首页 > 最新文献

Mineralogical Magazine最新文献

英文 中文
Ebnerite and epiebnerite: NH4ZnPO4 dimorphs with zeolite-type frameworks from the Rowley mine, Arizona, USA Ebnerite和epiebnerite:来自美国亚利桑那州罗利矿的具有沸石型框架的 NH4ZnPO4 二形晶
IF 2.7 3区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-08 DOI: 10.1180/mgm.2024.15
Anthony R. Kampf, Xiangping Gu, Hexiong Yang, Chi Ma, Joe Marty

Ebnerite and epiebnerite, both with the ideal formula NH4ZnPO4, are new mineral species from the Rowley mine, Maricopa County, Arizona, USA. They occur in an unusual bat-guano-related, post-mining assemblage of phases. Epiebnerite grows epitactically on ebnerite and replaces it. Ebnerite and epiebnerite are found in intimate association with alunite, halite, mimetite, newberyite, sampleite, struvite and wulfenite on hematite-rich quartz–baryte matrix. Crystals of ebnerite are colourless narrow prisms up to ~0.3 mm in length. The streak is white, lustre is vitreous, Mohs hardness is ~2, tenacity is brittle and fracture is splintery. The density is 2.78(2) g⋅cm–3. Ebnerite is optically uniaxial (–) with ω = 1.585(2) and ɛ = 1.575(2). Epiebnerite occurs as colourless prisms or blades, up to about 10 × 3 × 2 μm, in parallel growth forming ribs with serrated edges epitactic on ebnerite prisms. The streak is white, lustre is vitreous, Mohs hardness is probably ~2, tenacity is brittle. The calculated density is 2.851 g⋅cm–3. Epiebnerite is optically biaxial with all indices of refraction near 1.580. Electron microprobe analysis gave the empirical formula [(NH4)0.89K0.06]Σ0.95(Zn0.96Cu0.07)Σ1.03[(P0.97Si0.03)Σ1.00O4] for ebnerite and [(NH4)0.67K0.28]Σ0.95(Zn0.99Cu0.02)Σ1.02(P1.00O4) for epiebnerite. Ebnerite is hexagonal, P63, with a = 10.67051(16), c = 8.7140(2) Å, V = 859.25(3) Å3 and Z = 8. Epiebnerite is monoclinic, P21, with a = 8.796(16), b = 5.457(16), c = 8.960(16) Å, β = 90.34(6)°, V = 430.1(17) Å3 and Z = 4. The structures of ebnerite (R1 = 0.0372 for 1168 Io > 2σI reflections) and epiebnerite (known from synthetic monoclinic NH4ZnPO4) are zeolite-like frameworks based upon corner-sharing linkages between alternating ZnO4 and PO4 tetrahedra with channels in the frameworks hosting the NH4 groups. The two structures are topologically distinct. Ebnerite belongs to the family of ‘stuffed derivatives’ of tridymite, whereas epiebnerite possesses an ABW-type zeolite structure.

Ebnerite和epiebnerite的理想化学式均为NH4ZnPO4,是来自美国亚利桑那州马里科帕县罗利矿的新矿物物种。它们出现在一个不寻常的与蝙蝠冠有关的矿后相集合体中。表闪长岩附生在黑云母上,并取代黑云母。在富含赤铁矿的石英重晶石基质上,埃贝纳铁矿和表贝纳铁矿与明矾石、海绿石、拟镁铁矿、新贝里铁矿、闪长岩、闪长岩和乌芬铁矿紧密地结合在一起。黑云母晶体为无色窄棱柱,长度可达约 0.3 毫米。条纹为白色,光泽为玻璃光泽,莫氏硬度约为 2,韧性为脆性,断口为劈裂状。密度为 2.78(2) 克-厘米-3。辉绿岩的光学性质为单轴(-),ω = 1.585(2),ɛ = 1.575(2)。表闪长岩呈无色棱柱或叶片状,大小约为 10 × 3 × 2 μm,平行生长,在闪长岩棱柱上形成边缘呈锯齿状的外延棱纹。条纹为白色,光泽为玻璃光泽,莫氏硬度约为 ~2,韧性较脆。计算密度为 2.851 g-cm-3。表闪石具有光学双轴性,所有折射率都接近 1.580。电子显微镜分析得出的经验公式为[(NH4)0.89K0.06]Σ0.95(Zn0.96Cu0.07)Σ1.03[(P0. 97Si0.03)Σ1.03]。97Si0.03)Σ1.00O4],而表闪长岩为[(NH4)0.67K0.28]Σ0.95(Zn0.99Cu0.02)Σ1.02(P1.00O4)。埃白云母为六方晶系,P63,a = 10.67051(16),c = 8.7140(2)埃,V = 859.25(3)埃3,Z = 8;表白云母为单斜晶系,P21,a = 8.796(16),b = 5.457(16),c = 8.960(16)埃,β = 90.34(6)°,V = 430.1(17)埃3,Z = 4。埃勃来石(1168 Io > 2σI 反射的 R1 = 0.0372)和表勃来石(从合成单斜 NH4ZnPO4 中得知)的结构是基于交替 ZnO4 和 PO4 四面体之间的分角连接的沸石状框架,框架中的通道容纳了 NH4 基团。这两种结构在拓扑学上截然不同。埃勃来特属于三闪长岩的 "填充衍生物 "家族,而表勃来特则具有 ABW 型沸石结构。
{"title":"Ebnerite and epiebnerite: NH4ZnPO4 dimorphs with zeolite-type frameworks from the Rowley mine, Arizona, USA","authors":"Anthony R. Kampf, Xiangping Gu, Hexiong Yang, Chi Ma, Joe Marty","doi":"10.1180/mgm.2024.15","DOIUrl":"https://doi.org/10.1180/mgm.2024.15","url":null,"abstract":"<p>Ebnerite and epiebnerite, both with the ideal formula NH<span>4</span>ZnPO<span>4</span>, are new mineral species from the Rowley mine, Maricopa County, Arizona, USA. They occur in an unusual bat-guano-related, post-mining assemblage of phases. Epiebnerite grows epitactically on ebnerite and replaces it. Ebnerite and epiebnerite are found in intimate association with alunite, halite, mimetite, newberyite, sampleite, struvite and wulfenite on hematite-rich quartz–baryte matrix. Crystals of ebnerite are colourless narrow prisms up to ~0.3 mm in length. The streak is white, lustre is vitreous, Mohs hardness is ~2, tenacity is brittle and fracture is splintery. The density is 2.78(2) g⋅cm<span>–3</span>. Ebnerite is optically uniaxial (–) with ω = 1.585(2) and ɛ = 1.575(2). Epiebnerite occurs as colourless prisms or blades, up to about 10 × 3 × 2 μm, in parallel growth forming ribs with serrated edges epitactic on ebnerite prisms. The streak is white, lustre is vitreous, Mohs hardness is probably ~2, tenacity is brittle. The calculated density is 2.851 g⋅cm<span>–3</span>. Epiebnerite is optically biaxial with all indices of refraction near 1.580. Electron microprobe analysis gave the empirical formula [(NH<span>4</span>)<span>0.89</span>K<span>0.06</span>]<span>Σ0.95</span>(Zn<span>0.96</span>Cu<span>0.07</span>)<span>Σ1.03</span>[(P<span>0.97</span>Si<span>0.03</span>)<span>Σ1.00</span>O<span>4</span>] for ebnerite and [(NH<span>4</span>)<span>0.67</span>K<span>0.28</span>]<span>Σ0.95</span>(Zn<span>0.99</span>Cu<span>0.02</span>)<span>Σ1.02</span>(P<span>1.00</span>O<span>4</span>) for epiebnerite. Ebnerite is hexagonal, <span>P</span>6<span>3</span>, with <span>a</span> = 10.67051(16), <span>c</span> = 8.7140(2) Å, <span>V</span> = 859.25(3) Å<span>3</span> and <span>Z</span> = 8. Epiebnerite is monoclinic, <span>P</span>2<span>1</span>, with <span>a</span> = 8.796(16), <span>b</span> = 5.457(16), <span>c</span> = 8.960(16) Å, β = 90.34(6)°, <span>V</span> = 430.1(17) Å<span>3</span> and <span>Z</span> = 4. The structures of ebnerite (<span>R</span><span>1</span> = 0.0372 for 1168 <span>I</span><span>o</span> &gt; 2σ<span>I</span> reflections) and epiebnerite (known from synthetic monoclinic NH<span>4</span>ZnPO<span>4</span>) are zeolite-like frameworks based upon corner-sharing linkages between alternating ZnO<span>4</span> and PO<span>4</span> tetrahedra with channels in the frameworks hosting the NH<span>4</span> groups. The two structures are topologically distinct. Ebnerite belongs to the family of ‘stuffed derivatives’ of tridymite, whereas epiebnerite possesses an ABW-type zeolite structure.</p>","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immobilisation of chromium in magnesium carbonate minerals 铬在碳酸镁矿物中的固定化
IF 2.7 3区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-06 DOI: 10.1180/mgm.2023.91
Alicja M. Lacinska, Keith Bateman, Simon Chenery, Simon J Kemp, Thomas Liddy, Jeremy C Rushton, Dipankar Saha, Sven L.M. Schroeder

Hexavalent chromium (Cr6+) is a toxic carcinogenic pollutant that might be released by the mining and processing of ultramafic rocks and nickel laterites and which requires permanent removal from the contaminated biosphere. Ultramafic material can also serve as a feedstock for the sequestration of CO2 resulting from the growth of new minerals, raising the intriguing proposition of integrated sequestration of both pollutants, CO2 and chromium, into magnesium carbonates. Such a synergistic process downstream of ore recovery and mineral processing could be an elegant proposition for more sustainable utilisation and management of the Earth's resources. We have therefore carried out an experimental and microanalytical study to investigate potentially suitable carbonate minerals. Uptake of chromium in carbonate phases was determined, followed by identification of the crystalline phases and characterisation of the local structural environment around the incorporated chromium centres. The results suggest that neither nesquehonite nor hydromagnesite have the structural capacity to incorporate Cr6+ or Cr3+ significantly at room temperature. We therefore propose that further research into this technology should focus on laboratory assessments of other phases, such as layered double hyroxides, that have a natural structural capacity to uptake both chromium and CO2.

六价铬(Cr6+)是一种有毒的致癌污染物,可能会在超基性岩和红土镍矿的开采和加工过程中释放出来,需要从受污染的生物圈中永久清除。超基性岩材料还可以作为一种原料,用于封存新矿物生长过程中产生的二氧化碳,这就提出了将二氧化碳和铬这两种污染物综合封存到碳酸镁中的有趣提议。这种在矿石回收和矿物加工下游的协同过程可能是一种更可持续地利用和管理地球资源的优雅提议。因此,我们开展了一项实验和微分析研究,以调查潜在的合适碳酸盐矿物。我们测定了碳酸盐相对铬的吸收,然后鉴定了晶体相,并描述了铬中心周围的局部结构环境。结果表明,无论是内沸石还是水镁石,都不具备在室温下大量吸收 Cr6+ 或 Cr3+ 的结构能力。因此,我们建议对该技术的进一步研究应侧重于对其他相(如层状双氧化物)的实验室评估,这些相具有吸收铬和二氧化碳的天然结构能力。
{"title":"Immobilisation of chromium in magnesium carbonate minerals","authors":"Alicja M. Lacinska, Keith Bateman, Simon Chenery, Simon J Kemp, Thomas Liddy, Jeremy C Rushton, Dipankar Saha, Sven L.M. Schroeder","doi":"10.1180/mgm.2023.91","DOIUrl":"https://doi.org/10.1180/mgm.2023.91","url":null,"abstract":"<p>Hexavalent chromium (Cr<span>6+</span>) is a toxic carcinogenic pollutant that might be released by the mining and processing of ultramafic rocks and nickel laterites and which requires permanent removal from the contaminated biosphere. Ultramafic material can also serve as a feedstock for the sequestration of CO<span>2</span> resulting from the growth of new minerals, raising the intriguing proposition of integrated sequestration of both pollutants, CO<span>2</span> and chromium, into magnesium carbonates. Such a synergistic process downstream of ore recovery and mineral processing could be an elegant proposition for more sustainable utilisation and management of the Earth's resources. We have therefore carried out an experimental and microanalytical study to investigate potentially suitable carbonate minerals. Uptake of chromium in carbonate phases was determined, followed by identification of the crystalline phases and characterisation of the local structural environment around the incorporated chromium centres. The results suggest that neither nesquehonite nor hydromagnesite have the structural capacity to incorporate Cr<span>6+</span> or Cr<span>3+</span> significantly at room temperature. We therefore propose that further research into this technology should focus on laboratory assessments of other phases, such as layered double hyroxides, that have a natural structural capacity to uptake both chromium and CO<span>2</span>.</p>","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140045699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structure of Pb-bearing watanabeite from Pefka (Greece) 佩夫卡(希腊)含铅瓦旦贝石的晶体结构
IF 2.7 3区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-04 DOI: 10.1180/mgm.2024.14
C. Biagioni, P. Voudouris, Y. Moëlo, J. Sejkora, Z. Dolníček, Silvia Musetti, D. Mauro
{"title":"Crystal structure of Pb-bearing watanabeite from Pefka (Greece)","authors":"C. Biagioni, P. Voudouris, Y. Moëlo, J. Sejkora, Z. Dolníček, Silvia Musetti, D. Mauro","doi":"10.1180/mgm.2024.14","DOIUrl":"https://doi.org/10.1180/mgm.2024.14","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140265938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterisation, axial anisotropy, and formation conditions of celestine minerals from the Jabal Eghei (Nuqay) late Neogene – Pleistocene volcanic province, southeastern edge of the Sirt Basin, southern Libya: Constraints on the mineralogical geothermometer – ERRATUM 利比亚南部锡尔特盆地东南边缘 Jabal Eghei (Nuqay) 新近纪-更新世晚期火山岩群中天青石矿物的特征、轴向各向异性和形成条件:矿物学地温计的制约因素 - ERRATUM
IF 2.7 3区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-02-27 DOI: 10.1180/mgm.2024.12
P. Tančić, Maja Milošević, D. Spahić, Bojan Kostić, Aleksandar Kremenović, Maja Poznanović-Spahić, Jovan Kovačević
{"title":"Characterisation, axial anisotropy, and formation conditions of celestine minerals from the Jabal Eghei (Nuqay) late Neogene – Pleistocene volcanic province, southeastern edge of the Sirt Basin, southern Libya: Constraints on the mineralogical geothermometer – ERRATUM","authors":"P. Tančić, Maja Milošević, D. Spahić, Bojan Kostić, Aleksandar Kremenović, Maja Poznanović-Spahić, Jovan Kovačević","doi":"10.1180/mgm.2024.12","DOIUrl":"https://doi.org/10.1180/mgm.2024.12","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140426783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal behavior of filatovite – a rare aluminoarsenate mineral of the feldspar group 长石类稀有铝砷酸盐矿物--长石的热行为
IF 2.7 3区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-02-27 DOI: 10.1180/mgm.2024.10
L. Gorelova, O. Vereshchagin, V. Bocharov, N. V. Potekhina, E. Zhitova, I. Pekov
{"title":"Thermal behavior of filatovite – a rare aluminoarsenate mineral of the feldspar group","authors":"L. Gorelova, O. Vereshchagin, V. Bocharov, N. V. Potekhina, E. Zhitova, I. Pekov","doi":"10.1180/mgm.2024.10","DOIUrl":"https://doi.org/10.1180/mgm.2024.10","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140427462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kristjánite, KNa2H(SO4)2, a new fumarolic mineral from Iceland containing [SO4-H-SO4]3- anion in the crystal structure Kristjánite,KNa2H(SO4)2,一种产自冰岛的新炽热矿物,晶体结构中含有[SO4-H-SO4]3-阴离子
IF 2.7 3区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-02-27 DOI: 10.1180/mgm.2024.4
T. Balić-Žunić, F. Nestola, M. Pamato, Maja B. Rasmussen
{"title":"Kristjánite, KNa2H(SO4)2, a new fumarolic mineral from Iceland containing [SO4-H-SO4]3- anion in the crystal structure","authors":"T. Balić-Žunić, F. Nestola, M. Pamato, Maja B. Rasmussen","doi":"10.1180/mgm.2024.4","DOIUrl":"https://doi.org/10.1180/mgm.2024.4","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140425727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enricofrancoite, KNaCaSi4O10, a new Ca-K-Na silicate from Somma-Vesuvius volcano, southern Italy 意大利南部索玛-维苏威火山新发现的 Ca-K-Na 硅酸盐 Enricofrancoite, KNaCaSi4O10
IF 2.7 3区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-02-26 DOI: 10.1180/mgm.2024.9
G. Balassone, T. Panikorovskii, Annamaria Pellino, A. Bazai, V. Bocharov, O. F. Goychuk, Evgenia Yu. Avdontseva, V. Yakovenchuk, S. V. Krivovichev, C. Petti, P. Cappelletti, N. Mondillo, A. Moliterni, A. Altomare, Francesco Izzo
{"title":"Enricofrancoite, KNaCaSi4O10, a new Ca-K-Na silicate from Somma-Vesuvius volcano, southern Italy","authors":"G. Balassone, T. Panikorovskii, Annamaria Pellino, A. Bazai, V. Bocharov, O. F. Goychuk, Evgenia Yu. Avdontseva, V. Yakovenchuk, S. V. Krivovichev, C. Petti, P. Cappelletti, N. Mondillo, A. Moliterni, A. Altomare, Francesco Izzo","doi":"10.1180/mgm.2024.9","DOIUrl":"https://doi.org/10.1180/mgm.2024.9","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140431861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nomenclature of the ancylite supergroup 安山岩超群的命名法
IF 2.7 3区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-02-19 DOI: 10.1180/mgm.2024.8
Yanjuan Wang, F. Nestola, Zengqian Hou, R. Miyawaki, I. Pekov, Xiangping Gu, Guochen Dong, Kai Qu
{"title":"Nomenclature of the ancylite supergroup","authors":"Yanjuan Wang, F. Nestola, Zengqian Hou, R. Miyawaki, I. Pekov, Xiangping Gu, Guochen Dong, Kai Qu","doi":"10.1180/mgm.2024.8","DOIUrl":"https://doi.org/10.1180/mgm.2024.8","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140451935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Similarities and differences among selected gemmological varieties of chalcedony: chemistry, mineralogy and microstructure 玉髓部分宝石学品种的异同:化学、矿物学和微观结构
IF 2.7 3区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-02-16 DOI: 10.1180/mgm.2023.92
Sara Monico, Marco Cantaluppi, Valeria Diella, G. Diego Gatta, Ilaria Adamo, Patrizia Fumagalli, Nicoletta Marinoni

This study describes a new variety of chalcedony with a unique inhomogeneous bluish green hue, named aquaprase. It was discovered in Africa and is considered to be a valuable addition to the gem trade. A multi-methodological approach was used to examine its chemistry, mineralogy and microstructure, which were then compared to those of chrysoprase and agate, two of the most popular varieties of chalcedony. Optical microscopy revealed a complex microstructural heterogeneity in the different colour intensity areas/bands of aquaprase and agate, whereas chrysoprase exhibited a more homogeneous coexistence of micro- and cryptocrystalline quartz. High-resolution synchrotron XRD was essential for highlighting the complex assemblage of various types of α-quartz in aquaprase and agate (which differ in terms of crystal size and/or cell parameters). Micro-Raman spectroscopy revealed α-quartz and moganite in all three varieties of chalcedony and the presence of the nickel-bearing layered silicate mineral, willemseite, in chrysoprase, which is responsible for its green colouration. The chemical analysis displayed a homogeneous composition of agate, as well as high levels of nickel content in the chrysoprase variety. Aquaprase showed significant amounts (ppm by weight) of trace elements (Al, Mg, Na, K, Ca, Ti, U and Fe) characteristic of its formation environment, as well as high values of Cr, which are thought to be the cause of its bluish green colouration.

这项研究描述了一种具有独特的不均匀蓝绿色调的玉髓新品种,这种玉髓被命名为aquaprase。这种玉髓发现于非洲,被认为是宝石贸易中的珍贵新成员。研究人员采用多种方法对其化学、矿物学和微观结构进行了研究,然后将其与绿玉髓和玛瑙(两种最受欢迎的玉髓品种)的化学、矿物学和微观结构进行了比较。光学显微镜显示,水黄玉和玛瑙的不同颜色强度区域/条带具有复杂的微观结构异质性,而绿玉髓则表现出微晶和隐晶质石英共存的较均匀性。高分辨率同步辐射 XRD 对突显水黄玉和玛瑙中各种类型 α 石英的复杂组合(晶体尺寸和/或晶胞参数不同)至关重要。显微拉曼光谱显示,这三种玉髓中均含有 α-石英和莫干石,而绿玉髓中则含有含镍的层状硅酸盐矿物--钨锰铁矿,这也是绿玉髓呈现绿色的原因。化学分析显示,玛瑙的成分很均匀,绿玉髓中的镍含量也很高。水黄玉显示出其形成环境所特有的大量微量元素(Al、Mg、Na、K、Ca、Ti、U 和 Fe)(按重量计为百万分之几),以及高含量的铬,这被认为是其蓝绿色的原因。
{"title":"Similarities and differences among selected gemmological varieties of chalcedony: chemistry, mineralogy and microstructure","authors":"Sara Monico, Marco Cantaluppi, Valeria Diella, G. Diego Gatta, Ilaria Adamo, Patrizia Fumagalli, Nicoletta Marinoni","doi":"10.1180/mgm.2023.92","DOIUrl":"https://doi.org/10.1180/mgm.2023.92","url":null,"abstract":"<p>This study describes a new variety of chalcedony with a unique inhomogeneous bluish green hue, named aquaprase. It was discovered in Africa and is considered to be a valuable addition to the gem trade. A multi-methodological approach was used to examine its chemistry, mineralogy and microstructure, which were then compared to those of chrysoprase and agate, two of the most popular varieties of chalcedony. Optical microscopy revealed a complex microstructural heterogeneity in the different colour intensity areas/bands of aquaprase and agate, whereas chrysoprase exhibited a more homogeneous coexistence of micro- and cryptocrystalline quartz. High-resolution synchrotron XRD was essential for highlighting the complex assemblage of various types of α-quartz in aquaprase and agate (which differ in terms of crystal size and/or cell parameters). Micro-Raman spectroscopy revealed α-quartz and moganite in all three varieties of chalcedony and the presence of the nickel-bearing layered silicate mineral, willemseite, in chrysoprase, which is responsible for its green colouration. The chemical analysis displayed a homogeneous composition of agate, as well as high levels of nickel content in the chrysoprase variety. Aquaprase showed significant amounts (ppm by weight) of trace elements (Al, Mg, Na, K, Ca, Ti, U and Fe) characteristic of its formation environment, as well as high values of Cr, which are thought to be the cause of its bluish green colouration.</p>","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mn-Fe-rich genthelvite from pegmatites associated with the Madeira Sn-Nb-Ta deposit (Pitinga, Brazil): new constraints on the magmatic-hydrothermal transition in the albite-enriched granite system 与马德拉锑铌钽矿床(巴西皮廷加)有关的伟晶岩中的富锰铁质龙胆岩:富白云石花岗岩系统中岩浆-热液转变的新制约因素
IF 2.7 3区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-02-13 DOI: 10.1180/mgm.2023.87
I. W. Hadlich, A. C. Bastos Neto, V. P. Pereira, N. F. Botelho, L. H. Ronchi, H. G. Dill
{"title":"Mn-Fe-rich genthelvite from pegmatites associated with the Madeira Sn-Nb-Ta deposit (Pitinga, Brazil): new constraints on the magmatic-hydrothermal transition in the albite-enriched granite system","authors":"I. W. Hadlich, A. C. Bastos Neto, V. P. Pereira, N. F. Botelho, L. H. Ronchi, H. G. Dill","doi":"10.1180/mgm.2023.87","DOIUrl":"https://doi.org/10.1180/mgm.2023.87","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139839638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mineralogical Magazine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1