4周和第8周显著降低糖尿病大鼠的血糖水平。在神经功能方面,给氢显著减轻了糖尿病动物运动神经传导速度的下降。此外,氢通过降低丙二醛、活性氧和8-羟基-2-脱氧鸟苷的水平显著减轻氧化应激,并通过部分恢复超氧化物歧化酶的活性显著增强抗氧化能力。进一步研究表明,氢显著上调糖尿病动物神经中核因子-红细胞-2相关因子-2及下游蛋白过氧化氢酶、血红素加氧酶-1的表达。我们的研究表明,氢通过核因子-红细胞-2相关因子2通路下调氧化应激,对DPN具有显著的保护作用,提示其临床应用价值。
{"title":"Hydrogen exerts neuroprotective effects by inhibiting oxidative stress in experimental diabetic peripheral neuropathy rats.","authors":"Xiao-Chen Han,&nbsp;Zhou-Heng Ye,&nbsp;Hui-Jun Hu,&nbsp;Qiang Sun,&nbsp;Dan-Feng Fan","doi":"10.4103/2045-9912.345171","DOIUrl":"https://doi.org/10.4103/2045-9912.345171","url":null,"abstract":"<p><p>Diabetic peripheral neuropathy (DPN) is a complex disorder caused by long-standing diabetes. Oxidative stress was considered the critical creed in this DPN pathophysiology. Hydrogen has antioxidative effects on diabetes mellitus and related complications. However, there is still no concern on the beneficial effects of hydrogen in DPN. This paper aimed to evaluate the effects of exogenous hydrogen to reduce the severity of DPN in streptozotocin-induced diabetic rats. Compared with hydrogen-rich saline treatment, hydrogen inhalation significantly reduced blood glucose levels in diabetic rats in the 4<sup>th</sup> and 8<sup>th</sup> weeks. With regard to nerve function, hydrogen administration significantly attenuated the decrease in the velocity of motor nerve conduction in diabetic animals. In addition, hydrogen significantly attenuated oxidative stress by reducing the level of malondialdehyde, reactive oxygen species, and 8-hydroxy-2-deoxyguanosine and meaningfully enhanced the antioxidant capability by partially restoring the activities of superoxide dismutase. Further studies showed that hydrogen significantly upregulated the expression of nuclear factor erythroid-2-related factor 2 and downstream proteins such as catalase and hemeoxygenase-1 in the nerves of diabetic animals. Our paper showed that hydrogen exerts significant protective effects in DPN by downregulating oxidative stress via the pathway of nuclear factor erythroid-2-related factor 2, which suggests its potential value in clinical applications.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"13 2","pages":"72-77"},"PeriodicalIF":2.9,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8b/a7/MGR-13-72.PMC9555025.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10783731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
New scientific definitions: hyperbaric therapy and hyperbaric oxygen therapy. 新的科学定义:高压氧治疗和高压氧治疗。
IF 2.9 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-04-01 DOI: 10.4103/2045-9912.356475
Paul G Harch
{"title":"New scientific definitions: hyperbaric therapy and hyperbaric oxygen therapy.","authors":"Paul G Harch","doi":"10.4103/2045-9912.356475","DOIUrl":"https://doi.org/10.4103/2045-9912.356475","url":null,"abstract":"","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"13 2","pages":"92-93"},"PeriodicalIF":2.9,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/66/4e/MGR-13-92.PMC9555024.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9848654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Effects of hyperbaric oxygen on Notch signaling pathway after severe carbon monoxide poisoning in mice. 高压氧对小鼠重度一氧化碳中毒后Notch信号通路的影响。
IF 2.9 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-01-01 DOI: 10.4103/2045-9912.344971
Hui-Jun Hu, Dan-Feng Fan, Zhou-Heng Ye, Qiang Sun

Demyelination of the cerebral white matter is the most common pathological change after carbon monoxide (CO) poisoning. Notch signaling, the mechanism underlying the differentiation of astrocytes and oligodendrocytes, is critical to remyelination of the white matter after brain lesion. The purpose of this work was to determine the effects of hyperbaric oxygen (HBO) on Notch signaling pathway after CO poisoning for the explanation of the protective effects of HBO on CO-poisoning-related cerebral white matter demyelination. The male C57 BL/6 mice with severe CO poisoning were treated by HBO. And HBO therapy shortened the escape latency and improved the body mass after CO poisoning. HBO therapy also significantly suppressed protein and mRNA levels of Notch1 and Hes5 after CO poisoning. Our findings suggested that HBO could suppress the activation of Notch signaling pathway after CO poisoning, which is the mechanism underlying the neuroprotection of HBO on demyelination after severe CO poisoning.

脑白质脱髓鞘是一氧化碳中毒后最常见的病理改变。Notch信号是星形胶质细胞和少突胶质细胞分化的机制,是脑损伤后白质髓鞘再生的关键。本研究旨在探讨高压氧(HBO)对CO中毒后Notch信号通路的影响,以解释高压氧对CO中毒相关脑白质脱髓鞘的保护作用。用高压氧治疗重度一氧化碳中毒雄性C57 BL/6小鼠。HBO治疗缩短了CO中毒后的逃逸潜伏期,改善了CO中毒后的体重。HBO治疗也显著抑制CO中毒后Notch1和Hes5的蛋白和mRNA水平。我们的研究结果表明,HBO可以抑制CO中毒后Notch信号通路的激活,这是HBO对重度CO中毒后脱髓鞘神经保护的机制。
{"title":"Effects of hyperbaric oxygen on Notch signaling pathway after severe carbon monoxide poisoning in mice.","authors":"Hui-Jun Hu,&nbsp;Dan-Feng Fan,&nbsp;Zhou-Heng Ye,&nbsp;Qiang Sun","doi":"10.4103/2045-9912.344971","DOIUrl":"https://doi.org/10.4103/2045-9912.344971","url":null,"abstract":"<p><p>Demyelination of the cerebral white matter is the most common pathological change after carbon monoxide (CO) poisoning. Notch signaling, the mechanism underlying the differentiation of astrocytes and oligodendrocytes, is critical to remyelination of the white matter after brain lesion. The purpose of this work was to determine the effects of hyperbaric oxygen (HBO) on Notch signaling pathway after CO poisoning for the explanation of the protective effects of HBO on CO-poisoning-related cerebral white matter demyelination. The male C57 BL/6 mice with severe CO poisoning were treated by HBO. And HBO therapy shortened the escape latency and improved the body mass after CO poisoning. HBO therapy also significantly suppressed protein and mRNA levels of Notch1 and Hes5 after CO poisoning. Our findings suggested that HBO could suppress the activation of Notch signaling pathway after CO poisoning, which is the mechanism underlying the neuroprotection of HBO on demyelination after severe CO poisoning.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"13 1","pages":"23-28"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3c/f2/MGR-13-23.PMC9480357.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10639798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current research progress of isoflurane in cerebral ischemia/reperfusion injury: a narrative review. 异氟醚在脑缺血再灌注损伤中的研究进展
IF 2.9 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2022-07-01 DOI: 10.4103/2045-9912.330689
Shu-Jun Chen, Xia-Qing Yuan, Qun Xue, Hai-Feng Lu, Gang Chen

Cerebral ischemia/reperfusion injury is an important factor leading to poor prognosis in ischemic stroke patients. Therefore, it is particularly important to find effective remedial measures to promote the health of patients to return to society. Isoflurane is a safe and reliable anesthetic gas with a long history of clinical application. In recent years, its protection function to human body has been widely recognized, and nowadays isoflurane for cerebral protection has been widely studied, and the stable effect of isoflurane has satisfied many researchers. Basic studies have shown that isoflurane's protection of brain tissue after ischemia/reperfusion involves a variety of signaling pathways and effector molecules. Even though many signaling pathways have been described, more and more studies focus on exploring their mechanisms of action, in order to provide strong evidence for clinical application. This could prompt the introduction of isoflurane therapy to clinical patients as soon as possible. In this paper, several confirmed signaling pathways will be reviewed to find possible strategies for clinical treatment.

脑缺血再灌注损伤是导致缺血性脑卒中患者预后不良的重要因素。因此,寻找有效的治疗措施,促进患者健康回归社会就显得尤为重要。异氟醚是一种安全可靠的麻醉气体,具有悠久的临床应用历史。近年来,异氟醚对人体的保护作用得到了广泛的认识,如今异氟醚对脑保护的研究也得到了广泛的开展,异氟醚稳定的作用也让很多研究者感到满意。基础研究表明,异氟醚对脑组织缺血再灌注后的保护作用涉及多种信号通路和效应分子。尽管已经描述了许多信号通路,但越来越多的研究集中在探索它们的作用机制,为临床应用提供有力的证据。这可能会促使异氟醚疗法尽快引入临床患者。本文将回顾几种已确认的信号通路,以寻找可能的临床治疗策略。
{"title":"Current research progress of isoflurane in cerebral ischemia/reperfusion injury: a narrative review.","authors":"Shu-Jun Chen,&nbsp;Xia-Qing Yuan,&nbsp;Qun Xue,&nbsp;Hai-Feng Lu,&nbsp;Gang Chen","doi":"10.4103/2045-9912.330689","DOIUrl":"https://doi.org/10.4103/2045-9912.330689","url":null,"abstract":"<p><p>Cerebral ischemia/reperfusion injury is an important factor leading to poor prognosis in ischemic stroke patients. Therefore, it is particularly important to find effective remedial measures to promote the health of patients to return to society. Isoflurane is a safe and reliable anesthetic gas with a long history of clinical application. In recent years, its protection function to human body has been widely recognized, and nowadays isoflurane for cerebral protection has been widely studied, and the stable effect of isoflurane has satisfied many researchers. Basic studies have shown that isoflurane's protection of brain tissue after ischemia/reperfusion involves a variety of signaling pathways and effector molecules. Even though many signaling pathways have been described, more and more studies focus on exploring their mechanisms of action, in order to provide strong evidence for clinical application. This could prompt the introduction of isoflurane therapy to clinical patients as soon as possible. In this paper, several confirmed signaling pathways will be reviewed to find possible strategies for clinical treatment.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"12 3","pages":"73-76"},"PeriodicalIF":2.9,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/69/43/MGR-12-73.PMC8690858.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39683868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Comparative analgesic, hemodynamic, pain and duration of sensory and motor block effects of dexmedetomidine, granisetron, and nitroglycerin added to ropivacaine in intravenous anesthesia for forearm surgeries: a randomized clinical study. 右美托咪定、格拉司琼和硝酸甘油加入罗哌卡因静脉麻醉用于前臂手术的镇痛、血流动力学、疼痛和感觉和运动阻滞效应持续时间的比较:一项随机临床研究。
IF 2.9 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2022-07-01 DOI: 10.4103/2045-9912.330690
Esmail Moshiri, Hesameddin Modir, Alireza Kamali, Mehran Azami, Morteza Molouk

This trial-based paper strives to address the comparative efficacy of some ropivacaine adjuvant options, comprising dexmedetomidine, granisetron, and nitroglycerin, on pain and hemodynamic changes in intravenous anesthesia for forearm surgeries. This double-blind, placebo-controlled study enrolled four block-randomized eligible groups with patients (overall, n=128) undergoing orthopedic forearm surgeries in the dexmedetomidine, nitroglycerin, granisetron, and placebo groups. Intra- and post-operative vital signs (mean arterial pressure/heart rate/ oxygen saturation) were monitored at baseline and captured every 10 minutes until the end of the surgery, as well as the onset of sensory and motor block and length and duration of the block and mean opioid use within 24 hours. Lastly, pain was noted after tourniquet inflation (at 15, 30, and 45 minutes every 15 minutes until the end of surgery) and after deflation (every 30 minutes to 2 hours at 30, 60, 90, and 120 minutes), as well as 6, 12, and 24 hours after the tourniquet was deflated. The dexmedetomidine-sedated subjects appeared to demonstrate quicker onset and longer length and duration of sensory and motor block, plus less pain and opioid use at all scheduled times (both P = 0.0001). Dexmedetomidine is recommended as an adjuvant to regional anesthesia (Bier's block), while being coupled with the rapid onset and prolonged length and duration of sensory and motor blocks, in addition to soothed pain and diminished opioid use within postoperative 24 hours. The study was approved by Ethics Committee of Arak University of Medical Sciences (approval No. IR.ARAKMU.REC.1398.112) on July 21, 2019, and registered at Iranian Registry of Clinical Trials (registration number IRCT20141209020258N123) on November 2, 2019.

这篇以试验为基础的论文致力于探讨一些罗哌卡因辅助选择的比较疗效,包括右美托咪定、格拉司琼和硝化甘油,对前臂手术静脉麻醉疼痛和血流动力学变化的影响。这项双盲、安慰剂对照研究纳入了4组符合条件的随机分组患者(总共128人),他们分别接受右美托咪定、硝化甘油、格拉司琼和安慰剂组的前臂骨科手术。在基线时监测术中和术后生命体征(平均动脉压/心率/血氧饱和度),每10分钟捕捉一次,直到手术结束,以及24小时内感觉和运动阻滞的发生、阻滞的长度和持续时间以及平均阿片类药物的使用。最后,止血带充气后(15、30和45分钟,每15分钟一次,直到手术结束)和放气后(30、60、90和120分钟,每30分钟至2小时一次)以及止血带放气后6、12和24小时记录疼痛。右美托咪定镇静的受试者似乎表现出更快的发作,感觉和运动阻滞的长度和持续时间更长,并且在所有预定时间疼痛和阿片类药物的使用更少(P = 0.0001)。右美托咪定被推荐作为区域麻醉(Bier’s阻滞)的辅助药物,同时与快速起效和延长感觉和运动阻滞的长度和持续时间相结合,除了缓解疼痛和减少术后24小时内阿片类药物的使用。本研究已获得阿拉克医科大学伦理委员会批准(批准号:ir . arakmuu . rec .1398.112)于2019年7月21日注册,并于2019年11月2日在伊朗临床试验注册中心注册(注册号IRCT20141209020258N123)。
{"title":"Comparative analgesic, hemodynamic, pain and duration of sensory and motor block effects of dexmedetomidine, granisetron, and nitroglycerin added to ropivacaine in intravenous anesthesia for forearm surgeries: a randomized clinical study.","authors":"Esmail Moshiri,&nbsp;Hesameddin Modir,&nbsp;Alireza Kamali,&nbsp;Mehran Azami,&nbsp;Morteza Molouk","doi":"10.4103/2045-9912.330690","DOIUrl":"https://doi.org/10.4103/2045-9912.330690","url":null,"abstract":"<p><p>This trial-based paper strives to address the comparative efficacy of some ropivacaine adjuvant options, comprising dexmedetomidine, granisetron, and nitroglycerin, on pain and hemodynamic changes in intravenous anesthesia for forearm surgeries. This double-blind, placebo-controlled study enrolled four block-randomized eligible groups with patients (overall, n=128) undergoing orthopedic forearm surgeries in the dexmedetomidine, nitroglycerin, granisetron, and placebo groups. Intra- and post-operative vital signs (mean arterial pressure/heart rate/ oxygen saturation) were monitored at baseline and captured every 10 minutes until the end of the surgery, as well as the onset of sensory and motor block and length and duration of the block and mean opioid use within 24 hours. Lastly, pain was noted after tourniquet inflation (at 15, 30, and 45 minutes every 15 minutes until the end of surgery) and after deflation (every 30 minutes to 2 hours at 30, 60, 90, and 120 minutes), as well as 6, 12, and 24 hours after the tourniquet was deflated. The dexmedetomidine-sedated subjects appeared to demonstrate quicker onset and longer length and duration of sensory and motor block, plus less pain and opioid use at all scheduled times (both P = 0.0001). Dexmedetomidine is recommended as an adjuvant to regional anesthesia (Bier's block), while being coupled with the rapid onset and prolonged length and duration of sensory and motor blocks, in addition to soothed pain and diminished opioid use within postoperative 24 hours. The study was approved by Ethics Committee of Arak University of Medical Sciences (approval No. IR.ARAKMU.REC.1398.112) on July 21, 2019, and registered at Iranian Registry of Clinical Trials (registration number IRCT20141209020258N123) on November 2, 2019.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"12 3","pages":"77-82"},"PeriodicalIF":2.9,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/96/ca/MGR-12-77.PMC8690857.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39684772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Spuriously low end tidal carbon dioxide in capnometry: Nafion tube malfunction in end tidal carbon dioxide module blamed for near mishap! 在二氧化碳测量中出现了虚假的低端潮汐二氧化碳:国家石油公司在终端潮汐二氧化碳模块中出现了故障,导致了近乎不幸的事故!
IF 2.9 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2022-07-01 DOI: 10.4103/2045-9912.330695
Suma Rabab Ahmad, Chitta Ranjan Mohanty, Snigdha Bellapukonda, Bishu Prasad Patro
{"title":"Spuriously low end tidal carbon dioxide in capnometry: Nafion tube malfunction in end tidal carbon dioxide module blamed for near mishap!","authors":"Suma Rabab Ahmad,&nbsp;Chitta Ranjan Mohanty,&nbsp;Snigdha Bellapukonda,&nbsp;Bishu Prasad Patro","doi":"10.4103/2045-9912.330695","DOIUrl":"https://doi.org/10.4103/2045-9912.330695","url":null,"abstract":"","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"12 3","pages":"113-114"},"PeriodicalIF":2.9,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/33/90/MGR-12-113.PMC8690852.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39685227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of different fresh gas flows and different anesthetics on airway temperature and humidity in surgical patients: a prospective observational study. 不同新鲜气体流量和不同麻醉剂对手术患者气道温度和湿度的影响:一项前瞻性观察研究。
IF 2.9 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2022-07-01 DOI: 10.4103/2045-9912.330691
Irem Gumus Ozcan, Ozkan Onal, Aysun Ozdemirkan, Ali Saltali, Mehmet Sari

This study was aimed to investigate the effects of different fresh gas (oxygen + air) flow rates and different anesthetics on airway temperature and humidity when using the same anesthesia machine in patients undergoing general anesthesia. In this prospective, observational study, 240 patients with American Society of Anesthesiologists (ASA) I-II between the age of 18-65 years to be operated under general anesthesia were enrolled and divided into two groups according to the fresh gas flow rate (3-6 L/min). Each of the two main groups was further divided into three subgroups according to the administered anesthetic gases and drugs. The resulting six groups were further divided into two subgroups according to whether the heat and humidity exchanger filter (HME) was attached to the breathing circuit, and the study was carried out on a total of 12 groups. The temperature and humidity of the inspired air were recorded every 10 minutes using an electronic thermo-hygrometer. The inspired temperature and humidity were greater in patients ventilated at 3 L/min compared to the 6 L/min group and in HME (+) patients compared to HME (-), regardless of the type of anesthetics. HME application makes the air more physiological for the respiratory tract by increasing the temperature and humidity of the air regardless of the anesthetic agent. This study was approved by Ethics Committee Review of Selcuk University Faculty of Medicine (No. 2017/261) in September 2017, and was registered in the Clinical Trial Registry (identifier No. NCT04204746) on December 19, 2019.

本研究旨在探讨不同新鲜气体(氧气+空气)流速及不同麻醉药物对全麻患者使用同一麻醉机时气道温度和湿度的影响。在这项前瞻性观察性研究中,选取240例年龄在18-65岁之间的美国麻醉学会(ASA) I-II级全麻手术患者,根据新鲜气体流速(3-6 L/min)分为两组。根据麻醉气体和麻醉药物的不同,两组又分为三组。根据是否在呼吸回路上附加了热湿交换器过滤器(HME),将得到的6组进一步分为2个亚组,共对12组进行了研究。每10分钟用电子温湿计记录吸入空气的温度和湿度。无论麻醉药类型如何,3l /min通气的患者吸入温度和湿度高于6l /min通气组,HME(+)患者吸入温度和湿度高于HME(-)。HME的应用通过提高空气的温度和湿度,使空气对呼吸道更加生理性,而不管麻醉剂是什么。本研究于2017年9月获得Selcuk大学医学院伦理委员会审查(No. 2017/261)批准,并在临床试验登记处注册(标识符No. 2017/261)。NCT04204746)于2019年12月19日生效。
{"title":"Effects of different fresh gas flows and different anesthetics on airway temperature and humidity in surgical patients: a prospective observational study.","authors":"Irem Gumus Ozcan,&nbsp;Ozkan Onal,&nbsp;Aysun Ozdemirkan,&nbsp;Ali Saltali,&nbsp;Mehmet Sari","doi":"10.4103/2045-9912.330691","DOIUrl":"https://doi.org/10.4103/2045-9912.330691","url":null,"abstract":"<p><p>This study was aimed to investigate the effects of different fresh gas (oxygen + air) flow rates and different anesthetics on airway temperature and humidity when using the same anesthesia machine in patients undergoing general anesthesia. In this prospective, observational study, 240 patients with American Society of Anesthesiologists (ASA) I-II between the age of 18-65 years to be operated under general anesthesia were enrolled and divided into two groups according to the fresh gas flow rate (3-6 L/min). Each of the two main groups was further divided into three subgroups according to the administered anesthetic gases and drugs. The resulting six groups were further divided into two subgroups according to whether the heat and humidity exchanger filter (HME) was attached to the breathing circuit, and the study was carried out on a total of 12 groups. The temperature and humidity of the inspired air were recorded every 10 minutes using an electronic thermo-hygrometer. The inspired temperature and humidity were greater in patients ventilated at 3 L/min compared to the 6 L/min group and in HME (+) patients compared to HME (-), regardless of the type of anesthetics. HME application makes the air more physiological for the respiratory tract by increasing the temperature and humidity of the air regardless of the anesthetic agent. This study was approved by Ethics Committee Review of Selcuk University Faculty of Medicine (No. 2017/261) in September 2017, and was registered in the Clinical Trial Registry (identifier No. NCT04204746) on December 19, 2019.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"12 3","pages":"83-90"},"PeriodicalIF":2.9,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7a/34/MGR-12-83.PMC8690851.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39684773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Medical Gas Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1