Pub Date : 2024-11-01Epub Date: 2024-10-15DOI: 10.1016/j.mcpro.2024.100862
Xiang Zhang, Juan Ge, Yue Wang, Minjian Chen, Xuejiang Guo, Shuai Zhu, Hui Wang, Qiang Wang
Well-controlled metabolism is associated with high-quality oocytes and optimal development of a healthy embryo. However, the metabolic framework that controls mammalian oocyte growth remains unknown. In the present study, we comprehensively depict the temporal metabolic dynamics of mouse oocytes during in vivo growth through the integrated analysis of metabolomics and proteomics. Many novel metabolic features are discovered during this process. Of note, glycolysis is enhanced, and oxidative phosphorylation capacity is reduced in the growing oocytes, presenting a Warburg-like metabolic program. For nucleotide biosynthesis, the salvage pathway is markedly activated during oocyte growth, whereas the de novo pathway is evidently suppressed. Fatty acid synthesis and channeling into phosphoinositides are specifically elevated in oocytes accompanying primordial follicle activation; nevertheless, fatty acid oxidation is reduced in these oocytes simultaneously. Our data establish the metabolic landscape during in vivo oocyte growth and serve as a broad resource for probing mammalian oocyte metabolism.
{"title":"Integrative Omics Reveals the Metabolic Patterns During Oocyte Growth.","authors":"Xiang Zhang, Juan Ge, Yue Wang, Minjian Chen, Xuejiang Guo, Shuai Zhu, Hui Wang, Qiang Wang","doi":"10.1016/j.mcpro.2024.100862","DOIUrl":"10.1016/j.mcpro.2024.100862","url":null,"abstract":"<p><p>Well-controlled metabolism is associated with high-quality oocytes and optimal development of a healthy embryo. However, the metabolic framework that controls mammalian oocyte growth remains unknown. In the present study, we comprehensively depict the temporal metabolic dynamics of mouse oocytes during in vivo growth through the integrated analysis of metabolomics and proteomics. Many novel metabolic features are discovered during this process. Of note, glycolysis is enhanced, and oxidative phosphorylation capacity is reduced in the growing oocytes, presenting a Warburg-like metabolic program. For nucleotide biosynthesis, the salvage pathway is markedly activated during oocyte growth, whereas the de novo pathway is evidently suppressed. Fatty acid synthesis and channeling into phosphoinositides are specifically elevated in oocytes accompanying primordial follicle activation; nevertheless, fatty acid oxidation is reduced in these oocytes simultaneously. Our data establish the metabolic landscape during in vivo oocyte growth and serve as a broad resource for probing mammalian oocyte metabolism.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100862"},"PeriodicalIF":6.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585809/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein N-acetylation is one of the most abundant co- and post-translational modifications in eukaryotes, extending its occurrence to chloroplasts within vascular plants. Recently, a novel plastidial enzyme family comprising eight acetyltransferases that exhibit dual lysine and N-terminus acetylation activities was unveiled in Arabidopsis. Among these, GNAT1, GNAT2, and GNAT3 reveal notable phylogenetic proximity, forming a subgroup termed NAA90. Our study focused on characterizing GNAT1, closely related to the state transition acetyltransferase GNAT2. In contrast to GNAT2, GNAT1 did not prove essential for state transitions and displayed no discernible phenotypic difference compared to the wild type under high light conditions, while gnat2 mutants were severely affected. However, gnat1 mutants exhibited a tighter packing of the thylakoid membranes akin to gnat2 mutants. In vitro studies with recombinant GNAT1 demonstrated robust N-terminus acetylation activity on synthetic substrate peptides. This activity was confirmed in vivo through N-terminal acetylome profiling in two independent gnat1 knockout lines. This attributed several acetylation sites on plastidial proteins to GNAT1, reflecting a subset of GNAT2's substrate spectrum. Moreover, co-immunoprecipitation coupled with mass spectrometry revealed a robust interaction between GNAT1 and GNAT2, as well as a significant association of GNAT2 with GNAT3 - the third acetyltransferase within the NAA90 subfamily. This study unveils the existence of at least two acetyltransferase complexes within chloroplasts, whereby complex formation might have a critical effect on the fine-tuning of the overall acetyltransferase activities. These findings introduce a novel layer of regulation in acetylation-dependent adjustments in plastidial metabolism.
{"title":"The Plastidial Protein Acetyltransferase GNAT1 Forms a Complex With GNAT2, yet Their Interaction Is Dispensable for State Transitions.","authors":"Annika Brünje, Magdalena Füßl, Jürgen Eirich, Jean-Baptiste Boyer, Paulina Heinkow, Ulla Neumann, Minna Konert, Aiste Ivanauskaite, Julian Seidel, Shin-Ichiro Ozawa, Wataru Sakamoto, Thierry Meinnel, Dirk Schwarzer, Paula Mulo, Carmela Giglione, Iris Finkemeier","doi":"10.1016/j.mcpro.2024.100850","DOIUrl":"10.1016/j.mcpro.2024.100850","url":null,"abstract":"<p><p>Protein N-acetylation is one of the most abundant co- and post-translational modifications in eukaryotes, extending its occurrence to chloroplasts within vascular plants. Recently, a novel plastidial enzyme family comprising eight acetyltransferases that exhibit dual lysine and N-terminus acetylation activities was unveiled in Arabidopsis. Among these, GNAT1, GNAT2, and GNAT3 reveal notable phylogenetic proximity, forming a subgroup termed NAA90. Our study focused on characterizing GNAT1, closely related to the state transition acetyltransferase GNAT2. In contrast to GNAT2, GNAT1 did not prove essential for state transitions and displayed no discernible phenotypic difference compared to the wild type under high light conditions, while gnat2 mutants were severely affected. However, gnat1 mutants exhibited a tighter packing of the thylakoid membranes akin to gnat2 mutants. In vitro studies with recombinant GNAT1 demonstrated robust N-terminus acetylation activity on synthetic substrate peptides. This activity was confirmed in vivo through N-terminal acetylome profiling in two independent gnat1 knockout lines. This attributed several acetylation sites on plastidial proteins to GNAT1, reflecting a subset of GNAT2's substrate spectrum. Moreover, co-immunoprecipitation coupled with mass spectrometry revealed a robust interaction between GNAT1 and GNAT2, as well as a significant association of GNAT2 with GNAT3 - the third acetyltransferase within the NAA90 subfamily. This study unveils the existence of at least two acetyltransferase complexes within chloroplasts, whereby complex formation might have a critical effect on the fine-tuning of the overall acetyltransferase activities. These findings introduce a novel layer of regulation in acetylation-dependent adjustments in plastidial metabolism.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100850"},"PeriodicalIF":6.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-09DOI: 10.1016/j.mcpro.2024.100853
Lars Konermann, Pablo M Scrosati
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as "residues X to Y become more protected after protein exposure to ligand Z"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m0)/(m100-m0) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.
氢/氘交换质谱(HDX-MS)通过监测骨架酰胺脱氘的动力学来探测蛋白质的动态运动。动态区域表现出快速的 HDX,而刚性部分则受到更多保护。目前的数据读取侧重于定性比较观察(如 "蛋白质暴露于配体 Z 后,X 至 Y 残基受到更多保护")。目前,还无法以原子论的方式解码 HDX 保护模式。换句话说,无法揭示特定条件下蛋白质运动的确切范围,这就为推测解释留下了空间。酰胺反向交换是一个未得到充分重视的问题,因为广泛使用的(m-m0)/(m100-m0)校正方法会扭曲 HDX 动力曲线。未来的数据分析策略需要从根本上更好地理解 HDX 事件,超越经典的林德斯特伦-朗(Linderstrøm-Lang)模型。结合提供更高的空间分辨率和抑制反向交换的实验,应该有可能发现蛋白质在特定条件下表现出的确切运动范围。这些进展将大大提高人们对蛋白质在健康和疾病中行为的理解。
{"title":"Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities.","authors":"Lars Konermann, Pablo M Scrosati","doi":"10.1016/j.mcpro.2024.100853","DOIUrl":"10.1016/j.mcpro.2024.100853","url":null,"abstract":"<p><p>Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as \"residues X to Y become more protected after protein exposure to ligand Z\"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m<sub>0</sub>)/(m<sub>100</sub>-m<sub>0</sub>) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100853"},"PeriodicalIF":6.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-21DOI: 10.1016/j.mcpro.2024.100844
Jamie Heimburg-Molinaro, Akul Y Mehta, Catherine A Tilton, Richard D Cummings
Glycans linked to proteins and lipids and also occurring in free forms have many functions, and these are partly elicited through specific interactions with glycan-binding proteins (GBPs). These include lectins, adhesins, toxins, hemagglutinins, growth factors, and enzymes, but antibodies can also bind glycans. While humans and other animals generate a vast repertoire of GBPs and different glycans in their glycomes, other organisms, including phage, microbes, protozoans, fungi, and plants also express glycans and GBPs, and these can also interact with their host glycans. This can be termed the protein-glycan interactome, and in nature is likely to be vast, but is so far very poorly described. Understanding the breadth of the protein-glycan interactome is also a key to unlocking our understanding of infectious diseases involving glycans, and immunology associated with antibodies binding to glycans. A key technological advance in this area has been the development of glycan microarrays. This is a display technology in which minute quantities of glycans are attached to the surfaces of slides or beads. This allows the arrayed glycans to be interrogated by GBPs and antibodies in a relatively high throughput approach, in which a protein may bind to one or more distinct glycans. Such binding can lead to novel insights and hypotheses regarding both the function of the GBP, the specificity of an antibody and the function of the glycan within the context of the protein-glycan interactome. This article focuses on the types of glycan microarray technologies currently available to study animal glycobiology and examples of breakthroughs aided by these technologies.
{"title":"Insights Into Glycobiology and the Protein-Glycan Interactome Using Glycan Microarray Technologies.","authors":"Jamie Heimburg-Molinaro, Akul Y Mehta, Catherine A Tilton, Richard D Cummings","doi":"10.1016/j.mcpro.2024.100844","DOIUrl":"10.1016/j.mcpro.2024.100844","url":null,"abstract":"<p><p>Glycans linked to proteins and lipids and also occurring in free forms have many functions, and these are partly elicited through specific interactions with glycan-binding proteins (GBPs). These include lectins, adhesins, toxins, hemagglutinins, growth factors, and enzymes, but antibodies can also bind glycans. While humans and other animals generate a vast repertoire of GBPs and different glycans in their glycomes, other organisms, including phage, microbes, protozoans, fungi, and plants also express glycans and GBPs, and these can also interact with their host glycans. This can be termed the protein-glycan interactome, and in nature is likely to be vast, but is so far very poorly described. Understanding the breadth of the protein-glycan interactome is also a key to unlocking our understanding of infectious diseases involving glycans, and immunology associated with antibodies binding to glycans. A key technological advance in this area has been the development of glycan microarrays. This is a display technology in which minute quantities of glycans are attached to the surfaces of slides or beads. This allows the arrayed glycans to be interrogated by GBPs and antibodies in a relatively high throughput approach, in which a protein may bind to one or more distinct glycans. Such binding can lead to novel insights and hypotheses regarding both the function of the GBP, the specificity of an antibody and the function of the glycan within the context of the protein-glycan interactome. This article focuses on the types of glycan microarray technologies currently available to study animal glycobiology and examples of breakthroughs aided by these technologies.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100844"},"PeriodicalIF":6.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585810/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-16DOI: 10.1016/j.mcpro.2024.100860
Mingbo Peng, Tianjing Wang, Yujie Li, Zheng Zhang, Cuihong Wan
sORF-encoded peptides (SEPs) refer to proteins encoded by small open reading frames (sORFs) with a length of less than 100 amino acids, which play an important role in various life activities. Analysis of known SEPs showed that using non-canonical initiation codons of SEPs was more common. However, the current analysis of SEP sequences mainly relies on bioinformatics prediction, and most of them use AUG as the start site, which may not be completely correct for SEPs. Chemical labeling was used to systematically analyze the N-terminal sequences of SEPs to accurately define the start sites of SEPs. By comparison, we found that dimethylation and guanidinylation are more efficient than acetylation. The ACN precipitation and heating precipitation performed better in SEP enrichment. As an N-terminal peptide enrichment material, Hexadhexaldehyde was superior to CNBr-activated agarose and NHS-activated agarose. Combining these methods, we identified 128 SEPs with 131 N-terminal sequences. Among them, two-thirds are novel N-terminal sequences, and most of them start from the 11-31st amino acids of the original sequence. Partial novel N-termini were produced by proteolysis or signal peptide removal. Some SEPs' transcription start sites were corrected to be non-AUG start codons. One novel start codon was validated using GFP-tag vectors. These results demonstrated that the chemical labeling approaches would be beneficial for identifying the start codons of sORFs and the real N-terminal of their encoded peptides, which helps better understand the characterization of SEPs.
sORF编码肽(SEPs)是指由长度小于100个氨基酸的小开放阅读框(sORFs)编码的蛋白质,它们在各种生命活动中发挥着重要作用。对已知 SEP 的分析表明,使用 SEP 的非规范起始密码子较为常见。然而,目前对SEP序列的分析主要依赖于生物信息学预测,且大多使用AUG作为起始位点,这对于SEP来说可能并不完全正确。我们采用化学标记法系统分析了SEPs的N端序列,以准确界定SEPs的起始位点。通过比较,我们发现二甲基化和鸟苷酸化比乙酰化更有效。ACN 沉淀和加热沉淀的 SEP 富集效果更好。作为 N 端多肽富集材料,六甲醛优于 CNBr 活化的琼脂糖和 NHS 活化的琼脂糖。结合这些方法,我们共鉴定出 128 个 SEPs,131 个 N 端序列。其中,三分之二是新的 N 端序列,它们大多从原始序列的第 11-31 个氨基酸开始。部分新型 N 端是通过蛋白水解或信号肽去除产生的。一些 SEP 的转录起始位点被修正为非 AUG 起始密码子。使用 GFP 标记载体对一个新的起始密码子进行了验证。这些结果表明,化学标记方法有助于鉴定 sORFs 的起始密码子及其编码肽的真正 N-末端,从而有助于更好地理解 SEPs 的特征。
{"title":"Mapping Start Codons of Small Open Reading Frames by N-Terminomics Approach.","authors":"Mingbo Peng, Tianjing Wang, Yujie Li, Zheng Zhang, Cuihong Wan","doi":"10.1016/j.mcpro.2024.100860","DOIUrl":"10.1016/j.mcpro.2024.100860","url":null,"abstract":"<p><p>sORF-encoded peptides (SEPs) refer to proteins encoded by small open reading frames (sORFs) with a length of less than 100 amino acids, which play an important role in various life activities. Analysis of known SEPs showed that using non-canonical initiation codons of SEPs was more common. However, the current analysis of SEP sequences mainly relies on bioinformatics prediction, and most of them use AUG as the start site, which may not be completely correct for SEPs. Chemical labeling was used to systematically analyze the N-terminal sequences of SEPs to accurately define the start sites of SEPs. By comparison, we found that dimethylation and guanidinylation are more efficient than acetylation. The ACN precipitation and heating precipitation performed better in SEP enrichment. As an N-terminal peptide enrichment material, Hexadhexaldehyde was superior to CNBr-activated agarose and NHS-activated agarose. Combining these methods, we identified 128 SEPs with 131 N-terminal sequences. Among them, two-thirds are novel N-terminal sequences, and most of them start from the 11-31st amino acids of the original sequence. Partial novel N-termini were produced by proteolysis or signal peptide removal. Some SEPs' transcription start sites were corrected to be non-AUG start codons. One novel start codon was validated using GFP-tag vectors. These results demonstrated that the chemical labeling approaches would be beneficial for identifying the start codons of sORFs and the real N-terminal of their encoded peptides, which helps better understand the characterization of SEPs.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100860"},"PeriodicalIF":6.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602987/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Early pregnancy loss (EPL) is a common event in human reproduction and is classified into histological subtypes such as hydropic abortion (HA) and hydatidiform moles, including complete hydatidiform moles (CHMs) and partial hydatidiform moles (PHMs). However, accurate diagnosis and improved patient management remain challenging due to high rates of misdiagnosis and diverse prognostic risks. Therefore, diagnostic biomarkers for EPL are urgently needed. Our study aimed to identify biomarkers for EPL through comprehensive proteomic analysis. Ten CHMs, six PHMs, ten HAs, and 10 normal control products of conception were used to obtain a proteomic portrait. Parallel reaction monitoring-targeted proteomic and regression analyses were used to verify and select the diagnostic signatures. Finally, 14 proteins were selected and a panel of diagnostic classifiers (DLK1, SPTB/COL21A1, and SAR1A) was built to represent the CHM, PHM, and normal control groups (area under the receiver operating characteristic curve = 0.900, 0.804/0.885, and 0.991, respectively). This high diagnostic power was further validated in another independent cohort (n = 148) by immunohistochemistry (n = 120) and Western blot analyses (n = 28). The protein SPTB was selected for further biological behavior experiments in vitro. Our data suggest that SPTB maintains trophoblast cell proliferation, angiogenesis, cell motility, and the cytoskeleton network. This study provides a comprehensive proteomic portrait and identifies potential diagnostic biomarkers. These findings enhance our understanding of EPL pathogenesis and offer novel targets for diagnosis and therapeutic interventions.
{"title":"Comprehensive Proteomic Analysis Reveals Distinct Features and a Diagnostic Biomarker Panel for Early Pregnancy Loss in Histological Subtypes.","authors":"Yating Zhao, Yingjiqiong Liang, Luya Cai, Limeng Cai, Bo Huang, Peilin Han, Xiaofei Zhang, Huifang Zhang, Zhen Chen, Xiangang Yin, Ping Duan, Huafeng Shou, Xiaoxu Zhu, Zhe Wang, Qihong Wan, Jinyan Huang, Jianhua Qian","doi":"10.1016/j.mcpro.2024.100848","DOIUrl":"10.1016/j.mcpro.2024.100848","url":null,"abstract":"<p><p>Early pregnancy loss (EPL) is a common event in human reproduction and is classified into histological subtypes such as hydropic abortion (HA) and hydatidiform moles, including complete hydatidiform moles (CHMs) and partial hydatidiform moles (PHMs). However, accurate diagnosis and improved patient management remain challenging due to high rates of misdiagnosis and diverse prognostic risks. Therefore, diagnostic biomarkers for EPL are urgently needed. Our study aimed to identify biomarkers for EPL through comprehensive proteomic analysis. Ten CHMs, six PHMs, ten HAs, and 10 normal control products of conception were used to obtain a proteomic portrait. Parallel reaction monitoring-targeted proteomic and regression analyses were used to verify and select the diagnostic signatures. Finally, 14 proteins were selected and a panel of diagnostic classifiers (DLK1, SPTB/COL21A1, and SAR1A) was built to represent the CHM, PHM, and normal control groups (area under the receiver operating characteristic curve = 0.900, 0.804/0.885, and 0.991, respectively). This high diagnostic power was further validated in another independent cohort (n = 148) by immunohistochemistry (n = 120) and Western blot analyses (n = 28). The protein SPTB was selected for further biological behavior experiments in vitro. Our data suggest that SPTB maintains trophoblast cell proliferation, angiogenesis, cell motility, and the cytoskeleton network. This study provides a comprehensive proteomic portrait and identifies potential diagnostic biomarkers. These findings enhance our understanding of EPL pathogenesis and offer novel targets for diagnosis and therapeutic interventions.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100848"},"PeriodicalIF":6.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-15DOI: 10.1016/j.mcpro.2024.100859
Namrata D Udeshi, Gerald W Hart, Chad Slawson
O-GlcNAcylation was identified in the 1980s by Torres and Hart and modifies thousands of cellular proteins, yet the regulatory role of O-GlcNAc is still poorly understood compared to the abundance of mechanistic information known for other cycling post-translational modifications like phosphorylation. Many challenges are associated with studying O-GlcNAcylation and are tied to the technical hurdles with analysis by mass spectrometry. Over the years, many research groups have developed important methods to study O-GlcNAcylation revealing its role in the cell, and this perspective aims to review the challenges and innovations around O-GlcNAc research and chronicle the work by Donald F. Hunt and his laboratory, particularly in development of ETD and its application to this field of research.
{"title":"From Fringe to the Mainstream: How ETD MS Brought O-GlcNAc to the Masses.","authors":"Namrata D Udeshi, Gerald W Hart, Chad Slawson","doi":"10.1016/j.mcpro.2024.100859","DOIUrl":"10.1016/j.mcpro.2024.100859","url":null,"abstract":"<p><p>O-GlcNAcylation was identified in the 1980s by Torres and Hart and modifies thousands of cellular proteins, yet the regulatory role of O-GlcNAc is still poorly understood compared to the abundance of mechanistic information known for other cycling post-translational modifications like phosphorylation. Many challenges are associated with studying O-GlcNAcylation and are tied to the technical hurdles with analysis by mass spectrometry. Over the years, many research groups have developed important methods to study O-GlcNAcylation revealing its role in the cell, and this perspective aims to review the challenges and innovations around O-GlcNAc research and chronicle the work by Donald F. Hunt and his laboratory, particularly in development of ETD and its application to this field of research.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100859"},"PeriodicalIF":6.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-09DOI: 10.1016/j.mcpro.2024.100854
Simone Bonelli, Margot Lo Pinto, Yihong Ye, Stephan A Müller, Stefan F Lichtenthaler, Simone Dario Scilabra
Ubiquitin carboxyl-terminal hydrolase 19 (USP19) is a unique deubiquitinase, characterized by multiple variants generated by alternative splicing. Several variants bear a C-terminal transmembrane domain that anchors them to the endoplasmic reticulum. Other than regulating protein stability by preventing proteasome degradation, USP19 has been reported to rescue substrates from endoplasmic reticulum-associated protein degradation in a catalytic-independent manner, promote autophagy, and address proteins to lysosomal degradation via endosomal microautophagy. USP19 has recently emerged as the protein responsible for the unconventional secretion of misfolded proteins including Parkinson's disease-associated protein α-synuclein. Despite mounting evidence that USP19 plays crucial roles in several biological processes, the underlying mechanisms are unclear due to lack of information on the physiological substrates of USP19. Herein, we used high-resolution quantitative proteomics to analyze changes in the secretome and cell proteome induced by the loss of USP19 to identify proteins whose secretion or turnover is regulated by USP19. We found that ablation of USP19 induced significant proteomic alterations both in and out of the cell. Loss of USP19 impaired the release of several lysosomal proteins, including legumain (LGMN) and several cathepsins. In order to understand the underlaying mechanism, we dissected the USP19-regulated secretion of LGMN in several cell types. We found that LGMN was not a deubiquitinase substrate of USP19 and that its USP19-dependent release did not require their direct interaction. LGMN secretion occurred by a mechanism that involved the Golgi apparatus, autophagosome formation, and lysosome function. This mechanism resembled the recently described "lysosomal exocytosis," by which lysosomal hydrolases are secreted, when ubiquitination of p62 is increased in cells lacking deubiquitinases such as USP15 and USP17. In conclusion, our proteomic characterization of USP19 has identified a collection of proteins in the secretome and within the cell that are regulated by USP19, which link USP19 to the secretion of lysosomal proteins, including LGMN.
{"title":"Proteomic Characterization of Ubiquitin Carboxyl-Terminal Hydrolase 19 Deficient Cells Reveals a Role for USP19 in the Secretion of Lysosomal Proteins.","authors":"Simone Bonelli, Margot Lo Pinto, Yihong Ye, Stephan A Müller, Stefan F Lichtenthaler, Simone Dario Scilabra","doi":"10.1016/j.mcpro.2024.100854","DOIUrl":"10.1016/j.mcpro.2024.100854","url":null,"abstract":"<p><p>Ubiquitin carboxyl-terminal hydrolase 19 (USP19) is a unique deubiquitinase, characterized by multiple variants generated by alternative splicing. Several variants bear a C-terminal transmembrane domain that anchors them to the endoplasmic reticulum. Other than regulating protein stability by preventing proteasome degradation, USP19 has been reported to rescue substrates from endoplasmic reticulum-associated protein degradation in a catalytic-independent manner, promote autophagy, and address proteins to lysosomal degradation via endosomal microautophagy. USP19 has recently emerged as the protein responsible for the unconventional secretion of misfolded proteins including Parkinson's disease-associated protein α-synuclein. Despite mounting evidence that USP19 plays crucial roles in several biological processes, the underlying mechanisms are unclear due to lack of information on the physiological substrates of USP19. Herein, we used high-resolution quantitative proteomics to analyze changes in the secretome and cell proteome induced by the loss of USP19 to identify proteins whose secretion or turnover is regulated by USP19. We found that ablation of USP19 induced significant proteomic alterations both in and out of the cell. Loss of USP19 impaired the release of several lysosomal proteins, including legumain (LGMN) and several cathepsins. In order to understand the underlaying mechanism, we dissected the USP19-regulated secretion of LGMN in several cell types. We found that LGMN was not a deubiquitinase substrate of USP19 and that its USP19-dependent release did not require their direct interaction. LGMN secretion occurred by a mechanism that involved the Golgi apparatus, autophagosome formation, and lysosome function. This mechanism resembled the recently described \"lysosomal exocytosis,\" by which lysosomal hydrolases are secreted, when ubiquitination of p62 is increased in cells lacking deubiquitinases such as USP15 and USP17. In conclusion, our proteomic characterization of USP19 has identified a collection of proteins in the secretome and within the cell that are regulated by USP19, which link USP19 to the secretion of lysosomal proteins, including LGMN.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100854"},"PeriodicalIF":6.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-13DOI: 10.1016/j.mcpro.2024.100828
Zhuoran Lin, Di Liu, Yifan Xu, Mengyang Wang, YongQi Yu, Andrew C Diener, Kun-Hsiang Liu
The plasma membrane-localized receptor kinase FERONIA (FER) plays critical roles in a remarkable variety of biological processes throughout the life cycle of Arabidopsis thaliana. Revealing the molecular connections of FER that underlie these processes starts with identifying the proteins that interact with FER. We applied pupylation-based interaction tagging (PUP-IT) to survey cellular proteins in proximity to FER, encompassing weak and transient interactions that can be difficult to capture for membrane proteins. We reproducibly identified 581, 115, and 736 specific FER-interacting protein candidates in protoplasts, seedlings, and flowers, respectively. We also confirmed 14 previously characterized FER-interacting proteins. Protoplast transient gene expression expedited the testing of new gene constructs for PUP-IT analyses and the validation of candidate proteins. We verified the proximity labeling of five selected candidates that were not previously characterized as FER-interacting proteins. The PUP-IT method could be a valuable tool to survey and validate protein-protein interactions for targets of interest in diverse subcellular compartments in plants.
质膜定位的受体激酶 FERONIA(FER)在拟南芥整个生命周期的各种生物过程中发挥着关键作用。要揭示支撑这些过程的 FER 分子联系,首先要确定与 FER 相互作用的蛋白质。我们采用基于幼体化的相互作用标记(PUP-IT)来调查与 FER 接近的细胞蛋白,包括膜蛋白难以捕捉的微弱和瞬时相互作用。我们在原生质体、幼苗和花朵中分别重复鉴定出了 581、115 和 736 个特异的 FER 相互作用候选蛋白。我们还确认了 14 个先前表征的 FER 相互作用蛋白。原生质体瞬时基因表达加快了用于 PUP-IT 分析的新基因构建物的测试和候选蛋白的验证。我们验证了五种候选蛋白的近似标记,这些蛋白以前未被鉴定为 FER 相互作用蛋白。PUP-IT 方法可以作为一种有价值的工具,用于调查和验证植物中不同亚细胞区室中感兴趣的目标蛋白质之间的相互作用。
{"title":"Pupylation-Based Proximity-Tagging of FERONIA-Interacting Proteins in Arabidopsis.","authors":"Zhuoran Lin, Di Liu, Yifan Xu, Mengyang Wang, YongQi Yu, Andrew C Diener, Kun-Hsiang Liu","doi":"10.1016/j.mcpro.2024.100828","DOIUrl":"10.1016/j.mcpro.2024.100828","url":null,"abstract":"<p><p>The plasma membrane-localized receptor kinase FERONIA (FER) plays critical roles in a remarkable variety of biological processes throughout the life cycle of Arabidopsis thaliana. Revealing the molecular connections of FER that underlie these processes starts with identifying the proteins that interact with FER. We applied pupylation-based interaction tagging (PUP-IT) to survey cellular proteins in proximity to FER, encompassing weak and transient interactions that can be difficult to capture for membrane proteins. We reproducibly identified 581, 115, and 736 specific FER-interacting protein candidates in protoplasts, seedlings, and flowers, respectively. We also confirmed 14 previously characterized FER-interacting proteins. Protoplast transient gene expression expedited the testing of new gene constructs for PUP-IT analyses and the validation of candidate proteins. We verified the proximity labeling of five selected candidates that were not previously characterized as FER-interacting proteins. The PUP-IT method could be a valuable tool to survey and validate protein-protein interactions for targets of interest in diverse subcellular compartments in plants.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100828"},"PeriodicalIF":6.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-24DOI: 10.1016/j.mcpro.2024.100845
Jürgen Eirich, Jean-Baptiste Boyer, Laura Armbruster, Aiste Ivanauskaite, Carolina De La Torre, Thierry Meinnel, Markus Wirtz, Paula Mulo, Iris Finkemeier, Carmela Giglione
Protein acetylation is a key co- and post-translational modification. However, how different types of acetylation respond to environmental stress is still unknown. To address this, we investigated the role of a member of the newly discovered family of plastid acetyltransferases (GNAT2), which features both lysine- and N-terminal acetyltransferase activities. Our study aimed to provide a holistic multi-omics acetylation-dependent view of plant acclimation to short-term light changes. We found that both the yield and coverage of the N-terminal acetylome remained unchanged in WT and gnat2-KO backgrounds after 2 h of exposure to high light or darkness. Similarly, no differences in transcriptome or adenylate energy charge were observed between the genotypes under the tested light conditions. In contrast, the lysine acetylome proved to be sensitive to the changes in light conditions, especially in the gnat2 background. This suggests unique strategies of plant acclimation for quick responses to environmental changes involving lysine, but not N-terminal, GNAT2-mediated acetylation activity.
蛋白质乙酰化是一种关键的共翻译和翻译后修饰。然而,不同类型的乙酰化如何应对环境胁迫仍是未知数。为了解决这个问题,我们研究了新发现的质体乙酰转移酶家族成员(GNAT2)的作用,它同时具有赖氨酸和 N 端乙酰转移酶活性。我们的研究旨在为植物适应短期光照变化提供一个多组学乙酰化依赖的整体视角。我们发现,在野生型和gnat2-敲除型背景中,暴露于强光或黑暗中两小时后,N-末端乙酰化组的产量和覆盖率均保持不变。同样,在测试的光照条件下,也没有观察到基因型之间转录组或腺苷酸能量电荷的差异。相比之下,赖氨酸乙酰组对光照条件的变化非常敏感,尤其是在gnat2背景下。这表明植物对环境变化做出快速反应的独特适应策略涉及赖氨酸,而不是 N 端 GNAT2 介导的乙酰化活性。
{"title":"Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks.","authors":"Jürgen Eirich, Jean-Baptiste Boyer, Laura Armbruster, Aiste Ivanauskaite, Carolina De La Torre, Thierry Meinnel, Markus Wirtz, Paula Mulo, Iris Finkemeier, Carmela Giglione","doi":"10.1016/j.mcpro.2024.100845","DOIUrl":"10.1016/j.mcpro.2024.100845","url":null,"abstract":"<p><p>Protein acetylation is a key co- and post-translational modification. However, how different types of acetylation respond to environmental stress is still unknown. To address this, we investigated the role of a member of the newly discovered family of plastid acetyltransferases (GNAT2), which features both lysine- and N-terminal acetyltransferase activities. Our study aimed to provide a holistic multi-omics acetylation-dependent view of plant acclimation to short-term light changes. We found that both the yield and coverage of the N-terminal acetylome remained unchanged in WT and gnat2-KO backgrounds after 2 h of exposure to high light or darkness. Similarly, no differences in transcriptome or adenylate energy charge were observed between the genotypes under the tested light conditions. In contrast, the lysine acetylome proved to be sensitive to the changes in light conditions, especially in the gnat2 background. This suggests unique strategies of plant acclimation for quick responses to environmental changes involving lysine, but not N-terminal, GNAT2-mediated acetylation activity.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100845"},"PeriodicalIF":6.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}