首页 > 最新文献

Microbiological research最新文献

英文 中文
Non-antibiotic pharmaceutical phenylbutazone binding to MexR reduces the antibiotic susceptibility of Pseudomonas aeruginosa 非抗生素药物苯基丁氮酮与 MexR 结合可降低铜绿假单胞菌对抗生素的敏感性
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-11 DOI: 10.1016/j.micres.2024.127872

Antimicrobial resistance has been an increasingly serious threat to global public health. The contribution of non-antibiotic pharmaceuticals to the development of antibiotic resistance has been overlooked. Our study found that the anti-inflammatory drug phenylbutazone could protect P. aeruginosa against antibiotic mediated killing by binding to the efflux pump regulator MexR. In this study, antibiotic activity against P. aeruginosa alone or in combination with phenylbutazone was evaluated in vitro and in vivo. Resazurin accumulation assay, transcriptomic sequencing, and PISA assay were conducted to explore the underlying mechanism for the reduced antibiotic susceptibility caused by phenylbutazone. Then EMSA, ITC, molecular dynamic simulations, and amino acid substitutions were used to investigate the interactions between phenylbutazone and MexR. We found that phenylbutazone could reduce the susceptibility of P. aeruginosa to multiple antibiotics, including parts of β-lactams, fluoroquinolones, tetracyclines, and macrolides. Phenylbutazone could directly bind to MexR, then promote MexR dissociating from the mexA-mexR intergenic region and de-repress the expression of MexAB-OprM efflux pump. The overexpressed MexAB-OprM pump resulted in the reduced antibiotic susceptibility. And the His41 and Arg21 residues of MexR were involved in the phenylbutazone-MexR interaction. We hope this study would imply the potential risk of antibiotic resistance caused by non-antibiotic pharmaceuticals.

抗生素耐药性对全球公共卫生的威胁日益严重。非抗生素药物对抗生素耐药性发展的贡献一直被忽视。我们的研究发现,抗炎药物苯基丁氮酮可通过与外排泵调节剂 MexR 结合,保护铜绿假单胞菌免受抗生素介导的杀灭。本研究在体外和体内评估了抗生素单独或与苯基丁氮酮联合对铜绿假单胞菌的活性。研究人员通过利马唑啉积累试验、转录组测序和 PISA 试验来探索苯丁唑酮导致抗生素敏感性降低的潜在机制。然后利用 EMSA、ITC、分子动力学模拟和氨基酸置换等方法研究了苯丁酮与 MexR 之间的相互作用。我们发现,苯基丁氮酮可降低铜绿假单胞菌对多种抗生素的敏感性,包括部分β-内酰胺类、氟喹诺酮类、四环素类和大环内酯类抗生素。苯基丁氮酮可直接与 MexR 结合,然后促进 MexR 从 mexA-mexR 基因间区解离,并抑制 MexAB-OprM 外排泵的表达。过表达的 MexAB-OprM 泵导致抗生素敏感性降低。而 MexR 的 His41 和 Arg21 残基参与了苯丁酮与 MexR 的相互作用。我们希望这项研究能暗示由非抗生素药物引起的抗生素耐药性的潜在风险。
{"title":"Non-antibiotic pharmaceutical phenylbutazone binding to MexR reduces the antibiotic susceptibility of Pseudomonas aeruginosa","authors":"","doi":"10.1016/j.micres.2024.127872","DOIUrl":"10.1016/j.micres.2024.127872","url":null,"abstract":"<div><p>Antimicrobial resistance has been an increasingly serious threat to global public health. The contribution of non-antibiotic pharmaceuticals to the development of antibiotic resistance has been overlooked. Our study found that the anti-inflammatory drug phenylbutazone could protect <em>P. aeruginosa</em> against antibiotic mediated killing by binding to the efflux pump regulator MexR. In this study, antibiotic activity against <em>P. aeruginosa</em> alone or in combination with phenylbutazone was evaluated <em>in vitro</em> and <em>in vivo</em>. Resazurin accumulation assay, transcriptomic sequencing, and PISA assay were conducted to explore the underlying mechanism for the reduced antibiotic susceptibility caused by phenylbutazone. Then EMSA, ITC, molecular dynamic simulations, and amino acid substitutions were used to investigate the interactions between phenylbutazone and MexR. We found that phenylbutazone could reduce the susceptibility of <em>P. aeruginosa</em> to multiple antibiotics, including parts of β-lactams, fluoroquinolones, tetracyclines, and macrolides. Phenylbutazone could directly bind to MexR, then promote MexR dissociating from the <em>mexA</em>-<em>mexR</em> intergenic region and de-repress the expression of MexAB-OprM efflux pump. The overexpressed MexAB-OprM pump resulted in the reduced antibiotic susceptibility. And the His41 and Arg21 residues of MexR were involved in the phenylbutazone-MexR interaction. We hope this study would imply the potential risk of antibiotic resistance caused by non-antibiotic pharmaceuticals.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944501324002738/pdfft?md5=d387e694ccd025c86c3220491672c988&pid=1-s2.0-S0944501324002738-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is there a role for intestinal sporobiota in the antimicrobial resistance crisis? 肠道孢子生物群在抗菌药耐药性危机中是否发挥作用?
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-10 DOI: 10.1016/j.micres.2024.127870

Antimicrobial resistance (AMR) is a complex issue requiring specific, multi-sectoral measures to slow its spread. When people are exposed to antimicrobial agents, it can cause resistant bacteria to increase. This means that the use, misuse, and excessive use of antimicrobial agents exert selective pressure on bacteria, which can lead to the development of "silent" reservoirs of antimicrobial resistance genes. These genes can later be mobilized into pathogenic bacteria and contribute to the spread of AMR. Many socioeconomic and environmental factors influence the transmission and dissemination of resistance genes, such as the quality of healthcare systems, water sanitation, hygiene infrastructure, and pollution. The sporobiota is an essential part of the gut microbiota that plays a role in maintaining gut homeostasis. However, because spores are highly transmissible and can spread easily, they can be a vector for AMR. The sporobiota resistome, particularly the mobile resistome, is important for tracking, managing, and limiting the spread of antimicrobial resistance genes among pathogenic and commensal bacterial species.

抗菌药耐药性(AMR)是一个复杂的问题,需要采取具体的多部门措施来减缓其蔓延。当人们接触抗菌剂时,会导致耐药细菌增加。这意味着,抗菌剂的使用、滥用和过度使用会对细菌产生选择性压力,从而导致 "沉默 "的抗菌剂耐药性基因库的形成。这些基因随后会被调动到致病细菌中,导致 AMR 的传播。许多社会经济和环境因素都会影响抗药性基因的传播和扩散,如医疗保健系统的质量、水质卫生、卫生基础设施和污染等。孢子生物群是肠道微生物群的重要组成部分,在维持肠道平衡方面发挥作用。然而,由于孢子具有很强的传播性,并且很容易扩散,因此可以成为 AMR 的载体。孢子生物群耐药性基因组,尤其是移动耐药性基因组,对于跟踪、管理和限制抗菌药耐药性基因在病原菌和共生菌之间的传播非常重要。
{"title":"Is there a role for intestinal sporobiota in the antimicrobial resistance crisis?","authors":"","doi":"10.1016/j.micres.2024.127870","DOIUrl":"10.1016/j.micres.2024.127870","url":null,"abstract":"<div><p>Antimicrobial resistance (AMR) is a complex issue requiring specific, multi-sectoral measures to slow its spread. When people are exposed to antimicrobial agents, it can cause resistant bacteria to increase. This means that the use, misuse, and excessive use of antimicrobial agents exert selective pressure on bacteria, which can lead to the development of \"silent\" reservoirs of antimicrobial resistance genes. These genes can later be mobilized into pathogenic bacteria and contribute to the spread of AMR. Many socioeconomic and environmental factors influence the transmission and dissemination of resistance genes, such as the quality of healthcare systems, water sanitation, hygiene infrastructure, and pollution. The sporobiota is an essential part of the gut microbiota that plays a role in maintaining gut homeostasis. However, because spores are highly transmissible and can spread easily, they can be a vector for AMR. The sporobiota resistome, particularly the mobile resistome, is important for tracking, managing, and limiting the spread of antimicrobial resistance genes among pathogenic and commensal bacterial species.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944501324002714/pdfft?md5=44fd0108bb79c30d56d204af9b92bebb&pid=1-s2.0-S0944501324002714-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
‘Altruistic’ cooperation among the prokaryotic community of Atlantic salterns assessed by metagenomics 通过元基因组学评估大西洋盐场原核生物群落之间的 "利他 "合作
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-10 DOI: 10.1016/j.micres.2024.127869

Hypersaline environments are extreme habitats with a limited prokaryotic diversity, mainly restricted to halophilic or halotolerant archaeal and bacterial taxa adapted to highly saline conditions. This study attempts to analyze the taxonomic and functional diversity of the prokaryotes that inhabit a solar saltern located at the Atlantic Coast, in Isla Cristina (Huelva, Southwest Spain), and the influence of salinity on the diversity and metabolic potential of these prokaryotic communities, as well as the interactions and cooperation among the individuals within that community. Brine samples were obtained from different saltern ponds, with a salinity range between 19.5 % and 39 % (w/v). Total prokaryotic DNA was sequenced using the Illumina shotgun metagenomic strategy and the raw sequence data were analyzed using supercomputing services following the MetaWRAP and SqueezeMeta protocols. The most abundant phyla at moderate salinities (19.5–22 % [w/v]) were Methanobacteriota (formerly “Euryarchaeota”), Pseudomonadota and Bacteroidota, followed by Balneolota and Actinomycetota and Uroviricota in smaller proportions, while at high salinities (36–39 % [w/v]) the most abundant phylum was Methanobacteriota, followed by Bacteroidota. The most abundant genera at intermediate salinities were Halorubrum and the bacterial genus Spiribacter, while the haloarchaeal genera Halorubrum, Halonotius, and Haloquadratum were the main representatives at high salinities. A total of 65 MAGs were reconstructed from the metagenomic datasets and different functions and pathways were identified in them, allowing to find key taxa in the prokaryotic community able to synthesize and supply essential compounds, such as biotin, and precursors of other bioactive molecules, like β-carotene, and bacterioruberin, to other dwellers in this habitat, lacking the required enzymatic machinery to produce them. This work shed light on the ecology of aquatic hypersaline environments, such as the Atlantic Coast salterns, and on the dynamics and factors affecting the microbial populations under such extreme conditions.

高盐环境是原核生物多样性有限的极端栖息地,主要局限于适应高盐条件的嗜盐或耐盐古细菌类群。本研究试图分析栖息在大西洋沿岸克里斯蒂娜岛(西班牙西南部韦尔瓦)晒盐池中的原核生物的分类和功能多样性,以及盐度对这些原核生物群落的多样性和新陈代谢潜力的影响,以及群落中个体之间的相互作用和合作。盐水样本取自不同的盐池,盐度范围在 19.5 % 至 39 %(w/v)之间。使用 Illumina 猎枪元基因组策略对原核生物总 DNA 进行了测序,并按照 MetaWRAP 和 SqueezeMeta 协议使用超级计算服务对原始序列数据进行了分析。在中等盐度(19.5-22%[w/v])下,最丰富的门类是甲烷杆菌科(原 "极毛虫科")、假单胞菌科和类杆菌科,其次是Balneolota和Actinomycetota,Uroviricota所占比例较小;而在高盐度(36-39%[w/v])下,最丰富的门类是甲烷杆菌科,其次是类杆菌科。在中盐度条件下,最丰富的菌属是 Halorubrum 和细菌属 Spiribacter,而在高盐度条件下,主要代表菌属是 Halorubrum、Halonotius 和 Haloquadratum。从元基因组数据集中共重建了 65 个 MAGs,并确定了它们的不同功能和途径,从而找到了原核生物群落中能够合成生物素等必需化合物以及β-胡萝卜素和细菌素等其他生物活性分子前体的关键类群,并将其提供给这一生境中缺乏生产这些物质所需酶类机制的其他生物。这项研究揭示了大西洋沿岸盐碱地等水生高盐环境的生态学,以及在这种极端条件下影响微生物种群的动态和因素。
{"title":"‘Altruistic’ cooperation among the prokaryotic community of Atlantic salterns assessed by metagenomics","authors":"","doi":"10.1016/j.micres.2024.127869","DOIUrl":"10.1016/j.micres.2024.127869","url":null,"abstract":"<div><p>Hypersaline environments are extreme habitats with a limited prokaryotic diversity, mainly restricted to halophilic or halotolerant archaeal and bacterial taxa adapted to highly saline conditions. This study attempts to analyze the taxonomic and functional diversity of the prokaryotes that inhabit a solar saltern located at the Atlantic Coast, in Isla Cristina (Huelva, Southwest Spain), and the influence of salinity on the diversity and metabolic potential of these prokaryotic communities, as well as the interactions and cooperation among the individuals within that community. Brine samples were obtained from different saltern ponds, with a salinity range between 19.5 % and 39 % (w/v). Total prokaryotic DNA was sequenced using the Illumina shotgun metagenomic strategy and the raw sequence data were analyzed using supercomputing services following the MetaWRAP and SqueezeMeta protocols. The most abundant phyla at moderate salinities (19.5–22 % [w/v]) were <em>Methanobacteriota</em> (formerly <em>“Euryarchaeota”</em>), <em>Pseudomonadota</em> and <em>Bacteroidota</em>, followed by <em>Balneolota</em> and <em>Actinomycetota</em> and <em>Uroviricota</em> in smaller proportions, while at high salinities (36–39 % [w/v]) the most abundant phylum was <em>Methanobacteriota,</em> followed by <em>Bacteroidota</em>. The most abundant genera at intermediate salinities were <em>Halorubrum</em> and the bacterial genus <em>Spiribacter</em>, while the haloarchaeal genera <em>Halorubrum</em>, <em>Halonotius</em>, and <em>Haloquadratum</em> were the main representatives at high salinities. A total of 65 MAGs were reconstructed from the metagenomic datasets and different functions and pathways were identified in them, allowing to find key taxa in the prokaryotic community able to synthesize and supply essential compounds, such as biotin, and precursors of other bioactive molecules, like β-carotene, and bacterioruberin, to other dwellers in this habitat, lacking the required enzymatic machinery to produce them. This work shed light on the ecology of aquatic hypersaline environments, such as the Atlantic Coast salterns, and on the dynamics and factors affecting the microbial populations under such extreme conditions.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944501324002702/pdfft?md5=87f6de3422c645ff0bb9d832c328008e&pid=1-s2.0-S0944501324002702-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141998319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring gut microbial metabolites as key players in inhibition of cancer progression: Mechanisms and therapeutic implications 探索肠道微生物代谢物在抑制癌症进展中的关键作用:机制和治疗意义。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-08 DOI: 10.1016/j.micres.2024.127871

The gut microbiota plays a critical role in numerous biochemical processes essential for human health, such as metabolic regulation and immune system modulation. An increasing number of research suggests a strong association between the gut microbiota and carcinogenesis. The diverse metabolites produced by gut microbiota can modulate cellular gene expression, cell cycle dynamics, apoptosis, and immune system functions, thereby exerting a profound influence on cancer development and progression. A healthy gut microbiota promotes substance metabolism, stimulates immune responses, and thereby maintains the long-term homeostasis of the intestinal microenvironment. When the gut microbiota becomes imbalanced and disrupts the homeostasis of the intestinal microenvironment, the risk of various diseases increases. This review aims to elucidate the impact of gut microbial metabolites on cancer initiation and progression, focusing on short-chain fatty acids (SCFAs), polyamines (PAs), hydrogen sulfide (H2S), secondary bile acids (SBAs), and microbial tryptophan catabolites (MTCs). By detailing the roles and molecular mechanisms of these metabolites in cancer pathogenesis and therapy, this article sheds light on dual effects on the host at different concentrations of metabolites and offers new insights into cancer research.

肠道微生物群在许多对人体健康至关重要的生化过程中发挥着关键作用,如代谢调节和免疫系统调节。越来越多的研究表明,肠道微生物群与致癌之间存在密切联系。肠道微生物群产生的多种代谢产物可调节细胞基因表达、细胞周期动态、细胞凋亡和免疫系统功能,从而对癌症的发生和发展产生深远影响。健康的肠道微生物群能促进物质代谢,刺激免疫反应,从而维持肠道微环境的长期平衡。当肠道微生物群失衡并破坏肠道微环境的平衡时,罹患各种疾病的风险就会增加。本综述旨在阐明肠道微生物代谢物对癌症发生和发展的影响,重点关注短链脂肪酸(SCFAs)、多胺(PAs)、硫化氢(H2S)、次级胆汁酸(SBAs)和微生物色氨酸代谢产物(MTCs)。通过详细介绍这些代谢物在癌症发病和治疗中的作用和分子机制,本文揭示了不同浓度的代谢物对宿主的双重影响,为癌症研究提供了新的见解。
{"title":"Exploring gut microbial metabolites as key players in inhibition of cancer progression: Mechanisms and therapeutic implications","authors":"","doi":"10.1016/j.micres.2024.127871","DOIUrl":"10.1016/j.micres.2024.127871","url":null,"abstract":"<div><p>The gut microbiota plays a critical role in numerous biochemical processes essential for human health, such as metabolic regulation and immune system modulation. An increasing number of research suggests a strong association between the gut microbiota and carcinogenesis. The diverse metabolites produced by gut microbiota can modulate cellular gene expression, cell cycle dynamics, apoptosis, and immune system functions, thereby exerting a profound influence on cancer development and progression. A healthy gut microbiota promotes substance metabolism, stimulates immune responses, and thereby maintains the long-term homeostasis of the intestinal microenvironment. When the gut microbiota becomes imbalanced and disrupts the homeostasis of the intestinal microenvironment, the risk of various diseases increases. This review aims to elucidate the impact of gut microbial metabolites on cancer initiation and progression, focusing on short-chain fatty acids (SCFAs), polyamines (PAs), hydrogen sulfide (H<sub>2</sub>S), secondary bile acids (SBAs), and microbial tryptophan catabolites (MTCs). By detailing the roles and molecular mechanisms of these metabolites in cancer pathogenesis and therapy, this article sheds light on dual effects on the host at different concentrations of metabolites and offers new insights into cancer research.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery and characterization of the PpqI/R quorum sensing system activated by GacS/A and Hfq in Pseudomonas protegens H78 蛋白假单胞菌 H78 中由 GacS/A 和 Hfq 激活的 PpqI/R 法定量传感系统的发现与特征描述。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-06 DOI: 10.1016/j.micres.2024.127868

Pseudomonas protegens can generally produce multiple antibiotics including pyoluteorin (Plt), 2,4-diacetylphloroglucinol (DAPG), and pyrrolnitrin (Prn). In this study, we discovered and characterized a quorum sensing (QS) system, PpqI/R, in P. protegens H78. PpqI/R, encoded by two open reading frames (ORFs) (H78_01960/01961) in P. protegens H78 genome, is a LuxI/R-type QS system. Four long-chain acyl homoserine lactone (AHL) signaling molecules, 3-OH-C10-HSL, 3-OH-C12-HSL, C12-HSL, and 3-OH-C14-HSL, are produced by H78. Biosynthesis of these AHLs is catalyzed by PpqI synthase and activated by the PpqR regulator in H78 and in Escherichia coli when heterologously expressed. PpqR activates ppqI expression by targeting the lux box upstream of the ppqI promoter in cooperation with corresponding AHLs. The four aforementioned AHLs exhibited different capabilities to induce ppqI promoter expression, with 3-OH-C12-HSL showing the highest induction activity. In H78 cells, ppqI/R expression is activated by the two-component system GacS/A and the RNA chaperone Hfq. Differential regulation of the PpqI/R system in secondary metabolism has a negative effect on DAPG biosynthesis and ped operon (involved in volatile organic compound biosynthesis) expression. In contrast, Plt biosynthesis and prn operon expression were positively regulated by PpqI/R. In summary, PpqI/R, the first characterized QS system in P. protegens, is activated by GacS/A and Hfq and controls the expression of secondary metabolites, including antibiotics.

蛋白假单胞菌通常能产生多种抗生素,包括焦土霉素(Plt)、2,4-二乙酰氯葡萄糖醇(DAPG)和吡咯烷酮(Prn)。在这项研究中,我们发现并鉴定了 P. protegens H78 中的法定量感应(QS)系统 PpqI/R。PpqI/R 由蛋白虫 H78 基因组中的两个开放阅读框(ORF)(H78_01960/01961)编码,是一种 LuxI/R 型 QS 系统。H78 产生四种长链酰基高丝氨酸内酯(AHL)信号分子,即 3-OH-C10-HSL、3-OH-C12-HSL、C12-HSL 和 3-OH-C14-HSL。这些 AHL 的生物合成由 PpqI 合成酶催化,在 H78 和异源表达的大肠杆菌中由 PpqR 调节器激活。PpqR 通过靶向 ppqI 启动子上游的 lux 框与相应的 AHL 合作激活 ppqI 的表达。上述四种 AHL 诱导 ppqI 启动子表达的能力各不相同,其中 3-OH-C12-HSL 的诱导活性最高。在H78细胞中,ppqI/R的表达是由双组分系统GacS/A和RNA伴侣Hfq激活的。次生代谢中 PpqI/R 系统的差异调控对 DAPG 的生物合成和 ped 操作子(参与挥发性有机化合物的生物合成)的表达有负面影响。相反,Plt 的生物合成和 prn 操作子的表达则受到 PpqI/R 的正向调节。总之,PpqI/R 是蛋白胨中第一个具有特征的 QS 系统,它由 GacS/A 和 Hfq 激活,控制次生代谢产物(包括抗生素)的表达。
{"title":"Discovery and characterization of the PpqI/R quorum sensing system activated by GacS/A and Hfq in Pseudomonas protegens H78","authors":"","doi":"10.1016/j.micres.2024.127868","DOIUrl":"10.1016/j.micres.2024.127868","url":null,"abstract":"<div><p><em>Pseudomonas protegens</em> can generally produce multiple antibiotics including pyoluteorin (Plt), 2,4-diacetylphloroglucinol (DAPG), and pyrrolnitrin (Prn). In this study, we discovered and characterized a quorum sensing (QS) system, PpqI/R, in <em>P. protegens</em> H78. PpqI/R, encoded by two open reading frames (ORFs) (H78_01960/01961) in <em>P. protegens</em> H78 genome, is a LuxI/R-type QS system. Four long-chain acyl homoserine lactone (AHL) signaling molecules, 3-OH-C<sub>10</sub>-HSL, 3-OH-C<sub>12</sub>-HSL, C<sub>12</sub>-HSL, and 3-OH-C<sub>14</sub>-HSL, are produced by H78. Biosynthesis of these AHLs is catalyzed by PpqI synthase and activated by the PpqR regulator in H78 and in <em>Escherichia coli</em> when heterologously expressed. PpqR activates <em>ppqI</em> expression by targeting the <em>lux</em> box upstream of the <em>ppqI</em> promoter in cooperation with corresponding AHLs. The four aforementioned AHLs exhibited different capabilities to induce <em>ppqI</em> promoter expression, with 3-OH-C<sub>12</sub>-HSL showing the highest induction activity. In H78 cells, <em>ppqI/R</em> expression is activated by the two-component system GacS/A and the RNA chaperone Hfq. Differential regulation of the PpqI/R system in secondary metabolism has a negative effect on DAPG biosynthesis and <em>ped</em> operon (involved in volatile organic compound biosynthesis) expression. In contrast, Plt biosynthesis and <em>prn</em> operon expression were positively regulated by PpqI/R. In summary, PpqI/R, the first characterized QS system in <em>P. protegens,</em> is activated by GacS/A and Hfq and controls the expression of secondary metabolites, including antibiotics.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the role of a novel postbiotic bile acid: Interplay with gut microbiota, modulation of the farnesoid X receptor, and prospects for clinical translation 探索新型生物后胆汁酸的作用:与肠道微生物群的相互作用、法呢样 X 受体的调节以及临床转化前景。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-05 DOI: 10.1016/j.micres.2024.127865

The gut microbiota, mainly resides in the colon, possesses a remarkable ability to metabolize different substrates to create bioactive substances, including short-chain fatty acids, indole-3-propionic acid, and secondary bile acids. In the liver, bile acids are synthesized from cholesterol and then undergo modification by the gut microbiota. Beyond those reclaimed by the enterohepatic circulation, small percentage of bile acids escaped reabsorption, entering the systemic circulation to bind to several receptors, such as farnesoid X receptor (FXR), thereby exert their biological effects. Gut microbiota interplays with bile acids by affecting their synthesis and determining the production of secondary bile acids. Reciprocally, bile acids shape out the structure of gut microbiota. The interplay of bile acids and FXR is involved in the development of multisystemic conditions, encompassing metabolic diseases, hepatobiliary diseases, immune associated disorders. In the review, we aim to provide a thorough review of the intricate crosstalk between the gut microbiota and bile acids, the physiological roles of bile acids and FXR in mammals’ health and disease, and the clinical translational considerations of gut microbiota-bile acids-FXR in the treatment of the diseases.

肠道微生物群主要存在于结肠中,具有代谢不同底物生成生物活性物质的卓越能力,包括短链脂肪酸、吲哚-3-丙酸和次级胆汁酸。在肝脏中,胆汁酸由胆固醇合成,然后经过肠道微生物群的修饰。除了被肠肝循环回收的胆汁酸外,还有一小部分胆汁酸逃脱了重吸收,进入全身循环,与法尼类固醇 X 受体(FXR)等多种受体结合,从而发挥其生物效应。肠道微生物群与胆汁酸相互作用,影响胆汁酸的合成并决定次级胆汁酸的产生。反过来,胆汁酸也塑造了肠道微生物群的结构。胆汁酸和 FXR 的相互作用涉及多种系统疾病的发展,包括代谢性疾病、肝胆疾病和免疫相关疾病。在这篇综述中,我们旨在全面回顾肠道微生物群与胆汁酸之间错综复杂的相互作用、胆汁酸和 FXR 在哺乳动物健康和疾病中的生理作用,以及肠道微生物群-胆汁酸-FXR 在疾病治疗中的临床转化考虑。
{"title":"Exploring the role of a novel postbiotic bile acid: Interplay with gut microbiota, modulation of the farnesoid X receptor, and prospects for clinical translation","authors":"","doi":"10.1016/j.micres.2024.127865","DOIUrl":"10.1016/j.micres.2024.127865","url":null,"abstract":"<div><p>The gut microbiota, mainly resides in the colon, possesses a remarkable ability to metabolize different substrates to create bioactive substances, including short-chain fatty acids, indole-3-propionic acid, and secondary bile acids. In the liver, bile acids are synthesized from cholesterol and then undergo modification by the gut microbiota. Beyond those reclaimed by the enterohepatic circulation, small percentage of bile acids escaped reabsorption, entering the systemic circulation to bind to several receptors, such as farnesoid X receptor (FXR), thereby exert their biological effects. Gut microbiota interplays with bile acids by affecting their synthesis and determining the production of secondary bile acids. Reciprocally, bile acids shape out the structure of gut microbiota. The interplay of bile acids and FXR is involved in the development of multisystemic conditions, encompassing metabolic diseases, hepatobiliary diseases, immune associated disorders. In the review, we aim to provide a thorough review of the intricate crosstalk between the gut microbiota and bile acids, the physiological roles of bile acids and FXR in mammals’ health and disease, and the clinical translational considerations of gut microbiota-bile acids-FXR in the treatment of the diseases.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kobresia humilis via root-released flavonoids recruit Bacillus for promoted growth Kobresia humilis 通过根释放的黄酮类化合物招募芽孢杆菌,促进生长。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-04 DOI: 10.1016/j.micres.2024.127866

Alpine meadows, which are critical for biodiversity and ecosystem services, are increasingly degrading, necessitating effective restoration strategies. This study explored the mechanism by which Kobresia humilis, an alpine meadow-constructive species, modulates the rhizosphere microbiome via root exudates to enhance growth. Field investigations revealed that the plant height of K. humilis in a severely degraded (SD) alpine meadow was significantly higher than that in other K. humilis populations. Consequently, we analysed the differences between this plot and other K. humilis samples with different degrees of degradation to explore the reasons underlying the phenotypic differences in K. humilis. 16 S rRNA amplicon sequencing results showed that the SD plots were significantly enriched with more Bacillus, altering the composition of the rhizosphere microbial community of K. humilis. The collection and analysis of root exudates from various K. humilis locations revealed distinct differences. Procrustes analysis indicated a strong correlation between the root exudates and the rhizosphere microbiome composition of K. humilis. Model-based integration of metabolite observations, species abundance 2 (MIMOSA2), and Spearman's rank correlation coefficient analysis were used to identify the root exudates potentially related to the enrichment and recruitment of Bacillus. Bacillus from SD samples was isolated and screened, and the representative strain D334 was found to be differentially enriched compared to other samples. A series of in vitro experiments with the screened root exudates and strain D334 demonstrated that K. humilis could recruit Bacillus and promote its colonisation by releasing flavonoids, particularly baicalin. Additionally, K. humilis can release sucrose and riboflavin, which promote strain growth. Finally, soil microbiome transplantation experiments confirmed that different K. humilis phenotypes were closely related to the functions of the rhizosphere microbiome, especially in root morphological shaping. Moreover, the effects of Bacillus inoculation and the microbiome on the plant phenotypes were consistent. In summary, this study revealed a new mechanism by which K. humilis recruits rhizosphere growth-promoting bacteria and enhances soil nutrient utilisation, thereby promoting plant growth. These findings provide a theoretical basis for ecological restoration using soil microbial communities and clarify the relationship between plant metabolites and microbial community assembly.

对生物多样性和生态系统服务至关重要的高山草甸正日益退化,需要采取有效的恢复策略。本研究探讨了高山草甸构建物种蒿草(Kobresia humilis)通过根部渗出物调节根瘤微生物群以促进生长的机制。实地调查显示,在严重退化(SD)的高山草甸上,K. humilis的株高明显高于其他K. humilis种群。因此,我们分析了该地块与其他不同退化程度的蒿草样本之间的差异,以探索蒿草表型差异的原因。16 S rRNA 扩增子测序结果显示,降解地块明显富含更多的芽孢杆菌,改变了蒿草根瘤微生物群落的组成。从不同地点收集和分析蒿草根部渗出物发现了明显的差异。Procrustes 分析表明,根部渗出物与蒿草根瘤微生物群组成之间存在很强的相关性。利用基于模型的代谢物观测整合、物种丰度 2(MIMOSA2)和斯皮尔曼等级相关系数分析,确定了可能与芽孢杆菌的富集和招募有关的根外渗物。对 SD 样本中的芽孢杆菌进行了分离和筛选,发现代表性菌株 D334 与其他样本相比富集程度不同。利用筛选出的根部渗出物和菌株 D334 进行的一系列体外实验表明,腐霉菌可以招募芽孢杆菌,并通过释放黄酮类化合物(尤其是黄芩苷)促进芽孢杆菌的定殖。此外,腐霉菌还能释放蔗糖和核黄素,促进菌株生长。最后,土壤微生物组移植实验证实,不同的 K. humilis 表型与根圈微生物组的功能密切相关,尤其是在根系形态塑造方面。此外,芽孢杆菌接种和微生物组对植物表型的影响是一致的。总之,本研究揭示了一种新的机制,通过这种机制,K. humilis可以招募根圈生长促进菌,提高土壤养分利用率,从而促进植物生长。这些发现为利用土壤微生物群落进行生态恢复提供了理论依据,并阐明了植物代谢产物与微生物群落组装之间的关系。
{"title":"Kobresia humilis via root-released flavonoids recruit Bacillus for promoted growth","authors":"","doi":"10.1016/j.micres.2024.127866","DOIUrl":"10.1016/j.micres.2024.127866","url":null,"abstract":"<div><p>Alpine meadows, which are critical for biodiversity and ecosystem services, are increasingly degrading, necessitating effective restoration strategies. This study explored the mechanism by which <em>Kobresia humilis</em>, an alpine meadow-constructive species, modulates the rhizosphere microbiome via root exudates to enhance growth. Field investigations revealed that the plant height of <em>K. humilis</em> in a severely degraded (SD) alpine meadow was significantly higher than that in other <em>K. humilis</em> populations. Consequently, we analysed the differences between this plot and other <em>K. humilis</em> samples with different degrees of degradation to explore the reasons underlying the phenotypic differences in <em>K. humilis</em>. 16 S rRNA amplicon sequencing results showed that the SD plots were significantly enriched with more <em>Bacillus</em>, altering the composition of the rhizosphere microbial community of <em>K. humilis</em>. The collection and analysis of root exudates from various <em>K. humilis</em> locations revealed distinct differences. Procrustes analysis indicated a strong correlation between the root exudates and the rhizosphere microbiome composition of <em>K. humilis</em>. Model-based integration of metabolite observations, species abundance 2 (MIMOSA2), and Spearman's rank correlation coefficient analysis were used to identify the root exudates potentially related to the enrichment and recruitment of <em>Bacillus</em>. <em>Bacillus</em> from SD samples was isolated and screened, and the representative strain D334 was found to be differentially enriched compared to other samples. A series of in vitro experiments with the screened root exudates and strain D334 demonstrated that <em>K. humilis</em> could recruit <em>Bacillus</em> and promote its colonisation by releasing flavonoids, particularly baicalin. Additionally, <em>K. humilis</em> can release sucrose and riboflavin, which promote strain growth. Finally, soil microbiome transplantation experiments confirmed that different <em>K. humilis</em> phenotypes were closely related to the functions of the rhizosphere microbiome, especially in root morphological shaping. Moreover, the effects of <em>Bacillus</em> inoculation and the microbiome on the plant phenotypes were consistent. In summary, this study revealed a new mechanism by which <em>K. humilis</em> recruits rhizosphere growth-promoting bacteria and enhances soil nutrient utilisation, thereby promoting plant growth. These findings provide a theoretical basis for ecological restoration using soil microbial communities and clarify the relationship between plant metabolites and microbial community assembly.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptability of the gut microbiota of the German cockroach Blattella germanica to a periodic antibiotic treatment 德国蜚蠊肠道微生物群对定期抗生素治疗的适应性。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-03 DOI: 10.1016/j.micres.2024.127863

High-throughput sequencing studies have shown that diet or antimicrobial treatments impact animal gut microbiota equilibrium. However, properties related to the gut microbial ecosystem stability, such as resilience, resistance, or functional redundancy, must be better understood. To shed light on these ecological processes, we combined advanced statistical methods with 16 S rRNA gene sequencing, functional prediction, and fitness analyses in the gut microbiota of the cockroach Blattella germanica subject to three periodic pulses of the antibiotic (AB) kanamycin (n=512). We first confirmed that AB did not significantly affect cockroaches' biological fitness, and gut microbiota changes were not caused by insect physiology alterations. The sex variable was examined for the first time in this species, and no statistical differences in the gut microbiota diversity or composition were found. The comparison of the gut microbiota dynamics in control and treated populations revealed that (1) AB treatment decreases diversity and completely disrupts the co-occurrence networks between bacteria, significantly altering the gut community structure. (2) Although AB also affected the genetic composition, functional redundancy would explain a smaller effect on the functional potential than on the taxonomic composition. (3) As predicted by Taylor's law, AB generally affected the most abundant taxa to a lesser extent than the less abundant taxa. (4) Taxa follow different trends in response to ABs, highlighting "resistant taxa," which could be critical for community restoration. (5) The gut microbiota recovered faster after the three AB pulses, suggesting that gut microbiota adapts to repeated treatments.

高通量测序研究表明,饮食或抗菌治疗会影响动物肠道微生物群的平衡。然而,必须更好地了解与肠道微生物生态系统稳定性相关的特性,如恢复力、抵抗力或功能冗余。为了揭示这些生态过程,我们将先进的统计方法与 16 S rRNA 基因测序、功能预测和适应性分析相结合,研究了受到三种周期性抗生素(AB)卡那霉素影响的德国蜚蠊(n=512)的肠道微生物群。我们首先确认,抗生素对蟑螂的生物适应性没有明显影响,肠道微生物群的变化不是由昆虫生理变化引起的。我们首次对该物种的性别变量进行了研究,结果发现肠道微生物群的多样性和组成没有统计学差异。对照种群和处理种群的肠道微生物群动态比较显示:(1)AB 处理降低了多样性,完全破坏了细菌之间的共生网络,显著改变了肠道群落结构。(2)虽然 AB 也影响遗传组成,但功能冗余对功能潜力的影响小于对分类组成的影响。(3) 正如泰勒定律所预测的那样,AB 对数量最多的类群的影响一般小于数量较少的类群。(4) 分类群对 AB 的反应趋势不同,突出了 "抗性分类群",这可能对群落恢复至关重要。(5)肠道微生物群在三次AB脉冲后恢复较快,表明肠道微生物群能适应重复处理。
{"title":"Adaptability of the gut microbiota of the German cockroach Blattella germanica to a periodic antibiotic treatment","authors":"","doi":"10.1016/j.micres.2024.127863","DOIUrl":"10.1016/j.micres.2024.127863","url":null,"abstract":"<div><p>High-throughput sequencing studies have shown that diet or antimicrobial treatments impact animal gut microbiota equilibrium. However, properties related to the gut microbial ecosystem stability, such as resilience, resistance, or functional redundancy, must be better understood. To shed light on these ecological processes, we combined advanced statistical methods with 16 S rRNA gene sequencing, functional prediction, and fitness analyses in the gut microbiota of the cockroach <em>Blattella germanica</em> subject to three periodic pulses of the antibiotic (AB) kanamycin (n=512). We first confirmed that AB did not significantly affect cockroaches' biological fitness, and gut microbiota changes were not caused by insect physiology alterations. The sex variable was examined for the first time in this species, and no statistical differences in the gut microbiota diversity or composition were found. The comparison of the gut microbiota dynamics in control and treated populations revealed that (1) AB treatment decreases diversity and completely disrupts the co-occurrence networks between bacteria, significantly altering the gut community structure. (2) Although AB also affected the genetic composition, functional redundancy would explain a smaller effect on the functional potential than on the taxonomic composition. (3) As predicted by Taylor's law, AB generally affected the most abundant taxa to a lesser extent than the less abundant taxa. (4) Taxa follow different trends in response to ABs, highlighting \"resistant taxa,\" which could be critical for community restoration. (5) The gut microbiota recovered faster after the three AB pulses, suggesting that gut microbiota adapts to repeated treatments.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944501324002647/pdfft?md5=52a39a5bc48555f022c32d60933a4cf0&pid=1-s2.0-S0944501324002647-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling the secondary metabolome and biocontrol potential of the recently described species Bacillus nakamurai 揭示最近描述的物种中村芽孢杆菌的次级代谢组和生物防治潜力
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-02 DOI: 10.1016/j.micres.2024.127841

In the prospect of novel potential biocontrol agents, a new strain BDI-IS1 belonging to the recently described Bacillus nakamurai was selected for its strong in vitro antimicrobial activities against a range of bacterial and fungal phytopathogens. Genome mining coupled with metabolomics revealed that BDI-IS1 produces multiple non-ribosomal secondary metabolites including surfactin, iturin A, bacillaene, bacillibactin and bacilysin, together with some some ribosomally-synthesized and post-translationally modified peptides (RiPPs) such as plantazolicin, and potentially amylocyclicin, bacinapeptin and LCI. Reverse genetics further showed the specific involvement of some of these compounds in the antagonistic activity of the strain. Comparative genomics between the five already sequenced B. nakamurai strains showed that non-ribosomal products constitute the core metabolome of the species while RiPPs are more strain-specific. Although the secondary metabolome lacks some key bioactive metabolites found in B. velezensis, greenhouse experiments show that B. nakamurai BDI-IS1 is able to protect tomato and maize plants against early blight and northern leaf blight caused by Alternaria solani and Exserohilum turcicum, respectively, at levels similar to or better than B. velezensis QST713. The reduction of these foliar diseases, following root or leaf application of the bacterial suspension demonstrates that BDI-IS1 can act by direct antibiosis and by inducing plant defence mechanisms. These findings indicate that B. nakamurai BDI-IS1 can be considered as a good candidate for biocontrol of plant diseases prevailing in tropical regions, and encourage further research into its spectrum of activity, its requirements and the conditions needed to ensure its efficacy.

在研究新型潜在生物控制剂的过程中,选取了属于最近描述的中村芽孢杆菌(Bacillus nakamurai)的新菌株 BDI-IS1,因为它对一系列细菌和真菌植物病原体具有很强的体外抗菌活性。通过基因组挖掘和代谢组学研究发现,BDI-IS1 产生多种非核糖体次级代谢产物,包括表面活性素、iturin A、bacillaene、bacillibactin 和 bacilysin,以及一些核糖体合成和翻译后修饰肽(RiPPs),如 plantazolicin,还有可能是 amylocyclicin、bacinapeptin 和 LCI。反向遗传学进一步表明,其中一些化合物在该菌株的拮抗活性中具有特定的参与作用。已测序的五个中村节肢动物菌株之间的比较基因组学研究表明,非核糖体产物构成了该物种的核心代谢组,而RiPPs则更具菌株特异性。虽然次生代谢组缺乏在 B. velezensis 中发现的一些关键生物活性代谢物,但温室实验表明,B. nakamurai BDI-IS1 能够保护番茄和玉米植株免受由 Alternaria solani 和 Exserohilum turcicum 分别引起的早疫病和北方叶枯病的侵害,其保护水平与 B. velezensis QST713 相似或更高。在根部或叶片施用细菌悬浮液后,这些叶面病害都有所减轻,这表明 BDI-IS1 可通过直接抗生素作用和诱导植物防御机制发挥作用。这些研究结果表明,B. nakamurai BDI-IS1 可被视为热带地区植物病害生物防治的理想候选菌种,并鼓励进一步研究其活性范围、要求以及确保其功效所需的条件。
{"title":"Unravelling the secondary metabolome and biocontrol potential of the recently described species Bacillus nakamurai","authors":"","doi":"10.1016/j.micres.2024.127841","DOIUrl":"10.1016/j.micres.2024.127841","url":null,"abstract":"<div><p>In the prospect of novel potential biocontrol agents, a new strain BDI-IS1 belonging to the recently described <em>Bacillus nakamurai</em> was selected for its strong <em>in vitro</em> antimicrobial activities against a range of bacterial and fungal phytopathogens. Genome mining coupled with metabolomics revealed that BDI-IS1 produces multiple non-ribosomal secondary metabolites including surfactin, iturin A, bacillaene, bacillibactin and bacilysin, together with some some ribosomally-synthesized and post-translationally modified peptides (RiPPs) such as plantazolicin, and potentially amylocyclicin, bacinapeptin and LCI. Reverse genetics further showed the specific involvement of some of these compounds in the antagonistic activity of the strain. Comparative genomics between the five already sequenced <em>B. nakamurai</em> strains showed that non-ribosomal products constitute the core metabolome of the species while RiPPs are more strain-specific. Although the secondary metabolome lacks some key bioactive metabolites found in <em>B. velezensis</em>, greenhouse experiments show that <em>B. nakamurai</em> BDI-IS1 is able to protect tomato and maize plants against early blight and northern leaf blight caused by <em>Alternaria solani</em> and <em>Exserohilum turcicum</em>, respectively, at levels similar to or better than <em>B. velezensis</em> QST713. The reduction of these foliar diseases, following root or leaf application of the bacterial suspension demonstrates that BDI-IS1 can act by direct antibiosis and by inducing plant defence mechanisms. These findings indicate that <em>B. nakamurai</em> BDI-IS1 can be considered as a good candidate for biocontrol of plant diseases prevailing in tropical regions, and encourage further research into its spectrum of activity, its requirements and the conditions needed to ensure its efficacy.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944501324002428/pdfft?md5=fffc26b9c220475bd011d61204b1e754&pid=1-s2.0-S0944501324002428-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endophytic microbial diversity associated with commercial cultivar and crop wild relative banana variety could provide clues for microbial community management 与香蕉商业栽培品种和作物野生近缘种相关的内生微生物多样性可为微生物群落管理提供线索。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-02 DOI: 10.1016/j.micres.2024.127862

Endophytes, microorganisms inhabiting internal plant tissues, play a pivotal role in plant growth and disease resistance. Moreover, previous studies have established that Musa plants derive disease protective functions from their microbiome. Notably, one of the crop wild relatives of banana, the Calcutta 4 variety, exhibits resistance to various phytopathogens such as Pseudocercospora fijiensis (P. fijiensis), while the Williams commercial cultivar (cv.) is highly susceptible. Therefore, this study aims primarily to characterize and compare the endophytic microbiota composition of Calcutta 4 and Williams banana plants when grown sympatrically. Alongside, differences in endophytic microbiome between plant sections (shoot or roots), growth phases (in vitro or greenhouse) and fitness factors such as the addition of plant growth-promoting bacteria Bacillus subtilis EA-CB0575 (T2 treatment) or infection by P. fijiensis (T3 treatment) were examined. Both culture-dependent and -independent techniques were used to evaluate these differences and assess the culturability of banana endophytes under varying conditions. Microbial cultures resulted in 331 isolates distributed across 54 genera when all treatments were evaluated, whereas 16 S sequencing produced 9510 ASVs assigned in 1456 genera. Alpha and beta diversity exhibited significant differences based on plant section, with an increase in phylogenetic diversity observed in plants with pathogen infection (T3) compared to control plants (T1). Additionally, four differentially abundant genera associated with nitrogen metabolism were identified in T3 plants and seven genera showed differential abundance when comparing varieties. When culture-dependent and -independent methods were compared, it was found that isolates represented 3.7 % of the genera detected by culture-independent methods, accounting for 12–41 % of the total data depending on the treatment. These results are crucial for proposing management strategies derived from crop wild relatives to enhance the resilience of susceptible commercial varieties against fitness factors affecting crop development. Additionally, they help to decipher the pathogenic effects of P. fijiensis in banana plants and advance the understanding of how plant domestication influences the endosphere.

内生菌是栖息在植物内部组织中的微生物,在植物生长和抗病方面发挥着关键作用。此外,先前的研究已经证实,穆萨植物从其微生物群中获得了疾病保护功能。值得注意的是,香蕉的作物野生近缘种之一加尔各答 4 号(Calcutta 4)表现出对各种植物病原体(如斐济假丝酵母菌(P. fijiensis))的抗性,而威廉姆斯(Williams)商业栽培品种(cv.)则非常易感。因此,本研究的主要目的是表征和比较加尔各答 4 号和威廉姆斯香蕉共生时的内生微生物群组成。同时,研究还考察了不同植物部位(芽或根)、不同生长阶段(离体或温室)和不同适应性因素(如添加促进植物生长的枯草芽孢杆菌 EA-CB0575(T2 处理)或被 P. fijiensis 感染(T3 处理))之间内生微生物群的差异。使用了依赖培养和不依赖培养的技术来评估这些差异,并评估香蕉内生菌在不同条件下的可培养性。在对所有处理进行评估时,微生物培养产生了 331 个分离物,分布在 54 个属中,而 16 S 测序产生了 9510 个 ASV,分布在 1456 个属中。阿尔法和贝塔多样性在不同植株上表现出显著差异,与对照植株(T1)相比,病原体感染植株(T3)的系统发育多样性有所增加。此外,在 T3 植株中还发现了与氮代谢相关的 4 个丰度不同的属,在比较品种时,有 7 个属的丰度出现差异。在对依赖培养和不依赖培养的方法进行比较时,发现分离菌属占不依赖培养方法检测到的菌属的 3.7%,占总数据的 12-41%,具体取决于处理方法。这些结果对于提出源自作物野生近缘种的管理策略,以提高易感商业品种对影响作物生长发育的适应性因素的抗逆性至关重要。此外,这些结果还有助于破译 P. fijiensis 对香蕉植物的致病作用,并促进对植物驯化如何影响内圈的理解。
{"title":"Endophytic microbial diversity associated with commercial cultivar and crop wild relative banana variety could provide clues for microbial community management","authors":"","doi":"10.1016/j.micres.2024.127862","DOIUrl":"10.1016/j.micres.2024.127862","url":null,"abstract":"<div><p>Endophytes, microorganisms inhabiting internal plant tissues, play a pivotal role in plant growth and disease resistance. Moreover, previous studies have established that <em>Musa</em> plants derive disease protective functions from their microbiome. Notably, one of the crop wild relatives of banana, the Calcutta 4 variety, exhibits resistance to various phytopathogens such as <em>Pseudocercospora fijiensis</em> (<em>P. fijiensis</em>), while the Williams commercial cultivar (cv.) is highly susceptible. Therefore, this study aims primarily to characterize and compare the endophytic microbiota composition of Calcutta 4 and Williams banana plants when grown sympatrically. Alongside, differences in endophytic microbiome between plant sections (shoot or roots), growth phases (<em>in vitro</em> or greenhouse) and fitness factors such as the addition of plant growth-promoting bacteria <em>Bacillus subtilis</em> EA-CB0575 (T2 treatment) or infection by <em>P. fijiensis</em> (T3 treatment) were examined. Both culture-dependent and -independent techniques were used to evaluate these differences and assess the culturability of banana endophytes under varying conditions. Microbial cultures resulted in 331 isolates distributed across 54 genera when all treatments were evaluated, whereas <em>16 S</em> sequencing produced 9510 ASVs assigned in 1456 genera. Alpha and beta diversity exhibited significant differences based on plant section, with an increase in phylogenetic diversity observed in plants with pathogen infection (T3) compared to control plants (T1). Additionally, four differentially abundant genera associated with nitrogen metabolism were identified in T3 plants and seven genera showed differential abundance when comparing varieties. When culture-dependent and -independent methods were compared, it was found that isolates represented 3.7 % of the genera detected by culture-independent methods, accounting for 12–41 % of the total data depending on the treatment. These results are crucial for proposing management strategies derived from crop wild relatives to enhance the resilience of susceptible commercial varieties against fitness factors affecting crop development. Additionally, they help to decipher the pathogenic effects of <em>P. fijiensis</em> in banana plants and advance the understanding of how plant domestication influences the endosphere.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944501324002635/pdfft?md5=eb55da9021cbfb39c09200c035c60b1e&pid=1-s2.0-S0944501324002635-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microbiological research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1