首页 > 最新文献

Marine Mammal Science最新文献

英文 中文
Stomach Contents of Stranded Goose-Beaked Whales in the Levantine Basin and Aegean Sea 黎凡特盆地和爱琴海搁浅鹅喙鲸胃内容物
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-09-26 DOI: 10.1111/mms.70075
Arda M. Tonay, Alp Salman, İlayda Taşkaya, Erdem Danyer, Ayhan Dede, Tayfun Çanakcı, Ayaka Amaha Öztürk

Goose-beaked whale (Ziphius cavirostris), a cosmopolitan odontocete, is commonly found in the Mediterranean Sea. This study, the first to examine the stomach contents of the goose-beaked whale in the Aegean Sea and Levantine Basin, reveals key aspects of its diet. The stomach contents of one whale from Seferihisar, Türkiye, in 2016, and five from a mass stranding on Cyprus in February 2023 were analyzed. A total of 1,448 lower beaks from 16 cephalopod species were identified, with six species—Octopoteuthis sicula, Ancistrocheirus lesueurii, Histioteuthis reversa, Chtenopteryx sicula, Chiroteuthis veranii, and Todarodes sagittatus—comprising the primary diet. Four species—Loligo forbesii, Pyroteuthis margaritifera, Pterygioteuthis giardi, and Brachioteuthis riisei—were recorded for the first time in goose-beaked whale stomachs. Their prey preference is generally pelagic cephalopods, though benthic or demersal species are occasionally eaten. The high species diversity and the presence of species not found in other studies may be due to differences in cephalopod fauna characterized by seabed and other oceanographic features of the eastern Mediterranean. The Mediterranean population is genetically divided into western and eastern subpopulations, and their diets appear to differ.

鹅喙鲸(Ziphius cavirostris)是一种世界性的齿齿动物,常见于地中海。这项研究首次检查了爱琴海和黎凡特盆地鹅喙鲸的胃内容物,揭示了其饮食的关键方面。研究人员分析了2016年来自基耶岛Seferihisar的一头鲸鱼和2023年2月在塞浦路斯大规模搁浅的五头鲸鱼的胃内容物。共鉴定出16种头足类动物的1448只下喙,其中6种为主要食性,分别为:八爪鱼、lesueuranstrocheirus、背纹组鸟、蹼翼鸟、veranchiroteus和箭状Todarodes。在鹅喙鲸胃中首次记录到4种,分别为forbesi loligo、Pyroteuthis margaritifera、Pterygioteuthis giardi和Brachioteuthis riisi。它们的猎物通常是中上层的头足类动物,尽管底栖动物或底栖动物偶尔也会被吃掉。高物种多样性和其他研究中未发现的物种的存在可能是由于以地中海东部海底和其他海洋学特征为特征的头足类动物群的差异。地中海人口在基因上分为西部亚群和东部亚群,他们的饮食似乎有所不同。
{"title":"Stomach Contents of Stranded Goose-Beaked Whales in the Levantine Basin and Aegean Sea","authors":"Arda M. Tonay,&nbsp;Alp Salman,&nbsp;İlayda Taşkaya,&nbsp;Erdem Danyer,&nbsp;Ayhan Dede,&nbsp;Tayfun Çanakcı,&nbsp;Ayaka Amaha Öztürk","doi":"10.1111/mms.70075","DOIUrl":"https://doi.org/10.1111/mms.70075","url":null,"abstract":"<div>\u0000 \u0000 <p>Goose-beaked whale (<i>Ziphius cavirostris</i>), a cosmopolitan odontocete, is commonly found in the Mediterranean Sea. This study, the first to examine the stomach contents of the goose-beaked whale in the Aegean Sea and Levantine Basin, reveals key aspects of its diet. The stomach contents of one whale from Seferihisar, Türkiye, in 2016, and five from a mass stranding on Cyprus in February 2023 were analyzed. A total of 1,448 lower beaks from 16 cephalopod species were identified, with six species—<i>Octopoteuthis sicula, Ancistrocheirus lesueurii, Histioteuthis reversa, Chtenopteryx sicula, Chiroteuthis veranii</i>, and <i>Todarodes sagittatus</i>—comprising the primary diet. Four species—<i>Loligo forbesii, Pyroteuthis margaritifera, Pterygioteuthis giardi</i>, and <i>Brachioteuthis riisei</i>—were recorded for the first time in goose-beaked whale stomachs. Their prey preference is generally pelagic cephalopods, though benthic or demersal species are occasionally eaten. The high species diversity and the presence of species not found in other studies may be due to differences in cephalopod fauna characterized by seabed and other oceanographic features of the eastern Mediterranean. The Mediterranean population is genetically divided into western and eastern subpopulations, and their diets appear to differ.</p>\u0000 </div>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145581469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beluga Whale (Delphinapterus leucas) Behavior Towards a Dead Conspecific 白鲸(Delphinapterus leucas)对死亡同种的行为
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-09-25 DOI: 10.1111/mms.70077
Justine M. Hudson, Cortney A. Watt
<p>How do animals react to dead or dying conspecifics? Do they comprehend death? Do they grieve? These are the fundamental questions asked in the field of comparative thanatology, which focuses on how animals respond to death (Anderson <span>2016</span>; Gonçalves and Biro <span>2018</span>). Thanatological behaviors, such as carrying, supporting, grooming, or nurturing a corpse, or exhibiting curious, aggressive, cannibalistic, or sexual behaviors towards a corpse (Monsó and Osuna-Mascaró <span>2021</span>), have been observed in several mammal species, including African elephants (<i>Loxodonta africana</i>; Douglas-Hamilton et al. <span>2006</span>), dingoes (<i>Canis dingo</i>; Appleby et al. <span>2013</span>), hippos (<i>Hippopotamus amphibius</i>; Inman and Leggett <span>2020</span>), giraffes (<i>Giraffa camelopardalis</i>; Bercovitch <span>2013</span>), non-human primates (Yang et al. <span>2016</span>; Cronin et al. <span>2011</span>; Anderson <span>2018</span>; Toyoda et al. <span>2024</span>; Porter et al. <span>2019</span>), and several species of cetaceans (Methion et al. <span>2023</span>; Castro et al. <span>2022</span>; Cockcroft and Sauer <span>1990</span>; Shedd et al. <span>2021</span>; Bearzi et al. <span>2018</span>).</p><p>In the field of marine mammalogy, epimeletic behavior, described as caring for, nurturing, or supporting sick, injured, or dead individuals, has been documented in at least 20 species of cetaceans (reviewed in Bearzi et al. <span>2018</span>). Most observations of epimeletic behavior in cetaceans have involved one or more adults assisting a dead individual by keeping them afloat and commonly involve a deceased calf (Cockcroft and Sauer <span>1990</span>; Bearzi et al. <span>2018</span>; Methion et al. <span>2023</span>; Castro et al. <span>2022</span>). From an evolutionary standpoint, epimeletic behavior towards sick or injured conspecifics is an adaptive trait as it may increase the likelihood of survival for the sick or injured individual; however, epimeletic behavior towards a dead conspecific is often considered maladaptive (Bearzi et al. <span>2018</span>), as caregiving cetaceans can spend hours to days providing aid to deceased individuals, foregoing foraging attempts and lagging behind their groups (Cheng et al. <span>2018</span>; Pedrazzi et al. <span>2022</span>; Shedd et al. <span>2021</span>).</p><p>Between July 1 and July 9, 2024, we conducted field work in Churchill, Manitoba, Canada (58.768410, −94.164963) to study and monitor beluga whales (<i>Delphinapterus leucas</i>) from the Western Hudson Bay (WHB) beluga population. The field program consisted of boat- and drone-based activities, including drone video and imagery collection, which were conducted from Cape Merry (58.785705, −94.201626). On July 2, 2024, at approximately 10:37 CST, a dead calf was spotted from the drone (DJI Mavic 3E) within the Churchill River estuary (58.783542, −94.206536), surrounded by several free-swimming beluga
动物对死亡或垂死的同种动物有何反应?他们理解死亡吗?他们悲伤吗?这些都是比较病理学领域提出的基本问题,比较病理学关注的是动物对死亡的反应(Anderson 2016; gonalves and Biro 2018)。在一些哺乳动物物种中,包括非洲象(Loxodonta africana; Douglas-Hamilton et al. 2006)、澳洲野狗(Canis dingo; Appleby et al. 2013)、河马(Hippopotamus amphibius; Inman and Leggett 2020)、长颈鹿(Giraffa camelopardalis;Bercovitch 2013),非人灵长类动物(Yang et al. 2016; Cronin et al. 2011; Anderson 2018; Toyoda et al. 2024; Porter et al. 2019),以及几种鲸类动物(Methion et al. 2023; Castro et al. 2022; Cockcroft and Sauer 1990; Shedd et al. 2021; Bearzi et al. 2018)。在海洋哺乳动物领域,至少有20种鲸类动物记录了照顾、养育或支持生病、受伤或死亡的个体的哺乳行为(Bearzi et al. 2018)。对鲸类动物游动行为的大多数观察都涉及到一只或多只成年鲸帮助死去的个体漂浮,通常涉及到一只死去的幼崽(Cockcroft和Sauer 1990; Bearzi等人2018;Methion等人2023;Castro等人2022)。从进化的角度来看,对生病或受伤的同种个体的进化行为是一种适应性特征,因为它可以增加生病或受伤个体的生存可能性;然而,对死亡同种动物的捕食行为通常被认为是不适应的(Bearzi et al. 2018),因为照顾鲸鱼的鲸类动物可能会花费数小时到数天的时间来帮助死去的个体,从而放弃觅食的尝试,落后于它们的群体(Cheng et al. 2018; Pedrazzi et al. 2022; Shedd et al. 2021)。在2024年7月1日至7月9日期间,我们在加拿大马尼托巴省丘吉尔(58.768410,−94.164963)进行了实地考察,研究和监测来自西哈德逊湾(WHB)白鲸种群的白鲸(Delphinapterus leucas)。现场项目包括基于船只和无人机的活动,包括无人机视频和图像收集,这些活动都是在Cape Merry(58.785705,−94.201626)进行的。2024年7月2日,大约10:37 CST,在丘吉尔河河口(58.783542,- 94.206536),无人机(DJI Mavic 3E)发现了一头死鲸,周围是几只自由游动的白鲸。在无人机电池耗尽要求我们降落之前,死亡的小牛和周围的白鲸被记录了约4分钟17秒,我们在更换电池后无法重新安置小牛。我们将小牛归类为新生儿,因为它大约是成年白鲸的1/3大小,颜色比视频中观察到的其他小牛更浅(Michaud 2014)。小牛有可能是死产或出生后不久死亡;然而,我们无法确定死因,因为没有任何身体创伤的迹象。我们观察到死牛犊漂浮的水面上有明显的浮油,浮油可能是宫颈粘液、羊水或产后物质,表明最近出生(例如,Biancani et al. 2021)。或者,浮油可能是分解的副产品。在这项研究中,我们描述了我们对死鲸的观察和周围白鲸的行为。Caldwell和Caldwell(1966)将非痛苦个体在癫痫发作期间表现出的三种行为分类,我们用来评估鲸鱼的行为:袖手旁观,兴奋和支持。“旁观”指的是个体接近并保持靠近痛苦的个体而不提供帮助(我们将“接近”定义为在3个身长范围内),而“兴奋”指的是个体积极地包围处于痛苦中的动物,或对明显的外部威胁表现出攻击行为,而不向处于痛苦中的动物提供帮助(Caldwell and Caldwell 1966)。支持行为是指个体通过将遇险动物举起并维持在水面上来对其进行物理支持的行为(Caldwell and Caldwell 1966)。为了评估周围白鲸对死鲸的行为是否属于附体行为,我们使用了基于已发表的附体行为定义的谱图(Caldwell and Caldwell 1966;表1),并分析了行为观察研究交互软件(BORIS; Friard and Gamba 2016)中的无人机镜头。我们记录了15个案例,视频帧外的白鲸直接向死去的幼鲸游去,包括4对母子和11对个体。 在整个记录过程中,在死亡小牛的三个身长范围内有3到12头白鲸(图1),在一个视频帧内观察到多达16头白鲸(图2)。由于水质不清、阳光刺眼以及我们无法识别个体,我们无法估计每个个体与死去的小牛在一起的总时间;然而,在视频的整个过程中,这只死去的幼崽被自由游动的白鲸包围着。这种行为表明Caldwell和Caldwell(1966)定义的待机状态,并且已经在几个鲸类物种的epimeletic事件中观察到(Cartwright et al. 2025; Cheng et al. 2018; Pedrazzi et al. 2022; Castro et al. 2022)。我们没有观察到任何可以归类为兴奋的行为,包括对死小牛的攻击或兴奋行为或明显的外部威胁(Caldwell and Caldwell 1966)。我们确实在三个不同的场合观察到白鲸与死去的幼鲸接触(图3);然而,每次互动都很短暂(约3秒),我们不认为这些互动可以归类为支持行为。这项研究中缺乏支持行为是有趣的,因为许多涉及小牛的鲸类动物的濒死行为都记录了支持行为(Shedd et al. 2021; Castro et al. 2022; Methion et al. 2023)。然而,由于我们对事件的记录很简短,我们不能排除在我们相遇之前或之后发生了支持行为。目前还不清楚周围的鲸鱼是如何发现死鲸的;然而,已知多个物种使用求救信号来获得同种动物的帮助,包括蝙蝠、鹿和鲸类(例如,Russ等人,2004年;Lingle和Riede, 2014年;Carter等人,2015年;Kuczaj等人,2015年;Cheng等人,2018年)。在鲸类动物中,濒死行为与遇险动物和周围个体的发声增加和声学特性变化有关(Kuczaj et al. 2015; Cheng et al. 2018; Pedrazzi et al. 2022)。这些发声的变化被认为是为了获得他人的帮助,并传达有关处于困境的动物的重要信息(Cheng et al. 2018; Pedrazzi et al. 2022)。在被捕获的白鲸中,当幼鲸死亡时,母亲和幼鲸之间的接触叫声会增加,圣劳伦斯河中一只携带死鲸的野生雌性白鲸也发出了类似的叫声(Vergara et al. 2010)。这些接触的叫声被认为有助于维持社会凝聚力和母子之间的识别(Vergara et al. 2010)。鉴于白鲸是一种发声能力很强的物种(Chmelnitsky and Ferguson 2012),在这项研究中观察到的白鲸直接游向死去的幼鲸可能是被其他鲸鱼的叫
{"title":"Beluga Whale (Delphinapterus leucas) Behavior Towards a Dead Conspecific","authors":"Justine M. Hudson,&nbsp;Cortney A. Watt","doi":"10.1111/mms.70077","DOIUrl":"https://doi.org/10.1111/mms.70077","url":null,"abstract":"&lt;p&gt;How do animals react to dead or dying conspecifics? Do they comprehend death? Do they grieve? These are the fundamental questions asked in the field of comparative thanatology, which focuses on how animals respond to death (Anderson &lt;span&gt;2016&lt;/span&gt;; Gonçalves and Biro &lt;span&gt;2018&lt;/span&gt;). Thanatological behaviors, such as carrying, supporting, grooming, or nurturing a corpse, or exhibiting curious, aggressive, cannibalistic, or sexual behaviors towards a corpse (Monsó and Osuna-Mascaró &lt;span&gt;2021&lt;/span&gt;), have been observed in several mammal species, including African elephants (&lt;i&gt;Loxodonta africana&lt;/i&gt;; Douglas-Hamilton et al. &lt;span&gt;2006&lt;/span&gt;), dingoes (&lt;i&gt;Canis dingo&lt;/i&gt;; Appleby et al. &lt;span&gt;2013&lt;/span&gt;), hippos (&lt;i&gt;Hippopotamus amphibius&lt;/i&gt;; Inman and Leggett &lt;span&gt;2020&lt;/span&gt;), giraffes (&lt;i&gt;Giraffa camelopardalis&lt;/i&gt;; Bercovitch &lt;span&gt;2013&lt;/span&gt;), non-human primates (Yang et al. &lt;span&gt;2016&lt;/span&gt;; Cronin et al. &lt;span&gt;2011&lt;/span&gt;; Anderson &lt;span&gt;2018&lt;/span&gt;; Toyoda et al. &lt;span&gt;2024&lt;/span&gt;; Porter et al. &lt;span&gt;2019&lt;/span&gt;), and several species of cetaceans (Methion et al. &lt;span&gt;2023&lt;/span&gt;; Castro et al. &lt;span&gt;2022&lt;/span&gt;; Cockcroft and Sauer &lt;span&gt;1990&lt;/span&gt;; Shedd et al. &lt;span&gt;2021&lt;/span&gt;; Bearzi et al. &lt;span&gt;2018&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;In the field of marine mammalogy, epimeletic behavior, described as caring for, nurturing, or supporting sick, injured, or dead individuals, has been documented in at least 20 species of cetaceans (reviewed in Bearzi et al. &lt;span&gt;2018&lt;/span&gt;). Most observations of epimeletic behavior in cetaceans have involved one or more adults assisting a dead individual by keeping them afloat and commonly involve a deceased calf (Cockcroft and Sauer &lt;span&gt;1990&lt;/span&gt;; Bearzi et al. &lt;span&gt;2018&lt;/span&gt;; Methion et al. &lt;span&gt;2023&lt;/span&gt;; Castro et al. &lt;span&gt;2022&lt;/span&gt;). From an evolutionary standpoint, epimeletic behavior towards sick or injured conspecifics is an adaptive trait as it may increase the likelihood of survival for the sick or injured individual; however, epimeletic behavior towards a dead conspecific is often considered maladaptive (Bearzi et al. &lt;span&gt;2018&lt;/span&gt;), as caregiving cetaceans can spend hours to days providing aid to deceased individuals, foregoing foraging attempts and lagging behind their groups (Cheng et al. &lt;span&gt;2018&lt;/span&gt;; Pedrazzi et al. &lt;span&gt;2022&lt;/span&gt;; Shedd et al. &lt;span&gt;2021&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;Between July 1 and July 9, 2024, we conducted field work in Churchill, Manitoba, Canada (58.768410, −94.164963) to study and monitor beluga whales (&lt;i&gt;Delphinapterus leucas&lt;/i&gt;) from the Western Hudson Bay (WHB) beluga population. The field program consisted of boat- and drone-based activities, including drone video and imagery collection, which were conducted from Cape Merry (58.785705, −94.201626). On July 2, 2024, at approximately 10:37 CST, a dead calf was spotted from the drone (DJI Mavic 3E) within the Churchill River estuary (58.783542, −94.206536), surrounded by several free-swimming beluga","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70077","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145581409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comparison of Diving Behavior of Goose-Beaked and Dense-Beaked Whales From Tagging Studies in Multiple Ocean Basins 从多个海洋盆地的标记研究中比较鹅喙鲸和密喙鲸的潜水行为
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-09-17 DOI: 10.1111/mms.70070
Jay Barlow, Robin W. Baird, Janelle Badger, Gregory S. Schorr, Erin A. Falcone, Shannon N. Coates, Peter L. Tyack, Andrew J. Read, Leigh S. Hickmott, John W. Durban, Diane Claridge, Natacha Aguilar de Soto, Daniel Miranda Gonzalez, Fleur Visser, Machiel G. Oudejans, Stacy DeRuiter, David A. Sweeney, Brenda K. Rone, Stephanie L. Watwood

Studies of cetacean diving behavior in multiple locations in different ocean basins allow for an assessment of variability within and among populations. We examine foraging dive behaviors of goose-beaked whales (Ziphius cavirostris) and dense-beaked whales (Mesoplodon densirostris) using data from 132 tagged whales in seven locations in the Pacific and Atlantic Oceans and the Mediterranean Sea. Acoustic recording tags are used to identify foraging dives by the presence of echolocation. For other tag types, foraging dives are identified based on maximum dive depth. Five parameters are used to characterize foraging dives: maximum dive depth, foraging dive duration, dive cycle duration, and the mean and standard deviation of echolocation depths. We find that differences among dives within one tagged individual are typically larger than the differences among individuals or among locations, and that differences among individuals are typically similar in magnitude to differences among locations. Regression is used to estimate the mean and standard deviation of echolocation depths from maximum dive depth for dives without acoustic data. Composite values of foraging dive parameters (and standard deviations) are estimated as the average of all study locations.

在不同海洋盆地的多个地点对鲸类动物的潜水行为进行研究,可以评估种群内部和种群之间的可变性。我们研究了鹅喙鲸(Ziphius cavirostris)和密喙鲸(Mesoplodon densirostris)的觅食潜水行为,使用了来自太平洋、大西洋和地中海七个地点的132头被标记的鲸鱼的数据。声学记录标签用于通过回声定位来识别觅食潜水。对于其他类型的标签,觅食潜水是根据最大潜水深度来确定的。利用最大潜水深度、觅食潜水持续时间、潜水周期持续时间、回声定位深度均值和标准差五个参数来表征觅食潜水。我们发现,在一个被标记的个体内,潜水之间的差异通常大于个体之间或位置之间的差异,并且个体之间的差异通常与位置之间的差异相似。对于无声学资料的潜水点,采用回归方法从最大潜水深度估计回声定位深度的均值和标准差。觅食潜水参数的复合值(和标准差)估计为所有研究地点的平均值。
{"title":"A Comparison of Diving Behavior of Goose-Beaked and Dense-Beaked Whales From Tagging Studies in Multiple Ocean Basins","authors":"Jay Barlow,&nbsp;Robin W. Baird,&nbsp;Janelle Badger,&nbsp;Gregory S. Schorr,&nbsp;Erin A. Falcone,&nbsp;Shannon N. Coates,&nbsp;Peter L. Tyack,&nbsp;Andrew J. Read,&nbsp;Leigh S. Hickmott,&nbsp;John W. Durban,&nbsp;Diane Claridge,&nbsp;Natacha Aguilar de Soto,&nbsp;Daniel Miranda Gonzalez,&nbsp;Fleur Visser,&nbsp;Machiel G. Oudejans,&nbsp;Stacy DeRuiter,&nbsp;David A. Sweeney,&nbsp;Brenda K. Rone,&nbsp;Stephanie L. Watwood","doi":"10.1111/mms.70070","DOIUrl":"https://doi.org/10.1111/mms.70070","url":null,"abstract":"<p>Studies of cetacean diving behavior in multiple locations in different ocean basins allow for an assessment of variability within and among populations. We examine foraging dive behaviors of goose-beaked whales (<i>Ziphius cavirostris</i>) and dense-beaked whales (<i>Mesoplodon densirostris</i>) using data from 132 tagged whales in seven locations in the Pacific and Atlantic Oceans and the Mediterranean Sea. Acoustic recording tags are used to identify foraging dives by the presence of echolocation. For other tag types, foraging dives are identified based on maximum dive depth. Five parameters are used to characterize foraging dives: maximum dive depth, foraging dive duration, dive cycle duration, and the mean and standard deviation of echolocation depths. We find that differences among dives within one tagged individual are typically larger than the differences among individuals or among locations, and that differences among individuals are typically similar in magnitude to differences among locations. Regression is used to estimate the mean and standard deviation of echolocation depths from maximum dive depth for dives without acoustic data. Composite values of foraging dive parameters (and standard deviations) are estimated as the average of all study locations.</p>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harbor Seals (Phoca vitulina) Sighted 34 Years After Their Inclusion in a Capture-Mark-Recapture Study 斑海豹(Phoca vitulina)在捕获-标记-再捕获研究中被发现34年后
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-09-15 DOI: 10.1111/mms.70073
Daire Carroll, Jessica Harvey-Carroll, Tero Härkönen, Karin C. Harding
<p>Pinnipeds are K-strategist species with relatively low intrinsic population growth rates (Härkönen et al. <span>2002</span>). They have evolved life history traits, such as low fecundity and high adult survival, which make their populations resilient to periods of unfavorable environmental conditions (Stubbs <span>1977</span>; Schaffer <span>1983</span>; Stearns <span>1989</span>; Kirkwood et al. <span>2000</span>). The long potential lifespans of many K-strategist species, such as harbor seals (<i>Phoca vitulina</i>) and gray seals (<i>Halichoerus grypus</i>), enable individual high-quality animals to make a disproportionately large lifetime contribution to population growth (Kirkwood et al. <span>2000</span>; Jagers and Harding <span>2009</span>; Badger et al. <span>2023</span>).</p><p>We have recently observed wild harbor seals which are more than 20 years of age, with both a male and a female aged 34. These individuals were marked as part of studies carried out between the 1980s and early 2000s, meaning detailed information on their early-life morphology (e.g., mass, length, and axial girth) is available. They are the oldest observed harbor seals in the wild, close to the maximum observed age for the species (36 years) as estimated from growth layers in teeth during necropsies (Härkönen and Heide-Jørgensen <span>1990</span>; Dietz et al. <span>1991</span>). Given the long potential lifespan of harbor seals and the short time span of most research granting schedules, there have been few studies of individuals across their entire lifetime (Härkönen et al. <span>1999</span>; Lindenmayer et al. <span>2012</span>; Cordes and Thompson <span>2015</span>). Our observations present a rare opportunity to study the contribution of these older animals, with well documented early-life conditions, to population growth.</p><p>Harbor seals are a widely distributed species of true seal which are often used as a model for population growth in marine mammals (Blanchet et al. <span>2021</span>; Liu et al. <span>2022</span>). In the Kattegat–Skagerrak region of the North Sea, harbor seals have been the subject of monitoring both for use as an indicator of ecosystem health and for research into seal behavior, diet, and population dynamics since the late 1970s (Heide-Jørgensen and Härkönen <span>1988</span>; Harding et al. <span>2005</span>; Carroll, Infantes, et al. <span>2024</span>). As the result of hunting in the early twentieth century, the Kattegat–Skagerrak population fell from a minimum estimate of 14,000 individuals (based on an assumed annual growth rate of 5%) in 1890 to approximately 2500 in 1979 (Heide-Jørgensen and Härkönen <span>1988</span>). Following protection in the 1960s and 1970s, the population grew exponentially (Heide-Jørgensen and Härkönen <span>1988</span>; Olsen et al. <span>2010</span>). Mass mortality events in 1988 and 2002, caused by outbreaks of Phocine Distemper Virus (PDV), led to the death of up to 66% of the population on eac
鳍足类是k -战略型物种,具有相对较低的内在种群增长率(Härkönen et al. 2002)。它们已经进化出了生命史特征,如低繁殖力和高成虫存活率,这使它们的种群能够适应不利的环境条件(Stubbs 1977; Schaffer 1983; Stearns 1989; Kirkwood et al. 2000)。许多k -战略物种,如斑海豹(Phoca vitulina)和灰海豹(Halichoerus grypus)的潜在寿命很长,使个体高质量动物能够对种群增长做出不成比例的巨大贡献(Kirkwood et al. 2000; Jagers and Harding 2009; Badger et al. 2023)。我们最近观察到了20多岁的野生斑海豹,其中一公一母34岁。这些个体被标记为20世纪80年代至21世纪初进行的研究的一部分,这意味着可以获得有关其早期形态(例如质量,长度和轴向周长)的详细信息。它们是在野外观察到的最老的斑海豹,接近该物种观察到的最大年龄(36岁),这是根据尸体解剖时牙齿的生长层估计的(Härkönen and heider - j ørgensen 1990; Dietz et al. 1991)。考虑到斑海豹的潜在寿命很长,而大多数研究资助计划的时间跨度很短,很少有关于斑海豹整个生命周期的研究(Härkönen et al. 1999; Lindenmayer et al. 2012; Cordes and Thompson 2015)。我们的观察提供了一个难得的机会来研究这些年龄较大的动物对人口增长的贡献,这些动物的早期生活条件有很好的记录。斑海豹是一种分布广泛的真海豹,经常被用作海洋哺乳动物种群增长的模型(Blanchet et al. 2021; Liu et al. 2022)。自20世纪70年代末以来,在北海的卡特加特-斯卡格拉克地区,海豹一直是监测的对象,既是作为生态系统健康的指标,也是研究海豹行为、饮食和种群动态的对象(heade - j ørgensen and Härkönen 1988; Harding et al. 2005; Carroll, Infantes, et al. 2024)。由于20世纪早期的狩猎,卡特加特-斯卡格拉克的种群数量从1890年的最低估计14000只(基于假设的年增长率为5%)下降到1979年的大约2500只(heider - j ørgensen and Härkönen 1988)。在20世纪60年代和70年代的保护之后,种群数量呈指数增长(Heide-Jørgensen and Härkönen 1988; Olsen et al. 2010)。1988年和2002年由猪瘟热病毒(PDV)暴发引起的大规模死亡事件每次都导致高达66%的人口死亡(Dietz等人,1989年;Härkönen等人,2006年)。在过去的十年中,卡特加特-斯卡格拉克港海豹数量的增长已经放缓,2017年达到峰值,数量超过14,000只(Harding et al. 2024; Carroll et al. 2025)。现在有迹象表明,数量可能在下降,包括幼崽产量减少,体细胞生长率下降,以及年度蜕皮调查期间数量减少(Harding等人,2018;Infantes等人,2022;Carroll等人,2025)。在英国和西北大西洋的斑海豹种群中也观察到类似的下降,尽管原因可能有所不同(Bowen et al. 2003; Thompson et al. 2019)。卡特加特-斯卡格拉克地区的生态系统已经发生了大规模变化,这可能是由于工业捕捞导致几种主要鱼类种群的崩溃造成的(Bartolino等人,2012;Boström等人,2014;Capuzzo等人,2018)。这些变化很可能给斑海豹种群带来压力,因为它们必须消耗更多的能量来觅食,而捕猎压力的增加可能会加剧这种压力(Silva et al. 2021; Kappa et al. 2025)。随着人口增长的放缓,海豹潜在的长寿命可能变得越来越重要。相对于亚成虫或幼崽,斑海豹成虫存活率高且稳定(通常为95%)(Härkönen and heider - j ørgensen 1990; Härkönen et al. 2002; Bowen et al. 2003; Harding et al. 2005)。女性的存活率通常高于男性(Hastings et al. 2012)。成熟雌性每年最多可生育一只幼崽,第一次繁殖的年龄在4至6岁之间,生育率一般在90%以上(Härkönen et al. 2002)。年龄较大的女性(25岁)生育率较低;然而,它们有可能在其一生中保持繁殖活跃(Härkönen and Heide-Jørgensen 1990; Härkönen et al. 2002)。在北欧,分娩发生在6月(Härkönen and Heide-Jørgensen 1990; Härkönen et al. 1999)。成熟的雌海豹可以通过跳过繁殖而在资源短缺或环境压力时期生存下来(Kjellqwist 1995)。 这意味着,在猎物数量有限的压力下,成虫的存活率通常保持不变,而幼崽的存活率和出生率是第一个下降的人口统计学比率(Kjellqwist 1995; Harding et al. 2005)。人口的年龄结构对人口的生长速度和世代时间起着重要的决定作用。在短期内,成熟个体与未成熟个体的较高比例可能意味着较高的出生率;然而,随着年龄结构向老年动物转移,繁殖时间将增加,最终降低生长能力(Härkönen et al. 2002; Hoy et al. 2020; Jackson et al. 2020; Jonasson et al. 2022)。1984年至2002年间,在瑞典西海岸捕获了211只海豹,并通过冷冻烙印给它们打上了永久的独特标记。有标记的海豹大多是当年的幼崽或亚成年海豹(Härkönen et al. 1999)。对于每一个被标记的个体,详细的性别,质量,长度,轴周长和年龄类别。在随后的几年中,在一系列标记重新捕获研究中对该地区进行的系统调查提供了对斑海豹生存以及年龄和性别特定行为的见解(Härkönen et al. 1999; Harding et al. 2005)。在2002年最近一次人乳头状病毒暴发之后,由于大量有标记的个体死亡,以及当时可用的调查方法成本高,这些调查停止了(Härkönen等人,2006年)。自2021年以来,每年在6月、8月底和9月初对科斯特海豹群体(图1A)进行调查,以确定幼崽数量并收集海豹体重指数的远程估计(Infantes et al. 2022; Amorosi et al. 2024; Carroll, Infantes et al. 2024)。在调查期间,使用安装有DJI Zenmuse-Z30相机的DJI matrix -200无人机拍摄已知捕捞视频,而使用Mavic II Zoom和Mavic II Pro无人机拍摄静态图像。在2023年5月,偶然发现并拍摄了一个标记的印章(印章15,图1B)(使用佳
{"title":"Harbor Seals (Phoca vitulina) Sighted 34 Years After Their Inclusion in a Capture-Mark-Recapture Study","authors":"Daire Carroll,&nbsp;Jessica Harvey-Carroll,&nbsp;Tero Härkönen,&nbsp;Karin C. Harding","doi":"10.1111/mms.70073","DOIUrl":"https://doi.org/10.1111/mms.70073","url":null,"abstract":"&lt;p&gt;Pinnipeds are K-strategist species with relatively low intrinsic population growth rates (Härkönen et al. &lt;span&gt;2002&lt;/span&gt;). They have evolved life history traits, such as low fecundity and high adult survival, which make their populations resilient to periods of unfavorable environmental conditions (Stubbs &lt;span&gt;1977&lt;/span&gt;; Schaffer &lt;span&gt;1983&lt;/span&gt;; Stearns &lt;span&gt;1989&lt;/span&gt;; Kirkwood et al. &lt;span&gt;2000&lt;/span&gt;). The long potential lifespans of many K-strategist species, such as harbor seals (&lt;i&gt;Phoca vitulina&lt;/i&gt;) and gray seals (&lt;i&gt;Halichoerus grypus&lt;/i&gt;), enable individual high-quality animals to make a disproportionately large lifetime contribution to population growth (Kirkwood et al. &lt;span&gt;2000&lt;/span&gt;; Jagers and Harding &lt;span&gt;2009&lt;/span&gt;; Badger et al. &lt;span&gt;2023&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;We have recently observed wild harbor seals which are more than 20 years of age, with both a male and a female aged 34. These individuals were marked as part of studies carried out between the 1980s and early 2000s, meaning detailed information on their early-life morphology (e.g., mass, length, and axial girth) is available. They are the oldest observed harbor seals in the wild, close to the maximum observed age for the species (36 years) as estimated from growth layers in teeth during necropsies (Härkönen and Heide-Jørgensen &lt;span&gt;1990&lt;/span&gt;; Dietz et al. &lt;span&gt;1991&lt;/span&gt;). Given the long potential lifespan of harbor seals and the short time span of most research granting schedules, there have been few studies of individuals across their entire lifetime (Härkönen et al. &lt;span&gt;1999&lt;/span&gt;; Lindenmayer et al. &lt;span&gt;2012&lt;/span&gt;; Cordes and Thompson &lt;span&gt;2015&lt;/span&gt;). Our observations present a rare opportunity to study the contribution of these older animals, with well documented early-life conditions, to population growth.&lt;/p&gt;&lt;p&gt;Harbor seals are a widely distributed species of true seal which are often used as a model for population growth in marine mammals (Blanchet et al. &lt;span&gt;2021&lt;/span&gt;; Liu et al. &lt;span&gt;2022&lt;/span&gt;). In the Kattegat–Skagerrak region of the North Sea, harbor seals have been the subject of monitoring both for use as an indicator of ecosystem health and for research into seal behavior, diet, and population dynamics since the late 1970s (Heide-Jørgensen and Härkönen &lt;span&gt;1988&lt;/span&gt;; Harding et al. &lt;span&gt;2005&lt;/span&gt;; Carroll, Infantes, et al. &lt;span&gt;2024&lt;/span&gt;). As the result of hunting in the early twentieth century, the Kattegat–Skagerrak population fell from a minimum estimate of 14,000 individuals (based on an assumed annual growth rate of 5%) in 1890 to approximately 2500 in 1979 (Heide-Jørgensen and Härkönen &lt;span&gt;1988&lt;/span&gt;). Following protection in the 1960s and 1970s, the population grew exponentially (Heide-Jørgensen and Härkönen &lt;span&gt;1988&lt;/span&gt;; Olsen et al. &lt;span&gt;2010&lt;/span&gt;). Mass mortality events in 1988 and 2002, caused by outbreaks of Phocine Distemper Virus (PDV), led to the death of up to 66% of the population on eac","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Scale Habitat Selection of Greater Caribbean Manatees in Sian Ka'an Biosphere Reserve, Mexico 墨西哥西安卡安生物圈保护区大加勒比海牛多尺度栖息地选择
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-09-13 DOI: 10.1111/mms.70072
Émilie Gagnon, Nataly Castelblanco-Martínez, Eric A. Ramos, Irma Daniela Aguilera-Miranda, Julián A. Velasco, Beth Brady, Guillaume Rieucau, Julien G. A. Martin

Habitat selection describes population distribution as a function of environmental features. It is a fundamental process with primordial ecological and evolutionary implications. To accurately describe habitat selection, it is important to identify temporal and spatial scales perceived by the population and use these scales when modeling. Despite the growing evidence on the importance of scaling in ecology, habitat selection studies of manatees remain limited to a single spatial scale. Here, we modeled Greater Caribbean manatee (Trichechus manatus manatus) habitat selection in the Sian Ka'an Biosphere Reserve, Mexico, at two spatial scales: study area and 1-km buffer. We used GPS coordinates of opportunistic encounters (n = 102) and a pseudo-absence approach to model manatee presence as a function of seagrass abundance, water depth, and distances to land, creeks, and seafloor depressions. To capture environmental variability, models were repeated 500 times, with each iteration using a different set of randomly generated pseudo-absences. The probability of manatee presence increased in proximity to seafloor depressions at both scales and increased with land proximity at the large scale only. This study demonstrates the importance of multi-scale designs in habitat selection and highlights the need for more studies looking at the ecological implications of seafloor depressions for manatees.

生境选择将种群分布描述为环境特征的函数。这是一个具有原始生态和进化意义的基本过程。为了准确地描述生境选择,重要的是确定种群感知的时空尺度,并在建模时使用这些尺度。尽管越来越多的证据表明尺度在生态学中的重要性,但对海牛栖息地选择的研究仍然局限于单一的空间尺度。本文以墨西哥Sian Ka'an生物圈保护区为研究区和1 km缓冲区两个空间尺度,模拟了大加勒比海牛(Trichechus manatus manatus)的栖息地选择。我们使用机会相遇的GPS坐标(n = 102)和伪缺席方法来模拟海牛的存在,并将其作为海草丰度、水深以及到陆地、小溪和海底洼地的距离的函数。为了捕捉环境的可变性,模型被重复了500次,每次迭代使用一组不同的随机生成的伪缺席。在两个尺度上,海牛出现的可能性在靠近海底洼地的地方都有所增加,只有在靠近陆地的地方才有所增加。这项研究证明了多尺度设计在栖息地选择中的重要性,并强调了对海底洼地对海牛的生态影响进行更多研究的必要性。
{"title":"Multi-Scale Habitat Selection of Greater Caribbean Manatees in Sian Ka'an Biosphere Reserve, Mexico","authors":"Émilie Gagnon,&nbsp;Nataly Castelblanco-Martínez,&nbsp;Eric A. Ramos,&nbsp;Irma Daniela Aguilera-Miranda,&nbsp;Julián A. Velasco,&nbsp;Beth Brady,&nbsp;Guillaume Rieucau,&nbsp;Julien G. A. Martin","doi":"10.1111/mms.70072","DOIUrl":"https://doi.org/10.1111/mms.70072","url":null,"abstract":"<p>Habitat selection describes population distribution as a function of environmental features. It is a fundamental process with primordial ecological and evolutionary implications. To accurately describe habitat selection, it is important to identify temporal and spatial scales perceived by the population and use these scales when modeling. Despite the growing evidence on the importance of scaling in ecology, habitat selection studies of manatees remain limited to a single spatial scale. Here, we modeled Greater Caribbean manatee (<i>Trichechus manatus manatus</i>) habitat selection in the Sian Ka'an Biosphere Reserve, Mexico, at two spatial scales: study area and 1-km buffer. We used GPS coordinates of opportunistic encounters (<i>n</i> = 102) and a pseudo-absence approach to model manatee presence as a function of seagrass abundance, water depth, and distances to land, creeks, and seafloor depressions. To capture environmental variability, models were repeated 500 times, with each iteration using a different set of randomly generated pseudo-absences. The probability of manatee presence increased in proximity to seafloor depressions at both scales and increased with land proximity at the large scale only. This study demonstrates the importance of multi-scale designs in habitat selection and highlights the need for more studies looking at the ecological implications of seafloor depressions for manatees.</p>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changing the Menu: Humpback Whale (Megaptera novaeangliae) Diet Switching in Senyavin Strait, Chukotka 改变菜单:座头鲸(Megaptera novaeangliae)在楚科奇的Senyavin海峡改变饮食
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-09-13 DOI: 10.1111/mms.70071
Olga V. Titova, Ivan D. Fedutin, Alexey V. Tiunov, Sergey M. Tsurikov, Alexander M. Burdin, Erich Hoyt, Olga A. Filatova

Humpback whales have the most diverse diet of all rorquals. Their ability to use different prey depending on local availability makes them a promising indicator species for ecosystem dynamics. During five summer–fall seasons in 2017–2021, regular observations of humpback whale feeding aggregations were conducted as part of multi-year cetacean monitoring in Senyavin Strait, on the eastern Chukotka Peninsula. The study included assessing the trophic level of the whales using stable isotope analysis, as well as collateral observations of feeding behavior, spatial distribution, and surface activity records. We found that the spatial distribution, daytime activity patterns, and trophic levels of the whales differed significantly between 2017 and 2018–2021. These differences, combined with some additional observations of whale feeding activity, suggest that the whales fed on fish, most likely polar cod, in 2017 and switched to preferentially krill in later years. We suggest that our observations in 2017 coincided with a sporadic schooling event of polar cod. We show that a single humpback whale population can abruptly change its feeding habits and switch from one prey type to another under optimal conditions. The high degree of behavioral plasticity may be one of the keys to the evolutionary success of this species.

座头鲸的饮食是所有候鸟中最多样化的。它们能够根据当地的可用性使用不同的猎物,这使它们成为生态系统动态的一个有希望的指示物种。在2017-2021年的五个夏秋季节,作为楚科奇半岛东部Senyavin海峡多年鲸类监测的一部分,对座头鲸进食聚集进行了定期观察。这项研究包括使用稳定同位素分析来评估鲸鱼的营养水平,以及对进食行为、空间分布和表面活动记录的附带观察。我们发现,在2017年和2018-2021年之间,鲸鱼的空间分布、日间活动模式和营养水平存在显著差异。这些差异,再加上对鲸鱼进食活动的一些额外观察,表明鲸鱼在2017年以鱼类为食,最有可能是极地鳕鱼,并在后来的几年里优先转向磷虾。我们认为,我们在2017年的观察与极地鳕鱼的零星洄游事件相吻合。我们表明,在最佳条件下,单个座头鲸种群可以突然改变其摄食习惯,从一种猎物类型切换到另一种猎物类型。高度的行为可塑性可能是这个物种进化成功的关键之一。
{"title":"Changing the Menu: Humpback Whale (Megaptera novaeangliae) Diet Switching in Senyavin Strait, Chukotka","authors":"Olga V. Titova,&nbsp;Ivan D. Fedutin,&nbsp;Alexey V. Tiunov,&nbsp;Sergey M. Tsurikov,&nbsp;Alexander M. Burdin,&nbsp;Erich Hoyt,&nbsp;Olga A. Filatova","doi":"10.1111/mms.70071","DOIUrl":"https://doi.org/10.1111/mms.70071","url":null,"abstract":"<div>\u0000 \u0000 <p>Humpback whales have the most diverse diet of all rorquals. Their ability to use different prey depending on local availability makes them a promising indicator species for ecosystem dynamics. During five summer–fall seasons in 2017–2021, regular observations of humpback whale feeding aggregations were conducted as part of multi-year cetacean monitoring in Senyavin Strait, on the eastern Chukotka Peninsula. The study included assessing the trophic level of the whales using stable isotope analysis, as well as collateral observations of feeding behavior, spatial distribution, and surface activity records. We found that the spatial distribution, daytime activity patterns, and trophic levels of the whales differed significantly between 2017 and 2018–2021. These differences, combined with some additional observations of whale feeding activity, suggest that the whales fed on fish, most likely polar cod, in 2017 and switched to preferentially krill in later years. We suggest that our observations in 2017 coincided with a sporadic schooling event of polar cod. We show that a single humpback whale population can abruptly change its feeding habits and switch from one prey type to another under optimal conditions. The high degree of behavioral plasticity may be one of the keys to the evolutionary success of this species.</p>\u0000 </div>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimates of Abundance and Predicted Distribution of the Main Cetacean Species in Madeira Archipelago Inshore Waters for 2007–2012 2007-2012年马德拉群岛近海水域主要鲸类物种的丰度估算和预测分布
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-09-06 DOI: 10.1111/mms.70065
Luís Freitas, Cláudia Ribeiro, Adalberto Carvalho, Ana Cañadas, Philip S. Hammond

European Union (EU) legislation requires Member States to monitor the environmental status of European maritime waters and the conservation status of protected species including cetaceans, to assess the impact of anthropogenic activities and the effectiveness of management and conservation actions. Year-round shipboard surveys were conducted between 2007 and 2012 in Madeira archipelago coastal waters, realizing 8713 km of track line (10–24 replicates of each block surveyed) in sea conditions of Beaufort ≤ 4, to study the distribution and abundance of cetaceans. Abundance was estimated using design-based distance sampling methods, whereas distribution was modeled using generalized additive models. Twelve species were recorded, and mean abundance in the study area was estimated for common bottlenose dolphin (623; CV = 0.212), Atlantic-spotted dolphin (985; CV = 0.292), common dolphin (546; CV = 0.280), short-finned pilot whale (120; CV = 0.324), Ziphiidae (31; CV = 0.342), and Balaenopteridae (19; CV = 0.296). These first-surface point estimates of mean abundance and model-predicted distribution for these taxa in Madeira waters provide baseline values for future assessment of their status for the EU Habitats Directive and Marine Framework Strategy Directive. They are also the basis for the creation of a Site of Community Interest for the bottlenose dolphin and an important contribution for the spatial management of whale-watching activities in Madeira.

欧洲联盟(欧盟)立法要求成员国监测欧洲海域的环境状况和包括鲸类在内的受保护物种的养护状况,以评估人为活动的影响以及管理和养护行动的有效性。2007 - 2012年在马德拉群岛沿海海域进行全年船载调查,在波弗特≤4的海况下,实现8713 km的航迹线(每个区块10-24个重复),研究鲸类的分布和丰度。丰度采用基于设计的距离抽样方法估计,而分布采用广义加性模型建模。共记录到12种,平均丰度为普通宽吻海豚(623种,CV = 0.212)、大西洋斑海豚(985种,CV = 0.292)、普通海豚(546种,CV = 0.280)、短鳍领航鲸(120种,CV = 0.324)、袋豚科(31种,CV = 0.342)和Balaenopteridae科(19种,CV = 0.296)。这些对马德拉群岛水域中这些分类群的平均丰度和模型预测分布的首次地表点估计为欧盟栖息地指令和海洋框架战略指令对其状况的未来评估提供了基线值。它们也是为宽吻海豚创建一个社区利益地点的基础,也是对马德拉岛观鲸活动空间管理的重要贡献。
{"title":"Estimates of Abundance and Predicted Distribution of the Main Cetacean Species in Madeira Archipelago Inshore Waters for 2007–2012","authors":"Luís Freitas,&nbsp;Cláudia Ribeiro,&nbsp;Adalberto Carvalho,&nbsp;Ana Cañadas,&nbsp;Philip S. Hammond","doi":"10.1111/mms.70065","DOIUrl":"https://doi.org/10.1111/mms.70065","url":null,"abstract":"<div>\u0000 \u0000 <p>European Union (EU) legislation requires Member States to monitor the environmental status of European maritime waters and the conservation status of protected species including cetaceans, to assess the impact of anthropogenic activities and the effectiveness of management and conservation actions. Year-round shipboard surveys were conducted between 2007 and 2012 in Madeira archipelago coastal waters, realizing 8713 km of track line (10–24 replicates of each block surveyed) in sea conditions of Beaufort ≤ 4, to study the distribution and abundance of cetaceans. Abundance was estimated using design-based distance sampling methods, whereas distribution was modeled using generalized additive models. Twelve species were recorded, and mean abundance in the study area was estimated for common bottlenose dolphin (623; CV = 0.212), Atlantic-spotted dolphin (985; CV = 0.292), common dolphin (546; CV = 0.280), short-finned pilot whale (120; CV = 0.324), Ziphiidae (31; CV = 0.342), and Balaenopteridae (19; CV = 0.296). These first-surface point estimates of mean abundance and model-predicted distribution for these taxa in Madeira waters provide baseline values for future assessment of their status for the EU Habitats Directive and Marine Framework Strategy Directive. They are also the basis for the creation of a Site of Community Interest for the bottlenose dolphin and an important contribution for the spatial management of whale-watching activities in Madeira.</p>\u0000 </div>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145521516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shifting Harbor Seal (Phoca vitulina) Diet May Reflect Ecosystem Changes in Skagerrak 斑海豹(Phoca vitulina)饮食的变化可能反映了斯卡格拉克生态系统的变化
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-09-01 DOI: 10.1111/mms.70069
Foteini Kappa, Tero Härkönen, Carla Freitas, Daire Carroll, Karin C. Harding

Harbor seals, as generalist predators, can adjust their diet in response to shifts in prey availability; thus, their diet composition has the potential to act as a biodiversity indicator. This study examined the diet of harbor seals in the Skagerrak by analyzing otoliths from scat samples collected in 2020 and compared species composition to historical datasets from 1977/78 and 1989. The diet in 2020 encompassed 28 fish species. Sandeel and Norway pout were the most common prey, comprising 39.6% and 21.8% of otoliths, respectively. The group haddock/pollack/saithe and ballan wrasse had the highest relative biomass contributions: 18.7% and 13.5%, respectively. A comparison with historical data revealed a shift in diet, with a notable decline in cod and herring consumption and an increase in sandeel and haddock/pollack/saithe. The findings suggest a dietary adaptation of harbor seals to available prey species. The reduced intake of energy-rich prey like herring raises concerns about whether current diet composition can meet the seals' energetic needs. The observed dietary changes may reflect changes in prey availability due to environmental and anthropogenic factors, emphasizing the importance of continued studies to assess the implications for harbor seal populations in the region.

海豹,作为通才捕食者,可以根据猎物的变化调整饮食;因此,它们的饮食组成具有作为生物多样性指标的潜力。本研究通过分析2020年收集的粪便样本中的耳石,研究了斯卡格拉克海豹的饮食,并将物种组成与1977/78和1989年的历史数据集进行了比较。2020年的饮食包括28种鱼类。Sandeel和Norway pout是最常见的猎物,分别占耳石的39.6%和21.8%。黑线/明太鱼组相对生物量贡献最大,分别为18.7%和13.5%。与历史数据的比较显示了饮食的变化,鳕鱼和鲱鱼的消费量显著下降,而沙丁鱼和黑线鳕/明太鱼/鲱鱼的消费量增加。研究结果表明,斑海豹对可用的猎物物种有一种饮食适应性。像鲱鱼这样能量丰富的猎物的摄取量减少引起了人们对目前的饮食结构是否能满足海豹能量需求的担忧。观察到的饮食变化可能反映了环境和人为因素导致的猎物可得性的变化,强调了继续研究对该地区海豹种群影响的重要性。
{"title":"Shifting Harbor Seal (Phoca vitulina) Diet May Reflect Ecosystem Changes in Skagerrak","authors":"Foteini Kappa,&nbsp;Tero Härkönen,&nbsp;Carla Freitas,&nbsp;Daire Carroll,&nbsp;Karin C. Harding","doi":"10.1111/mms.70069","DOIUrl":"https://doi.org/10.1111/mms.70069","url":null,"abstract":"<p>Harbor seals, as generalist predators, can adjust their diet in response to shifts in prey availability; thus, their diet composition has the potential to act as a biodiversity indicator. This study examined the diet of harbor seals in the Skagerrak by analyzing otoliths from scat samples collected in 2020 and compared species composition to historical datasets from 1977/78 and 1989. The diet in 2020 encompassed 28 fish species. Sandeel and Norway pout were the most common prey, comprising 39.6% and 21.8% of otoliths, respectively. The group haddock/pollack/saithe and ballan wrasse had the highest relative biomass contributions: 18.7% and 13.5%, respectively. A comparison with historical data revealed a shift in diet, with a notable decline in cod and herring consumption and an increase in sandeel and haddock/pollack/saithe. The findings suggest a dietary adaptation of harbor seals to available prey species. The reduced intake of energy-rich prey like herring raises concerns about whether current diet composition can meet the seals' energetic needs. The observed dietary changes may reflect changes in prey availability due to environmental and anthropogenic factors, emphasizing the importance of continued studies to assess the implications for harbor seal populations in the region.</p>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphological and Physiological Adaptations Support a 2.9-Fold Higher Mass-Specific Resting Metabolic Rate in Sea Otters Compared to Terrestrial Mammals 形态和生理适应支持海獭比陆生哺乳动物高2.9倍的质量特异性静息代谢率
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-08-30 DOI: 10.1111/mms.70068
R. W. Davis, S. Cahoon, K. A. Burek Huntington, V. Gill

Sea otters (Enhydra lutris) exhibit morphological and physiological adaptations supporting a mass-specific resting metabolic rate (RMR) 2.9-fold higher than predicted for terrestrial mammals of similar size. Their elevated metabolism results primarily from thermogenic mitochondrial proton leak to compensate for heat loss in the marine environment because of their high surface-area-to-volume ratio, combined with their reliance on fur insulation rather than blubber. Key respiratory adaptations include an enlarged lung volume, 3.5-fold greater than predicted allometrically, and a proportionately elevated tidal volume, enabling efficient oxygen uptake and carbon dioxide elimination. Complementary cardiovascular adaptations include a heart mass 1.3-fold greater than the allometric prediction, a correspondingly elevated stroke volume, normal heart rate, increased hemoglobin concentration, and enhanced arterial oxygen content. Together, these adaptations result in an elevated cardiac output and enhanced convective oxygen transport to support the elevated RMR. These multi-level adaptations, present even in young animals, likely evolved under selective pressures favoring thermogenesis over increased insulation by blubber, representing a convergent evolutionary strategy consistent with the principle of symmorphosis, similar to terrestrial athletic mammals adapted for sustained aerobic performance rather than energy conservation. Additional benefits of enlarged lungs, such as enhanced buoyancy and pulmonary oxygen stores, may also have contributed to their evolution.

海獭(Enhydra lutris)表现出形态和生理适应性,支持其质量特异性静息代谢率(RMR)比类似大小的陆生哺乳动物高2.9倍。它们的高代谢主要是由于产热线粒体质子泄漏来补偿海洋环境中的热损失,因为它们的高表面积与体积比,再加上它们依赖皮毛而不是鲸脂来隔热。关键的呼吸适应包括肺容量增大,比预测的异速生长大3.5倍,潮汐容量相应升高,从而实现有效的氧气摄取和二氧化碳消除。补充的心血管适应包括心脏质量比异速生长预测大1.3倍,相应的卒中量增加,心率正常,血红蛋白浓度增加,动脉氧含量增加。总之,这些适应导致心输出量升高和对流氧运输增强,以支持RMR升高。这些多层次的适应,即使在幼龄动物中也存在,很可能是在选择压力下进化而来的,这种选择压力更倾向于产热,而不是通过脂肪增加保温,这代表了一种符合同形态原则的趋同进化策略,类似于陆地运动哺乳动物适应持续的有氧运动,而不是能量保存。肺增大带来的额外好处,如增强浮力和肺氧储存,也可能促进了它们的进化。
{"title":"Morphological and Physiological Adaptations Support a 2.9-Fold Higher Mass-Specific Resting Metabolic Rate in Sea Otters Compared to Terrestrial Mammals","authors":"R. W. Davis,&nbsp;S. Cahoon,&nbsp;K. A. Burek Huntington,&nbsp;V. Gill","doi":"10.1111/mms.70068","DOIUrl":"https://doi.org/10.1111/mms.70068","url":null,"abstract":"<div>\u0000 \u0000 <p>Sea otters (<i>Enhydra lutris</i>) exhibit morphological and physiological adaptations supporting a mass-specific resting metabolic rate (RMR) 2.9-fold higher than predicted for terrestrial mammals of similar size. Their elevated metabolism results primarily from thermogenic mitochondrial proton leak to compensate for heat loss in the marine environment because of their high surface-area-to-volume ratio, combined with their reliance on fur insulation rather than blubber. Key respiratory adaptations include an enlarged lung volume, 3.5-fold greater than predicted allometrically, and a proportionately elevated tidal volume, enabling efficient oxygen uptake and carbon dioxide elimination. Complementary cardiovascular adaptations include a heart mass 1.3-fold greater than the allometric prediction, a correspondingly elevated stroke volume, normal heart rate, increased hemoglobin concentration, and enhanced arterial oxygen content. Together, these adaptations result in an elevated cardiac output and enhanced convective oxygen transport to support the elevated RMR. These multi-level adaptations, present even in young animals, likely evolved under selective pressures favoring thermogenesis over increased insulation by blubber, representing a convergent evolutionary strategy consistent with the principle of symmorphosis, similar to terrestrial athletic mammals adapted for sustained aerobic performance rather than energy conservation. Additional benefits of enlarged lungs, such as enhanced buoyancy and pulmonary oxygen stores, may also have contributed to their evolution.</p>\u0000 </div>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145581485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal Abundance and Distribution of Cetaceans in a High Traffic Shipping Corridor 高流量航运走廊鲸类的季节性丰度和分布
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-08-27 DOI: 10.1111/mms.70061
Christie J. McMillan, Elise A. Keppel, Lisa D. Spaven, Stacey M. Hrushowy, Thomas Doniol-Valcroze

The recovery of many cetacean species coincides spatially and temporally with intensifying anthropogenic threats. We undertook multi-year systematic surveys to quantify seasonal abundance and document the distribution of at-risk cetaceans, which is needed to assess the impacts of increasing human activities in the Canadian portions of the southern Salish Sea and Swiftsure Bank. We completed 21 line-transect surveys encompassing 5346 km of visual effort from September 2020 to December 2022 and collected 1514 sightings of five cetacean species using distance sampling protocols. Humpback whales, harbor porpoises, and Dall's porpoises were the most sighted species and were present in the area year-round, with strong seasonal differences in their abundance and distribution. Estimated abundance of humpback whales was lowest in winter at 17 (95% CI: 11–26) and highest in fall at 416 (261–663). Harbor porpoise abundance was also lowest during winter at 606 (366–1006) and highest in fall at 1415 (975–2055). Dall's porpoise abundance was lowest in summer at 65 (38–112) and highest in winter at 333 (224–494). These estimates were not corrected for availability or perception bias; thus, they may underestimate true abundance to some extent. These seasonal patterns in abundance and distribution will inform threat assessment and mitigation for cetaceans in this area of high and increasing vessel traffic.

许多鲸类物种的恢复与不断加剧的人为威胁在空间和时间上是一致的。我们进行了多年的系统调查,量化季节性丰度,记录濒危鲸类的分布,这是评估人类活动对南萨利希海和Swiftsure Bank加拿大部分地区的影响所需要的。从2020年9月到2022年12月,我们完成了21个样线调查,涵盖5346公里的视觉努力,并使用远距离采样协议收集了5种鲸类动物的1514次目击。座头鲸、港湾鼠海豚和达尔氏鼠海豚是最常见的物种,它们全年都在该地区出现,在数量和分布上有很强的季节性差异。估计座头鲸的丰度在冬季最低,为17 (95% CI: 11-26),在秋季最高,为416(261-663)。港湾鼠海豚丰度冬季最低,为606(366-1006),秋季最高,为1415(975-2055)。江豚丰度夏季最低,为65(38 ~ 112),冬季最高,为333(224 ~ 494)。这些估计没有因可得性或感知偏差而修正;因此,他们可能在某种程度上低估了真正的富足。这些丰度和分布的季节性模式将为这一船只交通量高且不断增加的地区的鲸类动物的威胁评估和缓解提供信息。
{"title":"Seasonal Abundance and Distribution of Cetaceans in a High Traffic Shipping Corridor","authors":"Christie J. McMillan,&nbsp;Elise A. Keppel,&nbsp;Lisa D. Spaven,&nbsp;Stacey M. Hrushowy,&nbsp;Thomas Doniol-Valcroze","doi":"10.1111/mms.70061","DOIUrl":"https://doi.org/10.1111/mms.70061","url":null,"abstract":"<p>The recovery of many cetacean species coincides spatially and temporally with intensifying anthropogenic threats. We undertook multi-year systematic surveys to quantify seasonal abundance and document the distribution of at-risk cetaceans, which is needed to assess the impacts of increasing human activities in the Canadian portions of the southern Salish Sea and Swiftsure Bank. We completed 21 line-transect surveys encompassing 5346 km of visual effort from September 2020 to December 2022 and collected 1514 sightings of five cetacean species using distance sampling protocols. Humpback whales, harbor porpoises, and Dall's porpoises were the most sighted species and were present in the area year-round, with strong seasonal differences in their abundance and distribution. Estimated abundance of humpback whales was lowest in winter at 17 (95% CI: 11–26) and highest in fall at 416 (261–663). Harbor porpoise abundance was also lowest during winter at 606 (366–1006) and highest in fall at 1415 (975–2055). Dall's porpoise abundance was lowest in summer at 65 (38–112) and highest in winter at 333 (224–494). These estimates were not corrected for availability or perception bias; thus, they may underestimate true abundance to some extent. These seasonal patterns in abundance and distribution will inform threat assessment and mitigation for cetaceans in this area of high and increasing vessel traffic.</p>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145522330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Marine Mammal Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1