Heat stress is a prevalent environmental stressor. Previous studies have shown that heat stress drives many cellular changes in Ganoderma lucidum. Interestingly, glycolysis is activated during heat stress, which could contribute to increased heat resistance. However, the molecular mechanisms underlying the enhanced heat resistance of G. lucidum following heat exposure are not yet fully understood. In this study, we explored the possibility that acetylation modification plays a significant role in responses to abiotic stress. After heat treatment, an enhanced interaction between the deacetylase GlSIRT1 and pyruvate kinase (PK) was observed, and the acetylation level of PK was decreased. Further studies revealed that GlSIRT1 increases PK activity through deacetylation, thereby increasing pyruvate content. Consistent with these findings, both PK activity and pyruvate content were reduced in GlSIRT1 knockdown strains, which exhibited greater sensitivity to heat stress compared to the wild-type (WT) strain. Collectively, our results reveal a novel molecular mechanism by which heat treatment increases pyruvate content.
{"title":"GlSIRT1 deacetylates and activates pyruvate kinase to improve pyruvate content and enhance heat stress resistance in Ganoderma lucidum.","authors":"Jing Han, Xin Tang, Lingshuai Wang, Huhui Chen, Rui Liu, Mingwen Zhao","doi":"10.1016/j.micres.2025.128055","DOIUrl":"https://doi.org/10.1016/j.micres.2025.128055","url":null,"abstract":"<p><p>Heat stress is a prevalent environmental stressor. Previous studies have shown that heat stress drives many cellular changes in Ganoderma lucidum. Interestingly, glycolysis is activated during heat stress, which could contribute to increased heat resistance. However, the molecular mechanisms underlying the enhanced heat resistance of G. lucidum following heat exposure are not yet fully understood. In this study, we explored the possibility that acetylation modification plays a significant role in responses to abiotic stress. After heat treatment, an enhanced interaction between the deacetylase GlSIRT1 and pyruvate kinase (PK) was observed, and the acetylation level of PK was decreased. Further studies revealed that GlSIRT1 increases PK activity through deacetylation, thereby increasing pyruvate content. Consistent with these findings, both PK activity and pyruvate content were reduced in GlSIRT1 knockdown strains, which exhibited greater sensitivity to heat stress compared to the wild-type (WT) strain. Collectively, our results reveal a novel molecular mechanism by which heat treatment increases pyruvate content.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"293 ","pages":"128055"},"PeriodicalIF":6.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1016/j.micres.2025.128047
Wenjun Zhang, Jian Xie, Zhuoya Wang, Yuchun Zhong, Li Liu, Jun Liu, Wenming Zhang, Yimin Pi, Furui Tang, Zehong Liu, Yinjin Shao, Tian Liu, Cihua Zheng, Jun Luo
Male osteoporosis is primarily caused by a decrease in testicular testosterone production. Male osteoporosis remains a disease with insufficient diagnosis and treatment, and its consequences are severe, especially in older patients. The gut microbiota plays a crucial role in its occurrence and development. Our study found that the relative abundance of Lactobacillus salivarius in the fecal microbiota of male patients with osteoporosis was significantly lower than that in healthy volunteers. Animal experiments have shown that orchiectomy (ORX) can induce osteoporosis and disrupt the intestinal mucosal barrier, and intestinal microbiota. In addition, we discovered a potential etiological connection between the decreased abundance of the intestinal bacterium L. salivarius and the occurrence of ORX-induced osteoporosis. Cohousing or direct colonization of the intestinal microbiota from healthy rats or direct oral administration of the bacteria alleviated ORX-induced osteoporosis and repaired the intestinal mucosal barrier. Finally, we demonstrated that the extracellular vesicles (EVs) of L. salivarius could be transported to the bones and mitigate ORX-induced osteoporosis in rats. Our results indicate that the gut microbiota participates in protecting bones by secreting and delivering bacterial EVs, and that the reduction of L. salivarius and its EVs is closely related to the development of androgen deficiency-related osteoporosis.
{"title":"Androgen deficiency-induced loss of Lactobacillus salivarius extracellular vesicles is associated with the pathogenesis of osteoporosis.","authors":"Wenjun Zhang, Jian Xie, Zhuoya Wang, Yuchun Zhong, Li Liu, Jun Liu, Wenming Zhang, Yimin Pi, Furui Tang, Zehong Liu, Yinjin Shao, Tian Liu, Cihua Zheng, Jun Luo","doi":"10.1016/j.micres.2025.128047","DOIUrl":"https://doi.org/10.1016/j.micres.2025.128047","url":null,"abstract":"<p><p>Male osteoporosis is primarily caused by a decrease in testicular testosterone production. Male osteoporosis remains a disease with insufficient diagnosis and treatment, and its consequences are severe, especially in older patients. The gut microbiota plays a crucial role in its occurrence and development. Our study found that the relative abundance of Lactobacillus salivarius in the fecal microbiota of male patients with osteoporosis was significantly lower than that in healthy volunteers. Animal experiments have shown that orchiectomy (ORX) can induce osteoporosis and disrupt the intestinal mucosal barrier, and intestinal microbiota. In addition, we discovered a potential etiological connection between the decreased abundance of the intestinal bacterium L. salivarius and the occurrence of ORX-induced osteoporosis. Cohousing or direct colonization of the intestinal microbiota from healthy rats or direct oral administration of the bacteria alleviated ORX-induced osteoporosis and repaired the intestinal mucosal barrier. Finally, we demonstrated that the extracellular vesicles (EVs) of L. salivarius could be transported to the bones and mitigate ORX-induced osteoporosis in rats. Our results indicate that the gut microbiota participates in protecting bones by secreting and delivering bacterial EVs, and that the reduction of L. salivarius and its EVs is closely related to the development of androgen deficiency-related osteoporosis.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"293 ","pages":"128047"},"PeriodicalIF":6.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1016/j.micres.2025.128054
Lixue Wang, Xinyi Zhang, Jiahui Lu, Lingxia Huang
Microbial diversity and interactions in the rhizosphere play a crucial role in plant health and ecosystem functioning. Among the myriads of rhizosphere microbes, Pseudomonas and Bacillus are prominent players known for their multifaceted functionalities and beneficial effects on plant growth. The molecular mechanism of interspecies interactions between natural isolates of Bacillus and Pseudomonas in medium conditions is well understood, but the interaction between the two in vivo remains unclear. This paper focuses on the possible synergies between Pseudomonas and Bacillus associated in practical applications (such as recruiting beneficial microbes, cross-feeding and niche complementarity), and looks forward to the application prospects of the consortium in agriculture, human health and bioremediation. Through in-depth understanding of the interactions between Pseudomonas and Bacillus as well as their application prospects in various fields, this study is expected to provide a new theoretical basis and practical guidance for promoting the research and application of rhizosphere microbes.
{"title":"Microbial diversity and interactions: Synergistic effects and potential applications of Pseudomonas and Bacillus consortia.","authors":"Lixue Wang, Xinyi Zhang, Jiahui Lu, Lingxia Huang","doi":"10.1016/j.micres.2025.128054","DOIUrl":"https://doi.org/10.1016/j.micres.2025.128054","url":null,"abstract":"<p><p>Microbial diversity and interactions in the rhizosphere play a crucial role in plant health and ecosystem functioning. Among the myriads of rhizosphere microbes, Pseudomonas and Bacillus are prominent players known for their multifaceted functionalities and beneficial effects on plant growth. The molecular mechanism of interspecies interactions between natural isolates of Bacillus and Pseudomonas in medium conditions is well understood, but the interaction between the two in vivo remains unclear. This paper focuses on the possible synergies between Pseudomonas and Bacillus associated in practical applications (such as recruiting beneficial microbes, cross-feeding and niche complementarity), and looks forward to the application prospects of the consortium in agriculture, human health and bioremediation. Through in-depth understanding of the interactions between Pseudomonas and Bacillus as well as their application prospects in various fields, this study is expected to provide a new theoretical basis and practical guidance for promoting the research and application of rhizosphere microbes.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"293 ","pages":"128054"},"PeriodicalIF":6.1,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Insufficiency of Akkermansia muciniphila (Akk) has been implicated in the pathogenesis of metabolic diseases, and administration or restoration of Akk has ameliorated these disorders. Recently, Pasteurized Akk (PA-Akk) has been approved as a functional food. However, the impact of Akk on lipid absorption in the proximal intestine, which is directly exposed to orally administered Akk, remains largely unexplored. In this study, we orally administered Akk and PA-Akk to mice and investigated the subsequent lipid absorption. Long-term administration of Akk resulted in reduced lipid deposits in the liver and adipocytes, along with improved glucose metabolism. This was primarily attributed to a reduction in lipid absorption by epithelial cells in the proximal jejunum. Mechanistically, Akk activated AMP-activated protein kinase (AMPK) and directly inhibit lipids absorption in both mouse and human jejunal epithelial cells. Furthermore, we demonstrated that Akk treatment, but not PA-Akk treatment, promotes the abundance of genera that are highly abundant in the normal jejunum and belong to the phylum Firmicutes. Thus, our study concludes that oral administration of Akk provides beneficial effects on metabolism, partially through inhibiting jejunal lipid absorption and promoting the abundance of core jejunal microbes.
{"title":"Akkermansia muciniphila inhibits jejunal lipid absorption and regulates jejunal core bacteria.","authors":"Qiming Ma, Xincheng Zhou, Weikang Su, Qingyu Wang, Guoxing Yu, Weihua Tao, Zhiyong Dong, Cunchuan Wang, Chi-Ming Wong, Tiemin Liu, Shiqi Jia","doi":"10.1016/j.micres.2025.128053","DOIUrl":"https://doi.org/10.1016/j.micres.2025.128053","url":null,"abstract":"<p><p>Insufficiency of Akkermansia muciniphila (Akk) has been implicated in the pathogenesis of metabolic diseases, and administration or restoration of Akk has ameliorated these disorders. Recently, Pasteurized Akk (PA-Akk) has been approved as a functional food. However, the impact of Akk on lipid absorption in the proximal intestine, which is directly exposed to orally administered Akk, remains largely unexplored. In this study, we orally administered Akk and PA-Akk to mice and investigated the subsequent lipid absorption. Long-term administration of Akk resulted in reduced lipid deposits in the liver and adipocytes, along with improved glucose metabolism. This was primarily attributed to a reduction in lipid absorption by epithelial cells in the proximal jejunum. Mechanistically, Akk activated AMP-activated protein kinase (AMPK) and directly inhibit lipids absorption in both mouse and human jejunal epithelial cells. Furthermore, we demonstrated that Akk treatment, but not PA-Akk treatment, promotes the abundance of genera that are highly abundant in the normal jejunum and belong to the phylum Firmicutes. Thus, our study concludes that oral administration of Akk provides beneficial effects on metabolism, partially through inhibiting jejunal lipid absorption and promoting the abundance of core jejunal microbes.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"293 ","pages":"128053"},"PeriodicalIF":6.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1016/j.micres.2025.128050
Vinod Chouhan, Sunil Thalor, K Charishma, Mohammed Javed, Shanu Kumar, Jyotsana Sharma, Vibuthi Munjal, Aundy Kumar
Bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae poses significant challenges to sustainable cultivation, necessitating eco-friendly management strategies, and this study explores the role of the phylloplane microbiome in disease suppression through metabarcoding, traditional microbiology, and antibacterial screening of microbial candidates. Here, we mapped the phylloplane microbiome of pomegranate cultivar 'Bhagwa' during bacterial blight development using metabarcoding sequencing (2443,834 reads), traditional microbiological methods (nutrient-rich and minimal media), and scanning electron microscopy. We observed shifts in microbial diversity, with Xanthomonas typically released through stomata as the blight progressed from water-soaked early lesion to advanced necrotic lesion. The Shannon diversity index peaked at 2.6 in early necrotic stages but dropped to 2.1 in advanced blight. Proteobacteria and Firmicutes were the dominant phyla, with significant compositional changes between disease stages. Bacillus species were prevalent throughout, peaking in both early and severe lesions. Pantoea and Curtobacterium increased during severe blight, while Exiguobacterium thrived on the abaxial surface. A core microbiome, including Pantoea, Enterobacter, and Pseudomonas, remained consistent across stages. Antibacterial screening of 116 bacterial candidates, dominated by Pantoea (32), Bacillus (18), and Pseudomonas (11), revealed multipronged activities against X. axonopodis pv. punicae. Bacillus amyloliquefaciens P2-1 and Pantoea dispersa Pg-Slp-6 suppressed the pathogen through secreted metabolites, while Pantoea dispersa Pg-Slp-6, Pseudomonas oryzihabitans Pg-Slp-82, and Pantoea dispersa Pg-slp-117 exhibited volatile-mediated suppression. Among these, Bacillus amyloliquefaciens P2-1 and Pantoea dispersa Pg-slp-6 showed 55 % and 42 % blight suppression, respectively, highlighting their potential as biocontrol agents.
{"title":"Microbiome succession on the pomegranate phylloplane during bacterial blight dysbiosis: Functional implications for blight suppression.","authors":"Vinod Chouhan, Sunil Thalor, K Charishma, Mohammed Javed, Shanu Kumar, Jyotsana Sharma, Vibuthi Munjal, Aundy Kumar","doi":"10.1016/j.micres.2025.128050","DOIUrl":"https://doi.org/10.1016/j.micres.2025.128050","url":null,"abstract":"<p><p>Bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae poses significant challenges to sustainable cultivation, necessitating eco-friendly management strategies, and this study explores the role of the phylloplane microbiome in disease suppression through metabarcoding, traditional microbiology, and antibacterial screening of microbial candidates. Here, we mapped the phylloplane microbiome of pomegranate cultivar 'Bhagwa' during bacterial blight development using metabarcoding sequencing (2443,834 reads), traditional microbiological methods (nutrient-rich and minimal media), and scanning electron microscopy. We observed shifts in microbial diversity, with Xanthomonas typically released through stomata as the blight progressed from water-soaked early lesion to advanced necrotic lesion. The Shannon diversity index peaked at 2.6 in early necrotic stages but dropped to 2.1 in advanced blight. Proteobacteria and Firmicutes were the dominant phyla, with significant compositional changes between disease stages. Bacillus species were prevalent throughout, peaking in both early and severe lesions. Pantoea and Curtobacterium increased during severe blight, while Exiguobacterium thrived on the abaxial surface. A core microbiome, including Pantoea, Enterobacter, and Pseudomonas, remained consistent across stages. Antibacterial screening of 116 bacterial candidates, dominated by Pantoea (32), Bacillus (18), and Pseudomonas (11), revealed multipronged activities against X. axonopodis pv. punicae. Bacillus amyloliquefaciens P2-1 and Pantoea dispersa Pg-Slp-6 suppressed the pathogen through secreted metabolites, while Pantoea dispersa Pg-Slp-6, Pseudomonas oryzihabitans Pg-Slp-82, and Pantoea dispersa Pg-slp-117 exhibited volatile-mediated suppression. Among these, Bacillus amyloliquefaciens P2-1 and Pantoea dispersa Pg-slp-6 showed 55 % and 42 % blight suppression, respectively, highlighting their potential as biocontrol agents.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"293 ","pages":"128050"},"PeriodicalIF":6.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1016/j.micres.2025.128048
Nihong Zhou, Qiulan Zheng, Yao Liu, Zhichu Huang, Ye Feng, Yanping Chen, Fuliang Hu, Huoqing Zheng
Social bees, with their specialized gut microbiota and societal transmission between individuals, provide an ideal model for studying host-gut microbiota interactions. While the functional disparities arising from strain-level diversity of gut symbionts and their effects on host health have been studied in Apis mellifera and bumblebees, studies focusing on host-specific investigations of individual strains across different honeybee hosts remain relatively unexplored. In this study, the complete genomic sequences of 17 strains of Gilliamella from A. mellifera, Apis cerana and Bombus terrestris were analyzed. The analysis revealed that the strains of A. mellifera display a more expansive genomic and functional content compared to the strains of A. cerana and B. terrestris. Phylogenetic analysis showed a deep divergence among the Gilliamella strains from different hosts. Additionally, biochemistry tests and antibiotic susceptibility tests revealed that gut strains from A. mellifera exhibited a more extensive pathway for carbohydrate metabolism and a greater resistance to antibiotics than gut strains from A. cerana and B. terrestris. Strains from A. mellifera and A. cerana showed higher colonization efficiency and competitive ability whithin their respective host species, indicating a higher degree of host-specific adaptation of local gut microbiota. In addition, colonization by A. mellifera-derived strain triggers a stronger transcriptional response in the host than A. cerana-derived strain. The variation in the number of differentially expressed genes and the involvement of distinct signaling pathways across these two host species suggest species-specific adaptations to Gilliamella strains. These findings suggest that despite occupying similar niches in the bee gut, strain-level variations can influence microbial functions, and their impact on host physiological functions may vary across different strains.
{"title":"Strain diversity and host specificity of the gut symbiont Gilliamella in Apis mellifera, Apis cerana and Bombus terrestris.","authors":"Nihong Zhou, Qiulan Zheng, Yao Liu, Zhichu Huang, Ye Feng, Yanping Chen, Fuliang Hu, Huoqing Zheng","doi":"10.1016/j.micres.2025.128048","DOIUrl":"https://doi.org/10.1016/j.micres.2025.128048","url":null,"abstract":"<p><p>Social bees, with their specialized gut microbiota and societal transmission between individuals, provide an ideal model for studying host-gut microbiota interactions. While the functional disparities arising from strain-level diversity of gut symbionts and their effects on host health have been studied in Apis mellifera and bumblebees, studies focusing on host-specific investigations of individual strains across different honeybee hosts remain relatively unexplored. In this study, the complete genomic sequences of 17 strains of Gilliamella from A. mellifera, Apis cerana and Bombus terrestris were analyzed. The analysis revealed that the strains of A. mellifera display a more expansive genomic and functional content compared to the strains of A. cerana and B. terrestris. Phylogenetic analysis showed a deep divergence among the Gilliamella strains from different hosts. Additionally, biochemistry tests and antibiotic susceptibility tests revealed that gut strains from A. mellifera exhibited a more extensive pathway for carbohydrate metabolism and a greater resistance to antibiotics than gut strains from A. cerana and B. terrestris. Strains from A. mellifera and A. cerana showed higher colonization efficiency and competitive ability whithin their respective host species, indicating a higher degree of host-specific adaptation of local gut microbiota. In addition, colonization by A. mellifera-derived strain triggers a stronger transcriptional response in the host than A. cerana-derived strain. The variation in the number of differentially expressed genes and the involvement of distinct signaling pathways across these two host species suggest species-specific adaptations to Gilliamella strains. These findings suggest that despite occupying similar niches in the bee gut, strain-level variations can influence microbial functions, and their impact on host physiological functions may vary across different strains.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"293 ","pages":"128048"},"PeriodicalIF":6.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to the limited treatment options, the widespread of carbapenem-resistant Klebsiella pneumoniae (CRKP) has become a serious clinical challenge. The emergence of Klebsiella pneumoniae carbapenemase (KPC) and New Delhi metallo-β-lactamase (NDM) coproducing CRKP (KPC-NDM-CRKP) further aggravates this issue. In this study, we identified 15 KPC-2-NDM-5-CRKPs as being responsible for an outbreak that involved 10 patients from October 2020 to May 2021. The outbreak was sustained by ST11-KL47-OL101 KPC-2-NDM-5-CRKPs, which exhibited non-susceptible to all antimicrobials available in mainland China. Of these strains, we characterized a conjugative hybrid plasmid co-harboring blaKPC-2 and blaNDM-5 with high stability. Plasmid comparison and phylogenetic analysis were performed to investigate the origin of the hybrid plasmid and its fusion mechanism. It was speculated that the hybrid plasmid might originate from Klebsiella pneumoniae subsp. pneumoniae strain kpn-hnqyy plasmids unnamed1 (encoding NDM-5) and unnamed2 (encoding KPC-2). The fusion of these two plasmids was presumably mediated by IS26. Global genomic surveillance raised an alarm about the increased prevalence of KPC-NDM-CRKPs. Phylogenetic evaluation was carried out with a total of 327 KPC-NDM-CRKP genomes to provide a global perspective on such strains, and potential transmission events in other global regions were also observed during the COVID-19 period. The outbreak of such strains in the real world and the co-transfer of blaKPC and blaNDM would exacerbate the dispersal of KPC-NDM-CRKPs, which poses a severe threat to public health.
{"title":"Rapid emergence, transmission, and evolution of KPC and NDM coproducing carbapenem-resistant Klebsiella pneumoniae.","authors":"Jiayang Li, Wenqi Wu, Hao Wu, Jinjian Huang, Ze Li, Jiajie Wang, Zhitao Zhou, Meilin Wu, Xiuwen Wu, Yun Zhao, Jianan Ren","doi":"10.1016/j.micres.2025.128049","DOIUrl":"https://doi.org/10.1016/j.micres.2025.128049","url":null,"abstract":"<p><p>Due to the limited treatment options, the widespread of carbapenem-resistant Klebsiella pneumoniae (CRKP) has become a serious clinical challenge. The emergence of Klebsiella pneumoniae carbapenemase (KPC) and New Delhi metallo-β-lactamase (NDM) coproducing CRKP (KPC-NDM-CRKP) further aggravates this issue. In this study, we identified 15 KPC-2-NDM-5-CRKPs as being responsible for an outbreak that involved 10 patients from October 2020 to May 2021. The outbreak was sustained by ST11-KL47-OL101 KPC-2-NDM-5-CRKPs, which exhibited non-susceptible to all antimicrobials available in mainland China. Of these strains, we characterized a conjugative hybrid plasmid co-harboring bla<sub>KPC-2</sub> and bla<sub>NDM-5</sub> with high stability. Plasmid comparison and phylogenetic analysis were performed to investigate the origin of the hybrid plasmid and its fusion mechanism. It was speculated that the hybrid plasmid might originate from Klebsiella pneumoniae subsp. pneumoniae strain kpn-hnqyy plasmids unnamed1 (encoding NDM-5) and unnamed2 (encoding KPC-2). The fusion of these two plasmids was presumably mediated by IS26. Global genomic surveillance raised an alarm about the increased prevalence of KPC-NDM-CRKPs. Phylogenetic evaluation was carried out with a total of 327 KPC-NDM-CRKP genomes to provide a global perspective on such strains, and potential transmission events in other global regions were also observed during the COVID-19 period. The outbreak of such strains in the real world and the co-transfer of bla<sub>KPC</sub> and bla<sub>NDM</sub> would exacerbate the dispersal of KPC-NDM-CRKPs, which poses a severe threat to public health.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"293 ","pages":"128049"},"PeriodicalIF":6.1,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19DOI: 10.1016/j.micres.2024.128033
Marta Pulido-Sánchez, Antonio Leal-Morales, Aroa López-Sánchez, Felipe Cava, Fernando Govantes
The Gram-negative bacterium Pseudomonas putida bears a tuft of flagella at a single cell pole. New flagella must be assembled de novo every cell cycle to secure motility of both daughter cells. Here we show that the coordinated action of FimV, FlhF and FleN sets the location, timing and number of flagella assembled. The polar landmark proteins FimV and FlhF are independently targeted to the nascent new pole during or shortly after cell division, but FimV stabilizes FlhF association with the cell poles. FlhF determines the polar position of the flagella by targeting early flagellar components to the cell pole and preventing their nucleation at non-polar sites. FlhF also promotes efficient flagellar assembly and indirectly stimulates Class III flagellar promoter activation by promoting secretion of the anti-FliA anti-σ factor FlgM. The MinD-like ATPase FleN partitions between the cell poles and the cytoplasm. Cytoplasmic FleN regulates flagellar number by preventing excessive accumulation of FlhF at the cell poles that may otherwise lead to hyperflagellation, likely by antagonizing FleQ-dependent transcriptional activation. FimV is essential to FleN polar location. FimV and FleN temporally regulate the onset of flagellar assembly by preventing premature polar targeting of FlhF and the ensuing premature targeting of additional flagellar components. Our results shed new light on the mechanisms that ensure the timely assembly of the appropriate number of flagella at the correct polar location in polarly flagellated bacteria.
{"title":"Spatial, temporal and numerical regulation of polar flagella assembly in Pseudomonas putida.","authors":"Marta Pulido-Sánchez, Antonio Leal-Morales, Aroa López-Sánchez, Felipe Cava, Fernando Govantes","doi":"10.1016/j.micres.2024.128033","DOIUrl":"https://doi.org/10.1016/j.micres.2024.128033","url":null,"abstract":"<p><p>The Gram-negative bacterium Pseudomonas putida bears a tuft of flagella at a single cell pole. New flagella must be assembled de novo every cell cycle to secure motility of both daughter cells. Here we show that the coordinated action of FimV, FlhF and FleN sets the location, timing and number of flagella assembled. The polar landmark proteins FimV and FlhF are independently targeted to the nascent new pole during or shortly after cell division, but FimV stabilizes FlhF association with the cell poles. FlhF determines the polar position of the flagella by targeting early flagellar components to the cell pole and preventing their nucleation at non-polar sites. FlhF also promotes efficient flagellar assembly and indirectly stimulates Class III flagellar promoter activation by promoting secretion of the anti-FliA anti-σ factor FlgM. The MinD-like ATPase FleN partitions between the cell poles and the cytoplasm. Cytoplasmic FleN regulates flagellar number by preventing excessive accumulation of FlhF at the cell poles that may otherwise lead to hyperflagellation, likely by antagonizing FleQ-dependent transcriptional activation. FimV is essential to FleN polar location. FimV and FleN temporally regulate the onset of flagellar assembly by preventing premature polar targeting of FlhF and the ensuing premature targeting of additional flagellar components. Our results shed new light on the mechanisms that ensure the timely assembly of the appropriate number of flagella at the correct polar location in polarly flagellated bacteria.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"128033"},"PeriodicalIF":6.1,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The citrus disease Huanglongbing (HLB) in Asia and the US is caused by Candidatus Liberibacter asiaticus (CLas), which is primarily transmitted by Diaphorina citri, also known as Asian citrus psyllid in a persistent and propagative manner. However, the exact mechanisms underlying CLas circulation within D. citri remain largely unclear. Here, immunofluorescence microscopy and electron microscopy were utilized to track the sequential infection of CLas in D. citri, from alimentary canal to salivary glands, and ultimately to the plant host. CLas was found to initially infect the epithelium of filter chamber, after which it rapidly spreads to visceral muscles for further infection throughout the alimentary canal. The rapid spread in D. citri adults causes the duration of CLas circulation to be as short as 9 days. The duration of latent period may be explained by the recruitment of cytoskeletal α-actinin by the outer membrane protein (OMP) of CLas. Inhibition of actin filament or knocking down the expression of α-actinin significantly suppresses CLas cytoskeleton-dependent infection in and spread among D. citri organs. Injection of prokaryotically expressed OMP into D. citri also recruits α-actinin, resembling the natural infection of CLas. Our studies showed that CLas exploits α-actinin and remolds actin machinery of D. citri for overcoming the midgut release barrier, facilitating its circulation in the vector. By shedding light on these mechanisms, this report reveals more detailed mechanisms in CLas infection in D. citri, and offers a plausible explanation for rapid dissemination of HLB in nature from the perspective of psyllid transmission.
{"title":"Candidatus Liberibacter asiaticus exploits cytoskeletal system of psyllid vector for circulative propagative infection.","authors":"Zhiqiang Li, Xiao Yang, Yuxin Guo, Xiaofeng Zhang, You Li, Yen-Wen Kuo, Taiyun Wei, Qian Chen","doi":"10.1016/j.micres.2024.127985","DOIUrl":"https://doi.org/10.1016/j.micres.2024.127985","url":null,"abstract":"<p><p>The citrus disease Huanglongbing (HLB) in Asia and the US is caused by Candidatus Liberibacter asiaticus (CLas), which is primarily transmitted by Diaphorina citri, also known as Asian citrus psyllid in a persistent and propagative manner. However, the exact mechanisms underlying CLas circulation within D. citri remain largely unclear. Here, immunofluorescence microscopy and electron microscopy were utilized to track the sequential infection of CLas in D. citri, from alimentary canal to salivary glands, and ultimately to the plant host. CLas was found to initially infect the epithelium of filter chamber, after which it rapidly spreads to visceral muscles for further infection throughout the alimentary canal. The rapid spread in D. citri adults causes the duration of CLas circulation to be as short as 9 days. The duration of latent period may be explained by the recruitment of cytoskeletal α-actinin by the outer membrane protein (OMP) of CLas. Inhibition of actin filament or knocking down the expression of α-actinin significantly suppresses CLas cytoskeleton-dependent infection in and spread among D. citri organs. Injection of prokaryotically expressed OMP into D. citri also recruits α-actinin, resembling the natural infection of CLas. Our studies showed that CLas exploits α-actinin and remolds actin machinery of D. citri for overcoming the midgut release barrier, facilitating its circulation in the vector. By shedding light on these mechanisms, this report reveals more detailed mechanisms in CLas infection in D. citri, and offers a plausible explanation for rapid dissemination of HLB in nature from the perspective of psyllid transmission.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"127985"},"PeriodicalIF":6.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1016/j.micres.2024.127979
Jie Zhang, Panlei Yang, Qingchao Zeng, Yiwei Zhang, Yanan Zhao, Liwei Wang, Yan Li, Zhenshuo Wang, Qi Wang
Robust biofilm formation on host niches facilitates beneficial Bacillus to promote plant growth and inhibit plant pathogens. Arginine kinase McsB is involved in bacterial development and stress reaction by phosphorylating proteins for degradation through a ClpC/ClpP protease. Conversely, cognate arginine phosphatase YwlE counteracts the process. Regulatory pathways of biofilm formation have been studied in Bacillus subtilis, of which Spo0A∼P is a master transcriptional regulator, which is transcriptionally activated by itself in biofilm formation. Previous studies have shown that Spo0A∼P transcript regulation controls biofilm formation, where MecA binds ClpC to inhibit Spo0A∼P-dependent transcription without triggering degradation. It remains unclear whether McsB and ClpC regulate biofilm formation together and share a similar non-proteolytic mechanism like MecA/ClpC complex. In this study, we characterized McsB and ClpC as negative regulators of biofilm formation and matrix gene eps expression. Our genetic and morphological evidence further indicates that McsB and ClpC inhibit eps expression by decreasing the spo0A and sinI expression, leading to the release of SinR, a known repressor of eps transcription. Given that the spo0A and sinI expression is transcriptionally activated by Spo0A∼P in biofilm formation, we next demonstrate that McsB interacts with Spo0A directly by bacterial two-hybrid system and Glutathione transferase pull-down experiments. Additionally, we present that McsB forms a complex with ClpC to dampen biofilm formation in vivo. Finally, we show that YwlE acts as a positive regulator of biofilm formation, counteracting the function of McsB. These findings suggest that McsB, ClpC, and YwlE play vital roles in the transition to biofilm formation in Bacillus subtilis, providing new insights into the regulatory mechanisms underlying biofilm development and sharing a similar non-proteolytic mechanism in biofilm formation as MecA/ClpC complex.
{"title":"Arginine kinase McsB and ClpC complex impairs the transition to biofilm formation in Bacillus subtilis.","authors":"Jie Zhang, Panlei Yang, Qingchao Zeng, Yiwei Zhang, Yanan Zhao, Liwei Wang, Yan Li, Zhenshuo Wang, Qi Wang","doi":"10.1016/j.micres.2024.127979","DOIUrl":"https://doi.org/10.1016/j.micres.2024.127979","url":null,"abstract":"<p><p>Robust biofilm formation on host niches facilitates beneficial Bacillus to promote plant growth and inhibit plant pathogens. Arginine kinase McsB is involved in bacterial development and stress reaction by phosphorylating proteins for degradation through a ClpC/ClpP protease. Conversely, cognate arginine phosphatase YwlE counteracts the process. Regulatory pathways of biofilm formation have been studied in Bacillus subtilis, of which Spo0A∼P is a master transcriptional regulator, which is transcriptionally activated by itself in biofilm formation. Previous studies have shown that Spo0A∼P transcript regulation controls biofilm formation, where MecA binds ClpC to inhibit Spo0A∼P-dependent transcription without triggering degradation. It remains unclear whether McsB and ClpC regulate biofilm formation together and share a similar non-proteolytic mechanism like MecA/ClpC complex. In this study, we characterized McsB and ClpC as negative regulators of biofilm formation and matrix gene eps expression. Our genetic and morphological evidence further indicates that McsB and ClpC inhibit eps expression by decreasing the spo0A and sinI expression, leading to the release of SinR, a known repressor of eps transcription. Given that the spo0A and sinI expression is transcriptionally activated by Spo0A∼P in biofilm formation, we next demonstrate that McsB interacts with Spo0A directly by bacterial two-hybrid system and Glutathione transferase pull-down experiments. Additionally, we present that McsB forms a complex with ClpC to dampen biofilm formation in vivo. Finally, we show that YwlE acts as a positive regulator of biofilm formation, counteracting the function of McsB. These findings suggest that McsB, ClpC, and YwlE play vital roles in the transition to biofilm formation in Bacillus subtilis, providing new insights into the regulatory mechanisms underlying biofilm development and sharing a similar non-proteolytic mechanism in biofilm formation as MecA/ClpC complex.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"127979"},"PeriodicalIF":6.1,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}