首页 > 最新文献

Microbiological research最新文献

英文 中文
A combination of physiology, metabolomics, and genetics reveals the two-component system ResS/ResR-mediated Fe and Al release from biotite by Pseudomonas pergaminensis F77 生理学、代谢组学和遗传学的结合揭示了由假单胞菌 Pergaminensis F77 介导的双组分系统 ResS/ResR 从生物岩中释放铁和铝。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-31 DOI: 10.1016/j.micres.2024.127861

Understanding of the mechanisms on bacteria-regulated mineral dissolution functions is important for further insight into mineral-microbe interactions. The functions of the two-component system have been studied. However, the molecular mechanisms involved in bacterial two-component system-mediated mineral dissolution are poorly understood. Here, the two-component regulatory system ResS/ResR in the mineral-solubilizing bacterium Pseudomonas pergaminensis F77 was characterized for its involvement in biotite dissolution. Strain F77 and the F77ΔresS, F77ΔresR, and F77ΔresS/R mutants were constructed and compared for the ResS/ResR system-mediated Fe and Al release from biotite in the medium and the mechanisms involved. After 3 days of incubation, the F77ΔresS, F77ΔresR, and F77ΔresS/R mutants significantly decreased the Fe and Al concentrations in the medium compared with F77. The F77ΔresS/R mutant had a greater impact on Fe and Al release from biotite than did the F77ΔresS or F77ΔresR mutant. The F77∆resS/R mutant exhibited significantly reduced Fe and Al concentrations by 21–61 % between 12 h and 48 h of incubation compared with F77. Significantly increased pH values and decreased cell counts on the mineral surfaces were found in the presence of the F77∆resS/R mutant compared with those in the presence of F77 between 12 h and 48 h of incubation. Metabolomic analysis revealed that the extracellular metabolites associated with biotite dissolution were downregulated in the F77ΔresS/R mutant. These downregulated metabolites included GDP-fucose, 20-carboxyleukotriene B4, PGP (16:1(9Z)/16:0), 3′,5′-cyclic AMP, and a variety of acidic metabolites involved in carbohydrate, amino acid, and lipid metabolisms, glycan biosynthesis, and cellular community function. Furthermore, the expression levels of the genes involved in the production of these metabolites were downregulated in the F77ΔresS/R mutant compared with those in F77. Our findings suggested that the ResS/ResR system in F77 contributed to mineral dissolution by mediating the production of mineral-solubilizing related extracellular metabolites and bacterial adsorption on mineral surface.

了解细菌调节矿物溶解功能的机制对于进一步了解矿物与微生物之间的相互作用非常重要。人们已经对双组分系统的功能进行了研究。然而,人们对细菌双组分系统介导矿物溶解的分子机制知之甚少。在此,研究人员对矿物溶解假单胞菌 F77 中的双组分调控系统 ResS/ResR 进行了表征,以确定其在矿物溶解过程中的参与情况。研究人员构建了菌株 F77 和 F77ΔresS、F77ΔresR 和 F77ΔresS/R 突变体,并比较了 ResS/ResR 系统介导的培养基中生物岩铁和铝的释放及其机制。培养 3 天后,与 F77 相比,F77ΔresS、F77ΔresR 和 F77ΔresS/R 突变体显著降低了培养基中铁和铝的浓度。与 F77ΔresS 或 F77ΔresR 突变体相比,F77ΔresS/R 突变体对生物铁矿石中铁和铝释放的影响更大。与 F77 相比,F77ΔresS/R 突变体在培养 12 小时至 48 小时期间的铁和铝浓度明显降低了 21-61%。与 F77 相比,F77ΔresS/R 突变体存在时,矿物表面的 pH 值明显升高,细胞数量减少。代谢组分析表明,在 F77ΔresS/R 突变体中,与生物岩溶解有关的细胞外代谢物被下调。这些下调的代谢物包括 GDP-岩藻糖、20-羧基白三烯 B4、PGP (16:1(9Z)/16:0)、3',5'-环 AMP,以及涉及碳水化合物、氨基酸和脂质代谢、糖类生物合成和细胞群落功能的多种酸性代谢物。此外,与 F77 相比,参与产生这些代谢物的基因在 F77ΔresS/R 突变体中的表达水平下调。我们的研究结果表明,F77中的ResS/ResR系统通过介导矿物溶解相关胞外代谢物的产生和细菌在矿物表面的吸附,促进了矿物的溶解。
{"title":"A combination of physiology, metabolomics, and genetics reveals the two-component system ResS/ResR-mediated Fe and Al release from biotite by Pseudomonas pergaminensis F77","authors":"","doi":"10.1016/j.micres.2024.127861","DOIUrl":"10.1016/j.micres.2024.127861","url":null,"abstract":"<div><p>Understanding of the mechanisms on bacteria-regulated mineral dissolution functions is important for further insight into mineral-microbe interactions. The functions of the two-component system have been studied. However, the molecular mechanisms involved in bacterial two-component system-mediated mineral dissolution are poorly understood. Here, the two-component regulatory system ResS/ResR in the mineral-solubilizing bacterium <em>Pseudomonas pergaminensis</em> F77 was characterized for its involvement in biotite dissolution. Strain F77 and the F77Δ<em>resS</em>, F77Δ<em>resR</em>, and F77Δ<em>resS/R</em> mutants were constructed and compared for the ResS/ResR system-mediated Fe and Al release from biotite in the medium and the mechanisms involved. After 3 days of incubation, the F77Δ<em>resS</em>, F77Δ<em>resR</em>, and F77Δ<em>resS/R</em> mutants significantly decreased the Fe and Al concentrations in the medium compared with F77. The F77Δ<em>resS/R</em> mutant had a greater impact on Fe and Al release from biotite than did the F77Δ<em>resS</em> or F77Δ<em>resR</em> mutant. The F77∆<em>resS/R</em> mutant exhibited significantly reduced Fe and Al concentrations by 21–61 % between 12 h and 48 h of incubation compared with F77. Significantly increased pH values and decreased cell counts on the mineral surfaces were found in the presence of the F77∆<em>resS/R</em> mutant compared with those in the presence of F77 between 12 h and 48 h of incubation. Metabolomic analysis revealed that the extracellular metabolites associated with biotite dissolution were downregulated in the F77Δ<em>resS/R</em> mutant. These downregulated metabolites included GDP-fucose, 20-carboxyleukotriene B4, PGP (16:1(9Z)/16:0), 3′,5′-cyclic AMP, and a variety of acidic metabolites involved in carbohydrate, amino acid, and lipid metabolisms, glycan biosynthesis, and cellular community function. Furthermore, the expression levels of the genes involved in the production of these metabolites were downregulated in the F77Δ<em>resS/R</em> mutant compared with those in F77. Our findings suggested that the ResS/ResR system in F77 contributed to mineral dissolution by mediating the production of mineral-solubilizing related extracellular metabolites and bacterial adsorption on mineral surface.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BrfA functions as a bacterial enhancer-binding protein to regulate functional amyloid Fap-dependent biofilm formation in Pseudomonas fluorescens by sensing cyclic diguanosine monophosphate BrfA 作为一种细菌增强子结合蛋白,通过感知环状单磷酸二鸟苷来调节荧光假单胞菌中功能性淀粉样蛋白 Fap 依赖性生物膜的形成。
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-31 DOI: 10.1016/j.micres.2024.127864

The functional amyloid of Pseudomonas (Fap) is essential for the formation of macrocolony biofilms, pellicles, and solid surface-associated (SSA) biofilms of Pseudomonas fluorescens PF07, an isolate from refrigerated marine fish. However, limited information on the expression regulation of fap genes is available. Herein, we found that a novel bacterial enhancer-binding protein (bEBP), BrfA, regulated Fap-dependent biofilm formation by directly sensing cyclic diguanosine monophosphate (c-di-GMP). Our in vivo data showed that the REC domain deletion of BrfA promoted fap gene expression and biofilm formation, and c-di-GMP positively regulated the transcription of fapA in a BrfA-dependent manner. In in vitro experiments, we found that the ATPase activity of BrfA was inhibited by the REC domain and was activated by c-di-GMP. BrfA and the sigma factor RpoN bound to the upstream region of fapA, and the binding ability of BrfA was not affected by either deletion of the REC domain or c-di-GMP. BrfA specifically bound to the three enhancer sites upstream of the fapA promoter, which contain the consensus sequence CA-(N4)-TGA(A/T)ACACC. In vivo experiments using a lacZ fusion reporter indicated that all three BrfA enhancer sites were essential for the activation of fapA transcription. Overall, these findings reveal that BrfA is a new type of c-di-GMP-responsive transcription factor that directly controls the transcription of Fap biosynthesis genes in P. fluorescens. Fap functional amyloids and BrfA-type transcription factors are widespread in Pseudomonas species. The novel insights into the c-di-GMP- and BrfA-dependent expression regulation of fap provided by this work will contribute to the development of antibiofilm strategies.

假单胞菌的功能性淀粉样蛋白(Fap)是冷藏海鱼中分离出的荧光假单胞菌 PF07 形成大菌落生物膜、胶粒和固体表面相关(SSA)生物膜的关键。然而,有关 fap 基因表达调控的信息非常有限。在本文中,我们发现一种新型细菌增强子结合蛋白(bEBP)--BrfA--通过直接感知环二鸟苷单磷酸(c-di-GMP)来调控Fap依赖性生物膜的形成。我们的体内数据显示,BrfA的REC结构域缺失促进了fap基因的表达和生物膜的形成,而c-di-GMP以依赖BrfA的方式正向调节fapA的转录。在体外实验中,我们发现 BrfA 的 ATPase 活性受到 REC 结构域的抑制,并被 c-di-GMP 激活。BrfA 和σ因子 RpoN 与 fapA 上游区域结合,BrfA 的结合能力不受 REC 结构域缺失或 c-di-GMP 的影响。BrfA 与 fapA 启动子上游的三个增强子位点特异性结合,这三个位点包含共识序列 CA-(N4)-TGA(A/T)ACACC。使用 lacZ 融合报告基因进行的体内实验表明,所有三个 BrfA 增强子位点都是激活 fapA 转录所必需的。总之,这些发现揭示了 BrfA 是一种新型的 c-di-GMP 响应转录因子,可直接控制荧光团菌中 Fap 生物合成基因的转录。Fap 功能淀粉样蛋白和 BrfA 型转录因子在假单胞菌物种中广泛存在。这项工作提供了有关 c-di-GMP 和 BrfA 依赖性 fap 表达调控的新见解,将有助于开发抗生物膜策略。
{"title":"BrfA functions as a bacterial enhancer-binding protein to regulate functional amyloid Fap-dependent biofilm formation in Pseudomonas fluorescens by sensing cyclic diguanosine monophosphate","authors":"","doi":"10.1016/j.micres.2024.127864","DOIUrl":"10.1016/j.micres.2024.127864","url":null,"abstract":"<div><p>The functional amyloid of <em>Pseudomonas</em> (Fap) is essential for the formation of macrocolony biofilms, pellicles, and solid surface-associated (SSA) biofilms of <em>Pseudomonas fluorescens</em> PF07, an isolate from refrigerated marine fish. However, limited information on the expression regulation of <em>fap</em> genes is available. Herein, we found that a novel bacterial enhancer-binding protein (bEBP), BrfA, regulated Fap-dependent biofilm formation by directly sensing cyclic diguanosine monophosphate (c-di-GMP). Our <em>in vivo</em> data showed that the REC domain deletion of BrfA promoted <em>fap</em> gene expression and biofilm formation, and c-di-GMP positively regulated the transcription of <em>fapA</em> in a BrfA-dependent manner. In <em>in vitro</em> experiments, we found that the ATPase activity of BrfA was inhibited by the REC domain and was activated by c-di-GMP. BrfA and the sigma factor RpoN bound to the upstream region of <em>fapA</em>, and the binding ability of BrfA was not affected by either deletion of the REC domain or c-di-GMP. BrfA specifically bound to the three enhancer sites upstream of the <em>fapA</em> promoter, which contain the consensus sequence CA-(N4)-TGA(A/T)ACACC. <em>In vivo</em> experiments using a <em>lacZ</em> fusion reporter indicated that all three BrfA enhancer sites were essential for the activation of <em>fapA</em> transcription. Overall, these findings reveal that BrfA is a new type of c-di-GMP-responsive transcription factor that directly controls the transcription of Fap biosynthesis genes in <em>P</em>. <em>fluorescens</em>. Fap functional amyloids and BrfA-type transcription factors are widespread in <em>Pseudomonas</em> species. The novel insights into the c-di-GMP- and BrfA-dependent expression regulation of <em>fap</em> provided by this work will contribute to the development of antibiofilm strategies.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rhizosphere microbiome assembly, drivers and functions in perennial ligneous plant health 多年生木本植物健康中的根瘤微生物组组合、驱动因素和功能
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-29 DOI: 10.1016/j.micres.2024.127860

Plants shape and interact continuously with their rhizospheric microbiota, which play a key role in plant health and resilience. However, plant-associated microbial community can be shaped by several factors including plant phenotype and cropping system. Thus, understanding the interplay between microbiome assembly during the onset of plant-pathogen interactions and long-lasting resistance traits in ligneous plants remains a major challenge. To date, such attempts were mainly investigated in herbaceous plants, due to their phenotypic characteristics and their short life cycle. However, only few studies have focused on the microbial structure, dynamic and their drivers in perennial ligneous plants. Ligneous plants coevolved in interaction with specific fungal and bacterial communities that differ from those of annual plants. The specificities of such ligneous plants in shaping their own functional microbial communities could be dependent on their high heterozygosis, physiological and molecular status associated to seasonality and their aging processes, root system and above-ground architectures, long-lasting climatic variations, and specific cultural practices. This article provides an overview of the specific characteristics of perennial ligneous plants that are likely to modulate symbiotic interactions in the rhizosphere, thus affecting the plant’s fitness and systemic immunity. Plant and microbial traits contributing to the establishment of plant-microbiome interactions and the adaptation of this holobiont are also discussed.

植物塑造了根瘤微生物群落,并与其不断互动,而根瘤微生物群落在植物健康和恢复能力方面发挥着关键作用。然而,植物表型和耕作制度等多种因素会影响植物相关微生物群落。因此,了解植物与病原体相互作用开始时的微生物群集与木本植物持久抗性特征之间的相互作用仍然是一项重大挑战。迄今为止,由于草本植物的表型特征及其生命周期较短,此类尝试主要在草本植物中进行研究。然而,只有少数研究关注多年生木本植物的微生物结构、动态及其驱动因素。木本植物在与特定真菌和细菌群落的相互作用中共同进化,这些群落与一年生植物的群落不同。这些木质化植物在塑造自身功能微生物群落方面的特异性可能取决于它们的高度杂合性、与季节性相关的生理和分子状态及其衰老过程、根系和地面结构、长期的气候变异以及特定的文化习俗。本文概述了多年生木本植物的具体特征,这些特征可能会调节根圈中的共生相互作用,从而影响植物的适应性和系统免疫力。文章还讨论了有助于建立植物-微生物组相互作用的植物和微生物特征,以及这种全生物体的适应性。
{"title":"Rhizosphere microbiome assembly, drivers and functions in perennial ligneous plant health","authors":"","doi":"10.1016/j.micres.2024.127860","DOIUrl":"10.1016/j.micres.2024.127860","url":null,"abstract":"<div><p>Plants shape and interact continuously with their rhizospheric microbiota, which play a key role in plant health and resilience. However, plant-associated microbial community can be shaped by several factors including plant phenotype and cropping system. Thus, understanding the interplay between microbiome assembly during the onset of plant-pathogen interactions and long-lasting resistance traits in ligneous plants remains a major challenge. To date, such attempts were mainly investigated in herbaceous plants, due to their phenotypic characteristics and their short life cycle. However, only few studies have focused on the microbial structure, dynamic and their drivers in perennial ligneous plants. Ligneous plants coevolved in interaction with specific fungal and bacterial communities that differ from those of annual plants. The specificities of such ligneous plants in shaping their own functional microbial communities could be dependent on their high heterozygosis, physiological and molecular status associated to seasonality and their aging processes, root system and above-ground architectures, long-lasting climatic variations, and specific cultural practices. This article provides an overview of the specific characteristics of perennial ligneous plants that are likely to modulate symbiotic interactions in the rhizosphere, thus affecting the plant’s fitness and systemic immunity. Plant and microbial traits contributing to the establishment of plant-microbiome interactions and the adaptation of this holobiont are also discussed.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944501324002611/pdfft?md5=3f7334e0062208b074bbc822eca1bfa4&pid=1-s2.0-S0944501324002611-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BmfR, a novel GntR family regulator, regulates biofilm formation in marine-derived, Bacillus methylotrophicus B-9987 BmfR 是一种新型 GntR 家族调控因子,可调控海洋来源的甲基营养芽孢杆菌 B-9987 的生物膜形成
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-27 DOI: 10.1016/j.micres.2024.127859

Biofilms are common living states for microorganisms, allowing them to adapt to environmental changes. Numerous Bacillus strains can form complex biofilms that play crucial roles in biocontrol processes. However, our current understanding of the molecular mechanisms of biofilm formation in Bacillus is mainly based on studies of Bacillus subtilis. Knowledge regarding the biofilm formation of other Bacillus species remains limited. In this study, we identified a novel transcriptional regulator, BmfR, belonging to the GntR family, that regulates biofilm formation in marine-derived Bacillus methylotrophicus B-9987. We demonstrated that BmfR induces biofilm formation by activating the extracellular polysaccharide structural genes epsA-O and negatively regulating the matrix gene repressor, SinR; of note it positively affects the expression of the master regulator of sporulation, Spo0A. Furthermore, database mining for BmfR homologs has revealed their widespread distribution among many bacterial species, mainly Firmicutes and Proteobacteria. This study advances our understanding of the biofilm regulatory network of Bacillus strains, and provides a new target for exploiting and manipulating biofilm formation.

生物膜是微生物常见的生存状态,使其能够适应环境变化。许多芽孢杆菌菌株可以形成复杂的生物膜,在生物防治过程中发挥重要作用。然而,我们目前对枯草芽孢杆菌形成生物膜的分子机制的了解主要基于对枯草芽孢杆菌的研究。对其他芽孢杆菌生物膜形成的了解仍然有限。在本研究中,我们发现了一种属于 GntR 家族的新型转录调控因子 BmfR,它能调控海洋来源的甲基营养芽孢杆菌 B-9987 的生物膜形成。我们证明,BmfR 通过激活胞外多糖结构基因 epsA-O 和负向调节基质基因抑制因子 SinR 来诱导生物膜的形成;值得注意的是,它对孢子形成主调节因子 Spo0A 的表达有积极影响。此外,数据库对 BmfR 同源物的挖掘发现,它们广泛分布于许多细菌物种中,主要是固氮菌和变形菌。这项研究加深了我们对芽孢杆菌菌株生物膜调控网络的了解,并为利用和操纵生物膜的形成提供了一个新的目标。
{"title":"BmfR, a novel GntR family regulator, regulates biofilm formation in marine-derived, Bacillus methylotrophicus B-9987","authors":"","doi":"10.1016/j.micres.2024.127859","DOIUrl":"10.1016/j.micres.2024.127859","url":null,"abstract":"<div><p>Biofilms are common living states for microorganisms, allowing them to adapt to environmental changes. Numerous <em>Bacillus</em> strains can form complex biofilms that play crucial roles in biocontrol processes. However, our current understanding of the molecular mechanisms of biofilm formation in <em>Bacillus</em> is mainly based on studies of <em>Bacillus subtilis.</em> Knowledge regarding the biofilm formation of other <em>Bacillus</em> species remains limited. In this study, we identified a novel transcriptional regulator, BmfR, belonging to the GntR family, that regulates biofilm formation in marine-derived <em>Bacillus methylotrophicus</em> B-9987. We demonstrated that BmfR induces biofilm formation by activating the extracellular polysaccharide structural genes <em>epsA-O</em> and negatively regulating the matrix gene repressor, SinR; of note it positively affects the expression of the master regulator of sporulation, Spo0A. Furthermore, database mining for BmfR homologs has revealed their widespread distribution among many bacterial species, mainly Firmicutes and Proteobacteria. This study advances our understanding of the biofilm regulatory network of <em>Bacillus</em> strains, and provides a new target for exploiting and manipulating biofilm formation.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141841496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiota modulates neurotransmitter and gut-brain signaling 肠道微生物群调节神经递质和肠脑信号传导
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-26 DOI: 10.1016/j.micres.2024.127858

Neurotransmitters, including 5-hydroxytryptamine (5-HT), dopamine (DA), gamma-aminobutyric acid (GABA), and glutamate, are essential transductors in the Gut-Brain Axis (GBA), playing critical roles both peripherally and centrally. Accumulating evidence suggests that the gut microbiota modulates intestinal neurotransmitter metabolism and gut-to-brain signaling, shedding light on the crucial role of the gut microbiota in brain function and the pathogenesis of various neuropsychiatric diseases, such as major depression disorder (MDD), anxiety, addiction and Parkinson's disease (PD). Despite the exciting findings, the mechanisms underlying the modulation of neurotransmitter metabolism and function by the gut microbiota are still being elucidated. In this review, we aim to provide a comprehensive overview of the existing knowledge about the role of the gut microbiota in neurotransmitter metabolism and function in animal and clinical experiments. Moreover, we will discuss the potential mechanisms through which gut microbiota-derived neurotransmitters contribute to the pathogenesis of neuropsychiatric diseases, thus highlighting a novel therapeutic target for these conditions.

神经递质,包括5-羟色胺(5-HT)、多巴胺(DA)、γ-氨基丁酸(GABA)和谷氨酸,是肠-脑轴(GBA)的重要传导因子,在外周和中枢发挥着关键作用。越来越多的证据表明,肠道微生物群会调节肠道神经递质代谢和肠道到大脑的信号传导,从而揭示了肠道微生物群在大脑功能和各种神经精神疾病(如重度抑郁症(MDD)、焦虑症、成瘾症和帕金森病(PD))发病机制中的关键作用。尽管研究结果令人振奋,但肠道微生物群调节神经递质代谢和功能的机制仍有待阐明。在这篇综述中,我们旨在全面概述现有的动物和临床实验中有关肠道微生物群在神经递质代谢和功能中的作用的知识。此外,我们还将讨论肠道微生物群衍生的神经递质导致神经精神疾病发病机制的潜在机制,从而突出这些疾病的新型治疗靶点。
{"title":"Gut microbiota modulates neurotransmitter and gut-brain signaling","authors":"","doi":"10.1016/j.micres.2024.127858","DOIUrl":"10.1016/j.micres.2024.127858","url":null,"abstract":"<div><p>Neurotransmitters, including 5-hydroxytryptamine (5-HT), dopamine (DA), gamma-aminobutyric acid (GABA), and glutamate, are essential transductors in the Gut-Brain Axis (GBA), playing critical roles both peripherally and centrally. Accumulating evidence suggests that the gut microbiota modulates intestinal neurotransmitter metabolism and gut-to-brain signaling, shedding light on the crucial role of the gut microbiota in brain function and the pathogenesis of various neuropsychiatric diseases, such as major depression disorder (MDD), anxiety, addiction and Parkinson's disease (PD). Despite the exciting findings, the mechanisms underlying the modulation of neurotransmitter metabolism and function by the gut microbiota are still being elucidated. In this review, we aim to provide a comprehensive overview of the existing knowledge about the role of the gut microbiota in neurotransmitter metabolism and function in animal and clinical experiments. Moreover, we will discuss the potential mechanisms through which gut microbiota-derived neurotransmitters contribute to the pathogenesis of neuropsychiatric diseases, thus highlighting a novel therapeutic target for these conditions.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cervicovaginal microbiome, high-risk HPV infection and cervical cancer: Mechanisms and therapeutic potential 宫颈阴道微生物组、高危 HPV 感染与宫颈癌:机制与治疗潜力
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-26 DOI: 10.1016/j.micres.2024.127857

The microbiota in the female genital tract is an intricate assembly of diverse aerobic, anaerobic, and microaerophilic microorganisms, which share the space within the reproductive tract and engage in complex interactions. Microbiome dysbiosis may disrupt the symbiotic relationship between the host and microorganisms and play a pivotal role in the pathogenesis of various diseases, including its involvement in the establishment of human papillomavirus (HPV)-associated cervical cancer (CC). Interventions to restore microbiota homeostasis (e.g., probiotics) and bacterial-vector HPV therapeutic vaccines have been reported to be potentially effective in clearing HPV infection and ameliorating cytological abnormalities. In this review, we place emphasis on elucidating the alterations within the cervical–vaginal microbiota as well as the intratumoral microbiota in the context of high-risk HPV (HR-HPV) infection and its subsequent progression to cervical intraepithelial neoplasia/CC. Furthermore, we explore the mechanisms by which these microbial communities exert potential pathogenic or protective effects, including modulating genital inflammation and immune responses, affecting HR-HPV oncogene expression and oncoprotein production, regulating oxidative stress and deoxyribonucleic acid (DNA) damage, and inducing metabolic rewiring. Lastly, we summarize the latest evidence in human trials regarding the efficacy of probiotics, prebiotics and probiotic-vector HPV therapeutic vaccines. This review aims to foster a deeper understanding of the role of the microbiota in HR-HPV infection-related cervix cancer development, and further provide a theoretical basis for the development of preventive and therapeutic strategies based on microbial modulation.

女性生殖道中的微生物群是由多种需氧、厌氧和微嗜氧微生物组成的复杂集合体,它们共享生殖道内的空间并进行复杂的相互作用。微生物群失调可能会破坏宿主与微生物之间的共生关系,并在各种疾病的发病机制中发挥关键作用,包括参与人乳头状瘤病毒(HPV)相关宫颈癌(CC)的形成。据报道,恢复微生物群平衡的干预措施(如益生菌)和细菌载体 HPV 治疗疫苗可能会有效清除 HPV 感染并改善细胞学异常。在这篇综述中,我们将重点阐明在高危型 HPV(HR-HPV)感染及其随后发展为宫颈上皮内瘤变/CC 的过程中,宫颈阴道微生物群和瘤体内微生物群的改变。此外,我们还探讨了这些微生物群落发挥潜在致病或保护作用的机制,包括调节生殖器炎症和免疫反应、影响 HR-HPV 肿瘤基因的表达和肿瘤蛋白的产生、调节氧化应激和脱氧核糖核酸(DNA)损伤以及诱导代谢重构。最后,我们总结了益生菌、益生元和益生菌载体人乳头瘤病毒治疗疫苗疗效的最新人体试验证据。本综述旨在加深人们对微生物群在与HR-HPV感染相关的宫颈癌发展中的作用的理解,并进一步为开发基于微生物调节的预防和治疗策略提供理论依据。
{"title":"Cervicovaginal microbiome, high-risk HPV infection and cervical cancer: Mechanisms and therapeutic potential","authors":"","doi":"10.1016/j.micres.2024.127857","DOIUrl":"10.1016/j.micres.2024.127857","url":null,"abstract":"<div><p>The microbiota in the female genital tract is an intricate assembly of diverse aerobic, anaerobic, and microaerophilic microorganisms, which share the space within the reproductive tract and engage in complex interactions. Microbiome dysbiosis may disrupt the symbiotic relationship between the host and microorganisms and play a pivotal role in the pathogenesis of various diseases, including its involvement in the establishment of human papillomavirus (HPV)-associated cervical cancer (CC). Interventions to restore microbiota homeostasis (e.g., probiotics) and bacterial-vector HPV therapeutic vaccines have been reported to be potentially effective in clearing HPV infection and ameliorating cytological abnormalities. In this review, we place emphasis on elucidating the alterations within the cervical–vaginal microbiota as well as the intratumoral microbiota in the context of high-risk HPV (HR-HPV) infection and its subsequent progression to cervical intraepithelial neoplasia/CC. Furthermore, we explore the mechanisms by which these microbial communities exert potential pathogenic or protective effects, including modulating genital inflammation and immune responses, affecting HR-HPV oncogene expression and oncoprotein production, regulating oxidative stress and deoxyribonucleic acid (DNA) damage, and inducing metabolic rewiring. Lastly, we summarize the latest evidence in human trials regarding the efficacy of probiotics, prebiotics and probiotic-vector HPV therapeutic vaccines. This review aims to foster a deeper understanding of the role of the microbiota in HR-HPV infection-related cervix cancer development, and further provide a theoretical basis for the development of preventive and therapeutic strategies based on microbial modulation.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944501324002581/pdfft?md5=512d9986f5f6bdf21960bfbef1a95b3c&pid=1-s2.0-S0944501324002581-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141840974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-omics analysis reveals the effects of three application modes of plant growth promoting microbes biofertilizer on potato (Solanum tuberosum L.) growth under alkaline loess conditions 多组学分析揭示三种植物生长促进微生物生物肥料施用模式对碱性黄土条件下马铃薯(Solanum tuberosum L.)生长的影响
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-25 DOI: 10.1016/j.micres.2024.127855

Potato is an important crop due to its high contents of starch, protein, and various vitamins and minerals. Biofertilizers are composed of plant growth promoting microbes (PGPMs) which are essential for improving the growth and resistance of potato. However, little information has focused on the modes of inoculation of biofertilizers on plant growth and microecology. This study aims to reveal the response mechanism of the potato to three modes of inoculation of biofertilizers all containing PGPM Bacillus amyloliquefaciens EZ99, i.e. scattered mode of 5 kg/ha biofertilizer (M5), soaking seed tubers with dissolved 5 kg/ha biofertilizer (MZG), and scattered mode of 3 kg/ha biofertilizer + 2 kg/ha sucrose (MY34) in alkaline loess field through multi-omics analysis of transcriptome, metabolome and microbiome. The physiological result revealed that two application modes of equal amount of biofertilizer M5 and MZG significantly improved the growth and yield of potatoes. Furthermore, the transcriptome of potato exhibited sets of differentially expressed genes enriched in photosynthesis, sugar metabolism, and phenylpropanoid biosynthesis among the three modes, with the M5 mode exhibiting overall up-regulation of 828 genes. Based on the untargeted metabolomic analysis of potato tuber, M5 mode significantly accumulated sucrose, while MZG and MY34 mode significantly accumulated the stress metabolites euchrenone b6 and mannobiose, respectively. Besides, the microbial structure of potato rhizosphere showed that the diversity of bacteria and fungi was similar in all soils, but their abundances varied significantly. Specifically, beneficial Penicillium was enriched in M5 and MZG soils, whereas MY34 soil accumulated potential pathogens Plectosphaerella and saccharophilic Mortierella. Collectively, these e findings highlight that MZG is the most effective mode to promote potato growth and stimulate rhizosphere effect. The present study not only encourages sustainable agriculture through agroecological practices, but also provides broad prospects for the application of PGPM biofertilizer in staple foods.

马铃薯是一种重要的农作物,因为它含有大量淀粉、蛋白质以及各种维生素和矿物质。生物肥料由植物生长促进微生物(PGPMs)组成,对改善马铃薯的生长和抗性至关重要。然而,有关接种生物肥料对植物生长和微生态的影响模式的信息却很少。本研究旨在揭示马铃薯对含有淀粉芽孢杆菌 EZ99 的三种生物肥料接种模式的反应机制,即通过对转录组、代谢组和微生物组的多组学分析,发现在碱性黄土地上,马铃薯对三种接种生物肥料(均含有 PGPM 直链芽孢杆菌 EZ99)的模式,即每公顷 5 千克生物肥料的分散接种模式(M5)、用溶解的每公顷 5 千克生物肥料浸泡块茎种子的接种模式(MZG)和每公顷 3 千克生物肥料+每公顷 2 千克蔗糖的分散接种模式(MY34)。生理结果表明,等量施用生物肥 M5 和 MZG 可显著提高马铃薯的生长和产量。此外,马铃薯的转录组显示,三种施肥模式在光合作用、糖代谢和苯丙类生物合成方面富集了多组差异表达基因,其中 M5 模式总体上调了 828 个基因。根据马铃薯块茎的非靶向代谢组学分析,M5模式显著积累蔗糖,而MZG和MY34模式分别显著积累胁迫代谢产物优克龙b6和甘露寡糖。此外,马铃薯根瘤菌层的微生物结构表明,所有土壤中细菌和真菌的多样性相似,但丰度差异很大。具体而言,M5 和 MZG 土壤中富含有益的青霉,而 MY34 土壤中则富含潜在的病原菌 Plectosphaerella 和嗜糖 Mortierella。总之,这些发现突出表明,MZG 是促进马铃薯生长和刺激根瘤效应的最有效模式。本研究不仅鼓励通过农业生态实践实现农业的可持续发展,还为 PGPM 生物肥料在主食中的应用提供了广阔的前景。
{"title":"Multi-omics analysis reveals the effects of three application modes of plant growth promoting microbes biofertilizer on potato (Solanum tuberosum L.) growth under alkaline loess conditions","authors":"","doi":"10.1016/j.micres.2024.127855","DOIUrl":"10.1016/j.micres.2024.127855","url":null,"abstract":"<div><p>Potato is an important crop due to its high contents of starch, protein, and various vitamins and minerals. Biofertilizers are composed of plant growth promoting microbes (PGPMs) which are essential for improving the growth and resistance of potato. However, little information has focused on the modes of inoculation of biofertilizers on plant growth and microecology. This study aims to reveal the response mechanism of the potato to three modes of inoculation of biofertilizers all containing PGPM <em>Bacillus amyloliquefaciens</em> EZ99, i.e. scattered mode of 5 kg/ha biofertilizer (M5), soaking seed tubers with dissolved 5 kg/ha biofertilizer (MZG), and scattered mode of 3 kg/ha biofertilizer + 2 kg/ha sucrose (MY34) in alkaline loess field through multi-omics analysis of transcriptome, metabolome and microbiome. The physiological result revealed that two application modes of equal amount of biofertilizer M5 and MZG significantly improved the growth and yield of potatoes. Furthermore, the transcriptome of potato exhibited sets of differentially expressed genes enriched in photosynthesis, sugar metabolism, and phenylpropanoid biosynthesis among the three modes, with the M5 mode exhibiting overall up-regulation of 828 genes. Based on the untargeted metabolomic analysis of potato tuber, M5 mode significantly accumulated sucrose, while MZG and MY34 mode significantly accumulated the stress metabolites euchrenone b6 and mannobiose, respectively. Besides, the microbial structure of potato rhizosphere showed that the diversity of bacteria and fungi was similar in all soils, but their abundances varied significantly. Specifically, beneficial <em>Penicillium</em> was enriched in M5 and MZG soils<em>,</em> whereas MY34 soil accumulated potential pathogens <em>Plectosphaerella</em> and saccharophilic <em>Mortierella</em>. Collectively, these e findings highlight that MZG is the most effective mode to promote potato growth and stimulate rhizosphere effect. The present study not only encourages sustainable agriculture through agroecological practices, but also provides broad prospects for the application of PGPM biofertilizer in staple foods.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141840134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bud's life: Metabarcoding analysis to characterise hazelnut big buds microbiome biodiversity 花蕾的一生:通过代谢编码分析确定榛子大花蕾微生物群生物多样性的特征
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-24 DOI: 10.1016/j.micres.2024.127851

Despite Corylus avellana L. being an economically important shrub species known for its resilience to adverse environmental conditions, it constantly faces attacks from a plethora of biotic entities. Among these, the mite pest Phytoptus avellanae is gaining importance, causing economic losses every year. This mite colonises the new generative and vegetative buds, leading them to become swollen and reddish, and drastically reducing hazelnut production. The biology behind gall formation is still poorly understood. This study provides a qualitative and quantitative description of the microbiome in both healthy and infested buds of two economically important hazelnut cultivars through metabarcoding of fungal ITS and bacterial 16 S. Potentially pathogenic genera such as Fusarium and Pseudomonas were predominant in the infested buds, along with the obligate intracellular bacterial genus Wolbachia. Akanthomyces muscarius was instead isolated from culture-based methods only from the infested buds. These findings could improve the understanding of gall ecology, supporting the management of mite populations, and they could also serve as a milestone for further studies on low-impact, monitoring-driven, and genetically targeted control strategies.

尽管 L. 是一种具有重要经济价值的灌木物种,以其对不利环境条件的适应能力而闻名,但它始终面临着大量生物实体的攻击。其中,螨类害虫越来越重要,每年都会造成经济损失。这种螨虫会在榛子的新芽和无性生殖芽上定殖,导致新芽肿胀发红,大大降低了榛子的产量。人们对虫瘿形成背后的生物学原理还知之甚少。本研究通过对真菌 ITS 和细菌 16S 进行代谢编码,对两个具有重要经济价值的榛子栽培品种的健康芽和受侵染芽中的微生物组进行了定性和定量描述。在受侵染的花蕾中,潜在的致病菌属(如和)占主导地位,而只能通过培养方法从受侵染的花蕾中分离出细胞内细菌属。这些发现可以提高人们对瘿蚊生态学的认识,为螨虫种群的管理提供支持,同时也是进一步研究低影响、监测驱动和基因靶向控制策略的里程碑。
{"title":"A bud's life: Metabarcoding analysis to characterise hazelnut big buds microbiome biodiversity","authors":"","doi":"10.1016/j.micres.2024.127851","DOIUrl":"10.1016/j.micres.2024.127851","url":null,"abstract":"<div><p>Despite <em>Corylus avellana</em> L. being an economically important shrub species known for its resilience to adverse environmental conditions, it constantly faces attacks from a plethora of biotic entities. Among these, the mite pest <em>Phytoptus avellanae</em> is gaining importance, causing economic losses every year. This mite colonises the new generative and vegetative buds, leading them to become swollen and reddish, and drastically reducing hazelnut production. The biology behind gall formation is still poorly understood. This study provides a qualitative and quantitative description of the microbiome in both healthy and infested buds of two economically important hazelnut cultivars through metabarcoding of fungal ITS and bacterial 16 S. Potentially pathogenic genera such as <em>Fusarium</em> and <em>Pseudomonas</em> were predominant in the infested buds, along with the obligate intracellular bacterial genus <em>Wolbachia. Akanthomyces muscarius</em> was instead isolated from culture-based methods only from the infested buds. These findings could improve the understanding of gall ecology, supporting the management of mite populations, and they could also serve as a milestone for further studies on low-impact, monitoring-driven, and genetically targeted control strategies.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944501324002520/pdfft?md5=b98ddf6fcafeaa1a675a920637c9c53d&pid=1-s2.0-S0944501324002520-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacillus paralicheniformis, an acetate-producing probiotic, alleviates ulcerative colitis via protecting the intestinal barrier and regulating the NLRP3 inflammasome 副坏死性芽孢杆菌是一种能产生醋酸盐的益生菌,它能通过保护肠道屏障和调节 NLRP3 炎症小体来缓解溃疡性结肠炎
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-23 DOI: 10.1016/j.micres.2024.127856

Ulcerative colitis (UC) presents a challenging scenario in digestive health, characterized by recurrent inflammation that is often hard to manage. Bacteria capable of producing short-chain fatty acids (SCFAs) play a pivotal role in mitigating UC symptoms, rendering them promising candidates for probiotic therapy. In this investigation, we assessed the impact of Bacillus paralicheniformis HMPM220325 on dextran sodium sulfate (DSS)-induced UC in mice. Genomic analysis of the strain revealed the presence of protease genes associated with acetate and butyrate synthesis, with acetic acid detected in its fermentation broth. Administration of B. paralicheniformis HMPM220325 to UC mice ameliorated pathological manifestations of the condition and restored intestinal barrier function. Furthermore, B. paralicheniformis HMPM220325 suppressed the activation of the NLRP3 inflammasome signaling pathway and modulated the composition of the intestinal microbiota. These findings shed significant light on the potential of B. paralicheniformis as a probiotic candidate, offering a novel avenue for the prevention and therapeutic intervention of colitis.

溃疡性结肠炎(UC)是消化系统健康的一大挑战,其特点是炎症反复发作,往往难以控制。能够产生短链脂肪酸(SCFAs)的细菌在减轻 UC 症状方面发挥着关键作用,因此很有希望成为益生菌疗法的候选菌。在这项研究中,我们评估了 HMPM220325 对右旋糖酐硫酸钠(DSS)诱导的小鼠 UC 的影响。对该菌株的基因组分析表明,它含有与乙酸盐和丁酸盐合成相关的蛋白酶基因,其发酵液中还检测到乙酸。给 UC 小鼠服用 HMPM220325 可改善病理表现,恢复肠道屏障功能。此外,HMPM220325 还能抑制 NLRP3 炎性体信号通路的激活,并调节肠道微生物群的组成。这些发现揭示了 HMPM220325 作为候选益生菌的潜力,为结肠炎的预防和治疗干预提供了一条新途径。
{"title":"Bacillus paralicheniformis, an acetate-producing probiotic, alleviates ulcerative colitis via protecting the intestinal barrier and regulating the NLRP3 inflammasome","authors":"","doi":"10.1016/j.micres.2024.127856","DOIUrl":"10.1016/j.micres.2024.127856","url":null,"abstract":"<div><p>Ulcerative colitis (UC) presents a challenging scenario in digestive health, characterized by recurrent inflammation that is often hard to manage. Bacteria capable of producing short-chain fatty acids (SCFAs) play a pivotal role in mitigating UC symptoms, rendering them promising candidates for probiotic therapy. In this investigation, we assessed the impact of <em>Bacillus paralicheniformis</em> HMPM220325 on dextran sodium sulfate (DSS)-induced UC in mice. Genomic analysis of the strain revealed the presence of protease genes associated with acetate and butyrate synthesis, with acetic acid detected in its fermentation broth. Administration of <em>B. paralicheniformis</em> HMPM220325 to UC mice ameliorated pathological manifestations of the condition and restored intestinal barrier function. Furthermore, <em>B. paralicheniformis</em> HMPM220325 suppressed the activation of the NLRP3 inflammasome signaling pathway and modulated the composition of the intestinal microbiota. These findings shed significant light on the potential of <em>B. paralicheniformis</em> as a probiotic candidate, offering a novel avenue for the prevention and therapeutic intervention of colitis.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular and eco-physiological responses of soil-borne lead (Pb2+)-resistant bacteria for bioremediation and plant growth promotion under lead stress 抗土壤中铅(Pb2+)细菌在铅胁迫下进行生物修复和促进植物生长的分子和生态生理反应
IF 6.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-07-22 DOI: 10.1016/j.micres.2024.127831

Lead (Pb) is the 2nd known portentous hazardous substance after arsenic (As). Being highly noxious, widespread, non-biodegradable, prolonged environmental presence, and increasing accumulation, particularly in arable land, Pb pollution has become a serious global health concern requiring urgent remediation. Soil-borne, indigenous microbes from Pb-polluted sites have evolved diverse resistance strategies, involving biosorption, bioprecipitation, biomineralization, biotransformation, and efflux mechanisms, under continuous exposure to Pb in human-impacted surroundings. These strategies employ a wide range of functional bioligands to capture Pb and render it inaccessible for leaching. Recent breakthroughs in molecular technology and understanding of lead resistance mechanisms offer the potential for utilizing microbes as biological tools in environmental risk assessment. Leveraging the specific affinity and sensitivity of bacterial regulators to Pb2+ ions, numerous lead biosensors have been designed and deployed worldwide to monitor Pb bioavailability in contaminated sites, even at trace levels. Besides, the ongoing degradation of croplands due to Pb pollution poses a significant challenge to meet the escalating global food demands. The accumulation of Pb in plant tissues jeopardizes both food safety and security while severely impacting plant growth. Exploring Pb-resistant plant growth-promoting rhizobacteria (PGPR) presents a promising sustainable approach to agricultural practices. The active associations of PGPR with host plants have shown enhancements in plant biomass and stress alleviation under Pb influence. They thus serve a dual purpose for plants grown in Pb-contaminated areas. This review aims to offer a comprehensive understanding of the role played by Pb-resistant soil-borne indigenous bacteria in expediting bioremediation and improving the growth of Pb-challenged plants essential for potential field application, thus broadening prospects for future research and development.

铅(Pb)是继砷(As)之后已知的第二大有害物质。铅污染具有剧毒性、广泛性、不可生物降解性、长期存在于环境中以及日益积累(尤其是在耕地中)等特点,已成为一个严重的全球健康问题,亟需采取补救措施。在受人类影响的环境中持续暴露于铅的情况下,来自铅污染地区的土生土长的微生物进化出了多种抗性策略,包括生物吸附、生物沉淀、生物矿化、生物转化和外排机制。这些策略利用各种功能性生物配体来捕获铅,使其无法被沥滤。分子技术的最新突破和对铅抗性机理的了解为利用微生物作为环境风险评估的生物工具提供了可能。利用细菌调节剂对铅离子的特异性亲和力和灵敏度,全球已设计并部署了大量铅生物传感器,用于监测受污染场地的铅生物利用率,甚至是痕量水平。此外,铅污染导致耕地不断退化,这对满足全球不断增长的粮食需求构成了重大挑战。铅在植物组织中的积累既危及食品安全,又严重影响植物生长。探索抗铅植物生长促进根瘤菌(PGPR)为农业实践提供了一种前景广阔的可持续方法。PGPR 与寄主植物的积极结合表明,在铅的影响下,植物的生物量会增加,压力会减轻。因此,它们对在铅污染地区种植的植物具有双重作用。本综述旨在全面介绍耐铅土生细菌在加快生物修复和改善受铅污染植物的生长方面所发挥的作用,这些作用对于潜在的实地应用至关重要,从而为未来的研究和开发开辟了广阔的前景。
{"title":"Molecular and eco-physiological responses of soil-borne lead (Pb2+)-resistant bacteria for bioremediation and plant growth promotion under lead stress","authors":"","doi":"10.1016/j.micres.2024.127831","DOIUrl":"10.1016/j.micres.2024.127831","url":null,"abstract":"<div><p>Lead (Pb) is the 2<sup>nd</sup> known portentous hazardous substance after arsenic (As). Being highly noxious, widespread, non-biodegradable, prolonged environmental presence, and increasing accumulation, particularly in arable land, Pb pollution has become a serious global health concern requiring urgent remediation. Soil-borne, indigenous microbes from Pb-polluted sites have evolved diverse resistance strategies, involving biosorption, bioprecipitation, biomineralization, biotransformation, and efflux mechanisms, under continuous exposure to Pb in human-impacted surroundings. These strategies employ a wide range of functional bioligands to capture Pb and render it inaccessible for leaching. Recent breakthroughs in molecular technology and understanding of lead resistance mechanisms offer the potential for utilizing microbes as biological tools in environmental risk assessment. Leveraging the specific affinity and sensitivity of bacterial regulators to Pb<sup>2+</sup> ions, numerous lead biosensors have been designed and deployed worldwide to monitor Pb bioavailability in contaminated sites, even at trace levels. Besides, the ongoing degradation of croplands due to Pb pollution poses a significant challenge to meet the escalating global food demands. The accumulation of Pb in plant tissues jeopardizes both food safety and security while severely impacting plant growth. Exploring Pb-resistant plant growth-promoting rhizobacteria (PGPR) presents a promising sustainable approach to agricultural practices. The active associations of PGPR with host plants have shown enhancements in plant biomass and stress alleviation under Pb influence. They thus serve a dual purpose for plants grown in Pb-contaminated areas. This review aims to offer a comprehensive understanding of the role played by Pb-resistant soil-borne indigenous bacteria in expediting bioremediation and improving the growth of Pb-challenged plants essential for potential field application, thus broadening prospects for future research and development.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microbiological research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1