首页 > 最新文献

Mineralogical Magazine最新文献

英文 中文
MGM volume 87 issue 4 Cover and Front matter 米高梅第87卷第4期封面和封面
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-08-01 DOI: 10.1180/mgm.2023.60
{"title":"MGM volume 87 issue 4 Cover and Front matter","authors":"","doi":"10.1180/mgm.2023.60","DOIUrl":"https://doi.org/10.1180/mgm.2023.60","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":"87 1","pages":"f1 - f1"},"PeriodicalIF":2.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41633223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluoralforsite, Ba5(PO4)3F – a new apatite group mineral from the Hatrurim Basin, Negev Desert, Israel 氟长石,Ba5(PO4)3F——一种来自以色列内盖夫沙漠Hatrurim盆地的新磷灰石群矿物
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-07-31 DOI: 10.1180/mgm.2023.58
A. Krzątała, Katarzyna Skrzyńska, G. Cametti, I. Galuskina, Y. Vapnik, E. Galuskin
{"title":"Fluoralforsite, Ba5(PO4)3F – a new apatite group mineral from the Hatrurim Basin, Negev Desert, Israel","authors":"A. Krzątała, Katarzyna Skrzyńska, G. Cametti, I. Galuskina, Y. Vapnik, E. Galuskin","doi":"10.1180/mgm.2023.58","DOIUrl":"https://doi.org/10.1180/mgm.2023.58","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43338001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minerals with a palmierite-type structure. Part I. Mazorite Ba3(PO4)2, a new mineral from the Hatrurim Complex in Israel 具有棕榈岩型结构的矿物。第一部分:以色列Hatrurim杂岩中一种新矿物Ba3(PO4)2
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-07-31 DOI: 10.1180/mgm.2023.57
Rafał Juroszek, I. Galuskina, Biljana Krüger, H. Krüger, Y. Vapnik, V. Kahlenberg, E. Galuskin
: The new mineral mazorite, ideally Ba 3 (PO 4 ) 2 , a P-analogue of gurimite Ba 3 (VO 4 ) 2 , was discovered in rankinite paralava hosted by the massive gehlenite-bearing pyrometamorphic rocks of the Hatrurim Complex in Israel. Previously, this mineral was also detected in xenolith samples from the Bellerberg volcano in Germany. Holotype mazorite usually forms colourless plate crystals up to 70-100 μm in length but also occurs in small aggregates in association with other rare Ba-bearing minerals such as zadovite, celsian, hexacelsian, bennesherite, sanbornite, walstromite, fresnoite, gurimite, alforsite
:在以色列Hatrurim杂岩的含格勒岩的块状高温非晶岩石所含的rankinite paralava中发现了新矿物马佐石,理想情况下为Ba 3(PO4)2,是古里矿Ba 3的P-类似物。此前,在德国贝尔堡火山的捕虏体样本中也检测到了这种矿物。Holotype-mazorite通常形成长度达70-100μm的无色板状晶体,但也以小聚集体的形式存在,与其他稀有的含Ba矿物(如杂辉石、铈矿、六铈矿、bennesherite、sanbornite、walstromite、fresnoite、gurinite、alforsite)结合
{"title":"Minerals with a palmierite-type structure. Part I. Mazorite Ba3(PO4)2, a new mineral from the Hatrurim Complex in Israel","authors":"Rafał Juroszek, I. Galuskina, Biljana Krüger, H. Krüger, Y. Vapnik, V. Kahlenberg, E. Galuskin","doi":"10.1180/mgm.2023.57","DOIUrl":"https://doi.org/10.1180/mgm.2023.57","url":null,"abstract":": The new mineral mazorite, ideally Ba 3 (PO 4 ) 2 , a P-analogue of gurimite Ba 3 (VO 4 ) 2 , was discovered in rankinite paralava hosted by the massive gehlenite-bearing pyrometamorphic rocks of the Hatrurim Complex in Israel. Previously, this mineral was also detected in xenolith samples from the Bellerberg volcano in Germany. Holotype mazorite usually forms colourless plate crystals up to 70-100 μm in length but also occurs in small aggregates in association with other rare Ba-bearing minerals such as zadovite, celsian, hexacelsian, bennesherite, sanbornite, walstromite, fresnoite, gurimite, alforsite","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44578593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Newsletter 74 时事通讯74
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-07-27 DOI: 10.1180/mgm.2023.54
F. Bosi, F. Hatert, M. Pasero, S. Mills
{"title":"Newsletter 74","authors":"F. Bosi, F. Hatert, M. Pasero, S. Mills","doi":"10.1180/mgm.2023.54","DOIUrl":"https://doi.org/10.1180/mgm.2023.54","url":null,"abstract":"<jats:p>\u0000 </jats:p>","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48018157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minerals with a palmierite-type structure. Part II. Nomenclature and classification of the palmierite supergroup 具有棕榈岩型结构的矿物。第二部分。掌纹岩超群的命名和分类
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-07-24 DOI: 10.1180/mgm.2023.56
Rafał Juroszek, Biljana Krüger, H. Krüger, I. Galuskina
Abstract The palmierite supergroup, approved by the IMA-CNMNC, includes five mineral species characterised by the general crystal-chemical formula XIIM1XM22(IVTO4)2 (Z = 3). On the basis of the crystal-chemical arguments and heterovalent isomorphic substitution scheme M++T6+ ↔ M2++T5+, the palmierite supergroup can be formally divided into two groups: the palmierite group M12+M22+(T6+O4)2, and the tuite group M12+M222+(T5+O4)2. Currently, the palmierite group includes palmierite K2Pb(SO4)2, and kalistrontite K2Sr(SO4)2, whereas the tuite group combines tuite Ca3(PO4)2, mazorite Ba3(PO4)2, and gurimite Ba3(VO4)2. The isostructural supergroup members crystallise in space group R$bar{3}$m (no. 166). The palmierite-type crystal structure is characterised by a sheet arrangement composed of layers formed by M1O12 and M2O10 polyhedra separated by TO4 tetrahedra perpendicular to the c axis. The abundance of distinct ions, which may be hosted at the M and T sites (M = K, Na, Ca, Sr, Ba, Sr, Pb, Rb, Zn, Tl, Cs, Bi, NH4 and REE; T = Si, P, V, As, S, Se, Mo, Cr and W) implies many possible combinations, resulting in potentially new mineral species. Minerals belonging to the palmierite supergroup are relatively rare and usually form under specific conditions, and their synthetic counterparts play a significant role in various industrial applications.
{"title":"Minerals with a palmierite-type structure. Part II. Nomenclature and classification of the palmierite supergroup","authors":"Rafał Juroszek, Biljana Krüger, H. Krüger, I. Galuskina","doi":"10.1180/mgm.2023.56","DOIUrl":"https://doi.org/10.1180/mgm.2023.56","url":null,"abstract":"Abstract The palmierite supergroup, approved by the IMA-CNMNC, includes five mineral species characterised by the general crystal-chemical formula XIIM1XM22(IVTO4)2 (Z = 3). On the basis of the crystal-chemical arguments and heterovalent isomorphic substitution scheme M++T6+ ↔ M2++T5+, the palmierite supergroup can be formally divided into two groups: the palmierite group M12+M22+(T6+O4)2, and the tuite group M12+M222+(T5+O4)2. Currently, the palmierite group includes palmierite K2Pb(SO4)2, and kalistrontite K2Sr(SO4)2, whereas the tuite group combines tuite Ca3(PO4)2, mazorite Ba3(PO4)2, and gurimite Ba3(VO4)2. The isostructural supergroup members crystallise in space group R$bar{3}$m (no. 166). The palmierite-type crystal structure is characterised by a sheet arrangement composed of layers formed by M1O12 and M2O10 polyhedra separated by TO4 tetrahedra perpendicular to the c axis. The abundance of distinct ions, which may be hosted at the M and T sites (M = K, Na, Ca, Sr, Ba, Sr, Pb, Rb, Zn, Tl, Cs, Bi, NH4 and REE; T = Si, P, V, As, S, Se, Mo, Cr and W) implies many possible combinations, resulting in potentially new mineral species. Minerals belonging to the palmierite supergroup are relatively rare and usually form under specific conditions, and their synthetic counterparts play a significant role in various industrial applications.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48687161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Rewitzerite, K(H2O)Mn2(Al2Ti)(PO4)4[O(OH)](H2O)10⋅4H2O, a new monoclinic paulkerrite-group mineral, from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany. Rewitzerite,K(H2O)Mn2(Al2Ti)(PO4)4[O(OH)](H2O。
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-07-24 DOI: 10.1180/mgm.2023.55
I. Grey, R. Hochleitner, A. R. Kampf, Stephanie Boer, C. MacRae, W. G. Mumme, E. Keck
{"title":"Rewitzerite, K(H2O)Mn2(Al2Ti)(PO4)4[O(OH)](H2O)10⋅4H2O, a new monoclinic paulkerrite-group mineral, from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany.","authors":"I. Grey, R. Hochleitner, A. R. Kampf, Stephanie Boer, C. MacRae, W. G. Mumme, E. Keck","doi":"10.1180/mgm.2023.55","DOIUrl":"https://doi.org/10.1180/mgm.2023.55","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48353428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Occurrence and crystal chemistry of austinite, conichalcite, and zincolivenite from the Peloritani Mountains, northeastern Sicily, Italy 意大利西西里岛东北部Peloritani山脉中奥辉橄榄岩、分辉橄榄岩和锌辉橄榄岩的赋存状态和晶体化学
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-07-03 DOI: 10.1180/mgm.2023.49
D. Mauro, C. Biagioni, J. Sejkora, Z. Dolníček
Abstract A new occurrence of austinite, CaZnAsO4(OH), conichalcite, CaCuAsO4(OH), and zincolivenite, CuZnAsO4(OH), is described from the Tripi mine, Peloritani Mountains, Sicily, Italy. These species have been observed in euhedral crystals in vugs of a calcite vein and were characterised using single-crystal X-ray diffraction, electron microprobe analysis and micro-Raman spectroscopy. Austinite and conichalcite have isotypic relations, both crystallising in space group P212121. Unit-cell parameters of austinite are a = 7.4931(5), b = 9.0256(6), c = 5.9155(4) Å, V = 400.06(5) Å3; its crystal structure was refined on the basis of 1210 unique reflections with Fo > 4σ(Fo) and 77 least-square parameters to R1 = 0.0236. Conichalcite has unit-cell parameters a = 7.419(10), b = 9.111(11), c = 5.867(7) Å and V = 396.6(1.4) Å3; the diffraction quality of its available grains was not good enough to allow a high-quality structural refinement. Chemical formulae of austinite and conichalcite are Ca1.04(1)Zn0.86(4)Cu0.09(4)As0.98(2)P0.02(1)O4(OH)0.98 and Ca0.98(1)Fe2+0.02(4)Cu0.69(10)Zn0.30(6)As0.97(2)P0.03(1)O4(OH)0.98, respectively. The new chemical data on the austinite–conichalcite isotypic pair, coupled with previous analyses, supports a possible miscibility gap between the compositions (Zn0.25Cu0.75) and (Zn0.50Cu0.50). Zincolivenite has unit-cell parameters a = 8.4594(9), b = 8.5324(8), c = 5.9893(6) Å, V = 432.30(12) Å3 and space group Pnnm; its crystal structure was refined to R1 = 0.0230 for 523 unique reflections with Fo > 4σ(Fo) and 47 least-square parameters. Its chemical composition is Cu0.73(5)Zn1.25(5)As1.01(1)O4(OH)1.01. The refinement of the crystal structure supports the ordering of Cu and Zn in two different crystallographic sites. Micro-Raman spectra of austinite, conichalcite and zincolivenite are discussed, with a focus on the O–H stretching region where local Zn and Cu arrangements affect the position of Raman bands in zincolivenite. These arsenates probably play an environmental role in the Peloritani area, where the occurrence of high contents of some potentially toxic elements in soils and stream sediments has been reported.
{"title":"Occurrence and crystal chemistry of austinite, conichalcite, and zincolivenite from the Peloritani Mountains, northeastern Sicily, Italy","authors":"D. Mauro, C. Biagioni, J. Sejkora, Z. Dolníček","doi":"10.1180/mgm.2023.49","DOIUrl":"https://doi.org/10.1180/mgm.2023.49","url":null,"abstract":"Abstract A new occurrence of austinite, CaZnAsO4(OH), conichalcite, CaCuAsO4(OH), and zincolivenite, CuZnAsO4(OH), is described from the Tripi mine, Peloritani Mountains, Sicily, Italy. These species have been observed in euhedral crystals in vugs of a calcite vein and were characterised using single-crystal X-ray diffraction, electron microprobe analysis and micro-Raman spectroscopy. Austinite and conichalcite have isotypic relations, both crystallising in space group P212121. Unit-cell parameters of austinite are a = 7.4931(5), b = 9.0256(6), c = 5.9155(4) Å, V = 400.06(5) Å3; its crystal structure was refined on the basis of 1210 unique reflections with Fo > 4σ(Fo) and 77 least-square parameters to R1 = 0.0236. Conichalcite has unit-cell parameters a = 7.419(10), b = 9.111(11), c = 5.867(7) Å and V = 396.6(1.4) Å3; the diffraction quality of its available grains was not good enough to allow a high-quality structural refinement. Chemical formulae of austinite and conichalcite are Ca1.04(1)Zn0.86(4)Cu0.09(4)As0.98(2)P0.02(1)O4(OH)0.98 and Ca0.98(1)Fe2+0.02(4)Cu0.69(10)Zn0.30(6)As0.97(2)P0.03(1)O4(OH)0.98, respectively. The new chemical data on the austinite–conichalcite isotypic pair, coupled with previous analyses, supports a possible miscibility gap between the compositions (Zn0.25Cu0.75) and (Zn0.50Cu0.50). Zincolivenite has unit-cell parameters a = 8.4594(9), b = 8.5324(8), c = 5.9893(6) Å, V = 432.30(12) Å3 and space group Pnnm; its crystal structure was refined to R1 = 0.0230 for 523 unique reflections with Fo > 4σ(Fo) and 47 least-square parameters. Its chemical composition is Cu0.73(5)Zn1.25(5)As1.01(1)O4(OH)1.01. The refinement of the crystal structure supports the ordering of Cu and Zn in two different crystallographic sites. Micro-Raman spectra of austinite, conichalcite and zincolivenite are discussed, with a focus on the O–H stretching region where local Zn and Cu arrangements affect the position of Raman bands in zincolivenite. These arsenates probably play an environmental role in the Peloritani area, where the occurrence of high contents of some potentially toxic elements in soils and stream sediments has been reported.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49512670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aluminotaipingite-(CeCa), (Ce6Ca3)Al(SiO4)3[SiO3(OH)]4F3, a new member of the cerite-supergroup minerals 铝太平矿-(CeCa), (Ce6Ca3)Al(SiO4)3[SiO3(OH)]4F3,是铈超群矿物的新成员
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-07-03 DOI: 10.1180/mgm.2023.51
I. Campostrini, F. Demartin, Giuseppe Finello, P. Vignola
Abstract Aluminotaipingite-(CeCa), (Ce6Ca3)Al(SiO4)3[SiO3(OH)]4F3, is a new member of the cerite-supergroup minerals, whose general chemical formula is A9XM[TO3Ø]7Z3, (A = REE, Ca, Sr, Na and □; X = □, Ca, Na and Fe2+; M = Mg, Fe2+, Fe3+, Al and Mn; T = Si and P; Ø = O and OH; Z = □, OH and F). It was found in cavities of a leucogranitic orthogneiss at the Casette quarry, Montoso, Bagnolo Piemonte, Cuneo Province, Piedmont, Italy. Crystals of aluminotaipingite-(CeCa) are light pink to pink, transparent or semi-transparent, with a vitreous lustre. It forms pyramidal crystals up to 0.07 mm in size and observed forms are {0 0 1}, {1 0 $bar{2}$}. The tenacity is brittle, no distinct cleavage is observed and the fracture is uneven. The mineral does not fluoresce in long- or short-wave ultraviolet light. The streak is white. Hardness (Mohs) = 5. The calculated density is 4.476 g cm–3. The mineral is trigonal, space group R3c, with a = 10.658(3), c = 37.865(9) Å, V = 3725(2) Å3 and Z = 6. The eight strongest powder X-ray diffraction lines are [dobs, Å (I, %) (h k l)]: 8.38(29)(0 1 2), 4.499(28)(2 0 2), 3.282(41)(2 1 4), 2.936(100)(0 2 10), 2.816(51)(1 2 8), 2.669(37)(2 2 0), 2.207 (29)(3 0 12) and 1.935(35)(2 3 8). The structure was refined to R =0.0306 for 2297 reflections with I >2σ(I). The crystal structure of aluminotaipingite-(CeCa) contains two nine-fold coordinated sites (A1 and A2), which are occupied mainly by lanthanides, and a third nine-fold coordinated A3 site containing almost equal amounts of lanthanides and Ca. The X site is vacant and at the octahedral M site aluminium prevails over Fe3+. Among the three independent T sites, T2 belongs to a (SiO4)4– anion, whereas T1 and T3 belong to (SiO3OH)3– anions. Fluorine is involved in coordination with the A1 and A3 sites.
{"title":"Aluminotaipingite-(CeCa), (Ce6Ca3)Al(SiO4)3[SiO3(OH)]4F3, a new member of the cerite-supergroup minerals","authors":"I. Campostrini, F. Demartin, Giuseppe Finello, P. Vignola","doi":"10.1180/mgm.2023.51","DOIUrl":"https://doi.org/10.1180/mgm.2023.51","url":null,"abstract":"Abstract Aluminotaipingite-(CeCa), (Ce6Ca3)Al(SiO4)3[SiO3(OH)]4F3, is a new member of the cerite-supergroup minerals, whose general chemical formula is A9XM[TO3Ø]7Z3, (A = REE, Ca, Sr, Na and □; X = □, Ca, Na and Fe2+; M = Mg, Fe2+, Fe3+, Al and Mn; T = Si and P; Ø = O and OH; Z = □, OH and F). It was found in cavities of a leucogranitic orthogneiss at the Casette quarry, Montoso, Bagnolo Piemonte, Cuneo Province, Piedmont, Italy. Crystals of aluminotaipingite-(CeCa) are light pink to pink, transparent or semi-transparent, with a vitreous lustre. It forms pyramidal crystals up to 0.07 mm in size and observed forms are {0 0 1}, {1 0 $bar{2}$}. The tenacity is brittle, no distinct cleavage is observed and the fracture is uneven. The mineral does not fluoresce in long- or short-wave ultraviolet light. The streak is white. Hardness (Mohs) = 5. The calculated density is 4.476 g cm–3. The mineral is trigonal, space group R3c, with a = 10.658(3), c = 37.865(9) Å, V = 3725(2) Å3 and Z = 6. The eight strongest powder X-ray diffraction lines are [dobs, Å (I, %) (h k l)]: 8.38(29)(0 1 2), 4.499(28)(2 0 2), 3.282(41)(2 1 4), 2.936(100)(0 2 10), 2.816(51)(1 2 8), 2.669(37)(2 2 0), 2.207 (29)(3 0 12) and 1.935(35)(2 3 8). The structure was refined to R =0.0306 for 2297 reflections with I >2σ(I). The crystal structure of aluminotaipingite-(CeCa) contains two nine-fold coordinated sites (A1 and A2), which are occupied mainly by lanthanides, and a third nine-fold coordinated A3 site containing almost equal amounts of lanthanides and Ca. The X site is vacant and at the octahedral M site aluminium prevails over Fe3+. Among the three independent T sites, T2 belongs to a (SiO4)4– anion, whereas T1 and T3 belong to (SiO3OH)3– anions. Fluorine is involved in coordination with the A1 and A3 sites.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46789439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The position of vanadium in the crystal structure of zoisite, variety tanzanite: Structural refinement, optical absorption spectroscopy and bond-valence calculations 钒在黝帘石晶体结构中的位置,坦桑石品种:结构细化,光学吸收光谱和键价计算
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-06-29 DOI: 10.1180/mgm.2023.48
P. Bačík, M. Wildner, J. Cempírek, R. Škoda, Peter Cibula, T. Vaculovič
Abstract Vanadium is the dominant trace element and chromophore in tanzanite, the most valued gemmological variety of zoisite. The structure of zoisite–tanzanite was obtained by structural refinement to assess the vanadium location in the zoisite structure. However, the small V content in tanzanite evidenced by electron microprobe and laser ablation inductively coupled plasma mass spectrometry limits the exact determination of the V position in the zoisite structure. Structural refinement revealed that the average bond length of the less distorted M1,2O6 octahedron is below 1.90 Å, and M3O6 has slightly longer bonds with an average of ca. 1.96 Å. The M1,2 site is slightly overbonded with a bond-valence sum (BVS) of 3.03 vu, whereas M3 is slightly underbonded (BVS = 2.78 vu). Optical absorption spectra revealed that most V is trivalent, but a small portion is probably in a four-valent state. Therefore, crystal field Superposition Model and Bond-Valence Model calculations were applied based on several necessary assumptions: (1) V occupies octahedral sites; and (2) it can occur in two oxidation states, V3+ or V4+. Crystal field Superposition Model calculations from the optical spectra indicated that V3+ prefers occupying the M1,2 site; the preference of V4+ from the present data was impossible to determine. Bond-Valence Model calculations revealed no unambiguous preference for V3+, although simple bond-length calculation suggests the preference of the M3 site. However, it is quite straightforward that the M1,2 site is better suitable for V4+. If the possible octahedral distortion is considered, the M1,2O6 octahedron is subject to a smaller change in distortion if occupied by V3+ than the M3O6 octahedron. Consequently, considering the results of both the crystal field Superposition Model and Bond-Valence Model calculations, we assume that both V3+ and V4+ prefer the M1,2 site.
摘要钒是坦桑石中主要的微量元素和发色团,坦桑石是黝帘石中最具价值的宝石品种。通过结构精化,得到了黝帘石-坦桑石的结构,评价了钒在黝帘石结构中的位置。然而,电子探针和激光烧蚀电感耦合等离子体质谱法证明坦桑石中V含量低,限制了V在黝石结构中位置的精确测定。结构改进表明,变形较小的M3O6八面体的平均键长小于1.90 Å,而M3O6的键长稍长,平均键长约为1.96 Å。M1,2位点有轻微的过键,键价和(BVS)为3.03 vu,而M3位点有轻微的欠键(BVS = 2.78 vu)。光学吸收光谱显示,大多数V是三价的,但一小部分可能处于四价态。因此,基于几个必要的假设,应用晶体场叠加模型和键价模型计算:(1)V占据八面体位;(2)它可以以V3+或V4+两种氧化态发生。由光谱计算得出的晶体场叠加模型表明,V3+倾向于占据M1,2位;从目前的数据无法确定V4+的偏好。键价模型计算显示,虽然简单的键长计算表明M3位点的偏好,但V3+并没有明确的偏好。然而,很明显,M1,2站点更适合V4+。如果考虑到可能的八面体畸变,M1,2O6八面体在被V3+占据时的畸变变化比M3O6八面体要小。因此,考虑到晶体场叠加模型和键价模型计算的结果,我们假设V3+和V4+都倾向于M1,2位点。
{"title":"The position of vanadium in the crystal structure of zoisite, variety tanzanite: Structural refinement, optical absorption spectroscopy and bond-valence calculations","authors":"P. Bačík, M. Wildner, J. Cempírek, R. Škoda, Peter Cibula, T. Vaculovič","doi":"10.1180/mgm.2023.48","DOIUrl":"https://doi.org/10.1180/mgm.2023.48","url":null,"abstract":"Abstract Vanadium is the dominant trace element and chromophore in tanzanite, the most valued gemmological variety of zoisite. The structure of zoisite–tanzanite was obtained by structural refinement to assess the vanadium location in the zoisite structure. However, the small V content in tanzanite evidenced by electron microprobe and laser ablation inductively coupled plasma mass spectrometry limits the exact determination of the V position in the zoisite structure. Structural refinement revealed that the average bond length of the less distorted M1,2O6 octahedron is below 1.90 Å, and M3O6 has slightly longer bonds with an average of ca. 1.96 Å. The M1,2 site is slightly overbonded with a bond-valence sum (BVS) of 3.03 vu, whereas M3 is slightly underbonded (BVS = 2.78 vu). Optical absorption spectra revealed that most V is trivalent, but a small portion is probably in a four-valent state. Therefore, crystal field Superposition Model and Bond-Valence Model calculations were applied based on several necessary assumptions: (1) V occupies octahedral sites; and (2) it can occur in two oxidation states, V3+ or V4+. Crystal field Superposition Model calculations from the optical spectra indicated that V3+ prefers occupying the M1,2 site; the preference of V4+ from the present data was impossible to determine. Bond-Valence Model calculations revealed no unambiguous preference for V3+, although simple bond-length calculation suggests the preference of the M3 site. However, it is quite straightforward that the M1,2 site is better suitable for V4+. If the possible octahedral distortion is considered, the M1,2O6 octahedron is subject to a smaller change in distortion if occupied by V3+ than the M3O6 octahedron. Consequently, considering the results of both the crystal field Superposition Model and Bond-Valence Model calculations, we assume that both V3+ and V4+ prefer the M1,2 site.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":"87 1","pages":"599 - 610"},"PeriodicalIF":2.7,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45661239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XX. Evseevite, Na2Mg(AsO4)F, the first natural arsenate with antiperovskite structure 俄罗斯堪察加托尔巴切克火山Arsenatnaya喷气孔中的新砷酸盐矿物。XX。Evseevite, Na2Mg(AsO4)F,第一个具有反钙钛矿结构的天然砷酸盐
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-06-29 DOI: 10.1180/mgm.2023.50
I. Pekov, N. Zubkova, A. Agakhanov, M. Vigasina, V. Yapaskurt, S. Britvin, A. Turchkova, E. Sidorov, E. Zhitova, D. Pushcharovsky
{"title":"New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XX. Evseevite, Na2Mg(AsO4)F, the first natural arsenate with antiperovskite structure","authors":"I. Pekov, N. Zubkova, A. Agakhanov, M. Vigasina, V. Yapaskurt, S. Britvin, A. Turchkova, E. Sidorov, E. Zhitova, D. Pushcharovsky","doi":"10.1180/mgm.2023.50","DOIUrl":"https://doi.org/10.1180/mgm.2023.50","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43269920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Mineralogical Magazine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1