Rihana Ali Ahmed, Anna Zanoli, Federica Scebba, Fouad Abdou Rabi, Youssouf Ben Ali Abdallah, Sara Ferri, Francesco Caruso, Cristina Giacoma, Livio Favaro
The Shisiwani National Park (Anjouan, Comoros) is a cetacean biodiversity hotspot. However, the vocal behavior of marine mammals inhabiting the area has never been studied. In 2023, we conducted a 400-nautical-mile survey from a 5-m motorboat to determine their presence. Three dolphin species were encountered: the pantropical spotted dolphin (Stenella attenuata), the spinner dolphin (Stenella longirostris), and the melon-headed whale (Peponocephala electra). Dolphin vocalizations were recorded using a single hydrophone during each sighting. The visual inspection of spectrograms allowed the identification of 1495 whistles with a good signal-to-noise ratio. We extracted the frequency contour of each whistle and measured several spectrotemporal features employing the ROCCA module of PAMGUARD. Using a Random Forest algorithm, we classified whistles according to species, showing that while signals from non-congeneric species are distinguishable acoustically, those from congeneric species exhibit more subtle differences and are less so. Moreover, within the whistle repertoire of each species, we identified stereotyped frequency contours matching the SIGID criteria, possibly indicating the existence of signature whistles. Our study provides the first characterization of the whistles of three dolphin species in the Comoros archipelago and paves the way for developing the first fine-tuned tool for their Passive Acoustic Monitoring in these remote areas.
{"title":"Comparative Analysis of the Whistles of Three Oceanic Dolphins in the Comoros","authors":"Rihana Ali Ahmed, Anna Zanoli, Federica Scebba, Fouad Abdou Rabi, Youssouf Ben Ali Abdallah, Sara Ferri, Francesco Caruso, Cristina Giacoma, Livio Favaro","doi":"10.1111/mms.70062","DOIUrl":"https://doi.org/10.1111/mms.70062","url":null,"abstract":"<p>The Shisiwani National Park (Anjouan, Comoros) is a cetacean biodiversity hotspot. However, the vocal behavior of marine mammals inhabiting the area has never been studied. In 2023, we conducted a 400-nautical-mile survey from a 5-m motorboat to determine their presence. Three dolphin species were encountered: the pantropical spotted dolphin (<i>Stenella attenuata</i>), the spinner dolphin (<i>Stenella longirostris</i>), and the melon-headed whale (<i>Peponocephala electra</i>). Dolphin vocalizations were recorded using a single hydrophone during each sighting. The visual inspection of spectrograms allowed the identification of 1495 whistles with a good signal-to-noise ratio. We extracted the frequency contour of each whistle and measured several spectrotemporal features employing the ROCCA module of PAMGUARD. Using a Random Forest algorithm, we classified whistles according to species, showing that while signals from non-congeneric species are distinguishable acoustically, those from congeneric species exhibit more subtle differences and are less so. Moreover, within the whistle repertoire of each species, we identified stereotyped frequency contours matching the SIGID criteria, possibly indicating the existence of signature whistles. Our study provides the first characterization of the whistles of three dolphin species in the Comoros archipelago and paves the way for developing the first fine-tuned tool for their Passive Acoustic Monitoring in these remote areas.</p>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145521469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomé Delaire, Paul Tixier, Christophe Guinet, Erwan Auguin, Amélia Viricel
Genetic diversity and effective population size (Ne) are two key parameters involved in the long-term persistence of a population and, as such, are important metrics to assess the conservation status of a population (Frankham et al. 2010; Hoban et al. 2020; Lande and Shannon 1996). The population standing genetic variation (i.e., pre-existing genetic variation) is a basis for evolution and enables organisms to adapt to changing environmental conditions (Barrett and Schluter 2008; Frankham et al. 2010; Matuszewski et al. 2015; Reed and Frankham 2003). Furthermore, the risk of extinction of a population is greater for small effective population sizes, as it results in the loss of genetic diversity due to genetic drift and increases the risk of inbreeding depression (Gilpin and Soulé 1986; Hedrick and Kalinowski 2000; Kardos et al. 2023; Keller and Waller 2002). Events in the population demographic history, such as bottlenecks or founder events, can result in reductions of genetic diversity and in small effective population sizes (Allendorf et al. 2013; Garner et al. 2005). It has been estimated that an effective population size of at least 1000 effective breeders is required to ensure long-term persistence and sufficient adaptive potential for a given population, while an effective population size > 100 individuals should prevent negative effects due to inbreeding (Frankham 1995; Frankham et al. 2014).
The killer whale (Orcinus orca) is a cosmopolitan apex predator whose populations rarely include more than a few 100 individuals and, therefore, can be subject to erosion of genetic diversity and risks of extinction (Foote et al. 2023; Ford et al. 2018; Hoelzel et al. 2002; Kardos et al. 2023; Parsons et al. 2013). These populations can show large variation in their habitat, level of specialization in their feeding preferences and behavior, but also in their demographic trajectories and the types and levels of threats to which they are exposed (De Bruyn et al. 2013; Foote et al. 2016; Ford et al. 1998; Hoelzel et al. 2007; Jourdain et al. 2024; Morin et al. 2010; Riesch et al. 2012). In particular, over the past decades, some populations have greatly declined due to decreases in prey availability and/or negative interactions with humans (Beck et al. 2014; Ford et al. 2011, 2018; Guinet et al. 2015; Tixier et al. 2017), while others have shown significantly positive trends (Matkin et al. 2014; Towers et al. 2015).
Two morphologically, ecologically, and genetically distinct forms of
遗传多样性和有效种群大小(Ne)是涉及种群长期持久性的两个关键参数,因此是评估种群保护状况的重要指标(Frankham et al. 2010; Hoban et al. 2020; Lande and Shannon 1996)。种群常存遗传变异(即预先存在的遗传变异)是进化的基础,使生物体能够适应不断变化的环境条件(Barrett and Schluter 2008; Frankham et al. 2010; Matuszewski et al. 2015; Reed and Frankham 2003)。此外,有效种群规模较小,种群灭绝的风险更大,因为它会导致遗传漂变导致遗传多样性丧失,并增加近交衰退的风险(Gilpin and soul<s:1> 1986; Hedrick and Kalinowski 2000; Kardos et al. 2023; Keller and Waller 2002)。人口统计历史中的事件,如瓶颈或创始人事件,可能导致遗传多样性的减少和有效种群规模的缩小(Allendorf et al. 2013; Garner et al. 2005)。据估计,至少1000个有效繁殖者的有效种群规模需要确保一个特定种群的长期持久性和足够的适应潜力,而100个有效种群规模应防止近亲繁殖带来的负面影响(Frankham 1995; Frankham et al. 2014)。虎鲸(Orcinus orca)是一种全球性的顶级掠食者,其种群数量很少超过100只,因此可能会受到遗传多样性的侵蚀和灭绝的风险(Foote等人,2023;Ford等人,2018;Hoelzel等人,2002;Kardos等人,2023;Parsons等人,2013)。这些种群在其栖息地、摄食偏好和行为的专业化水平、人口分布轨迹以及所面临威胁的类型和水平上都有很大差异(De Bruyn et al. 2013; Foote et al. 2016; Ford et al. 1998; Hoelzel et al. 2007; Jourdain et al. 2024; Morin et al. 2010; Riesch et al. 2012)。特别是,在过去的几十年里,由于猎物数量减少和/或与人类的负面互动,一些种群数量大幅下降(Beck等人,2014;Ford等人,2011,2018;Guinet等人,2015;Tixier等人,2017),而其他种群则显示出明显的积极趋势(Matkin等人,2014;Towers等人,2015)。在Crozet群岛(法属亚南极岛屿)周围,会遇到两种形态、生态和基因上截然不同的虎鲸,即所谓的“Crozet虎鲸”(图1)和“D型虎鲸”(Amelot et al. 2022; Tixier et al. 2016)。虽然D型虎鲸在过去的15年里才被认为是一个独特的生态型(皮特曼等人,2010年,2019年),它们的种群趋势尚不清楚,但50年的照片识别监测数据显示,在过去的30年里,克罗泽虎鲸的数量下降了60% (Amelot等人,2022年;Guinet等人,2015年;Poncelet等人,2009年;Tixier等人,2017年,2021年)。这种下降可能是由于猎物限制和与在该地区非法经营的渔民的负面互动,以及使用致命手段(枪支或爆炸物)击退对其捕获物进行捕食的鲸鱼(Guinet et al. 2015; Tixier et al. 2017)。这引起了人们对该种群灭绝的潜在风险的担忧,预计到2020年,该种群的数量将在89至94只之间(Tixier et al. 2021),但该种群的遗传描述仍不清楚。例如,在克罗泽岛和邻近的爱德华王子岛和马里恩岛之间记录了个体和社会群体的运动,在那里监测了相同形式的虎鲸(以下称为“马里恩虎鲸”),这表明潜在的遗传联系和包含两个地区的更大种群(Jordaan et al. 2019, 2023; Jourdain et al. 2024; Tixier et al. 2021)。本研究利用19个微卫星位点的31个个体的多位点基因型,评估了克罗泽虎鲸种群的遗传多样性、近交水平和有效种群规模,以评估其灭绝风险。2011年至2024年期间,从Crozet群岛和Île de la Possession海岸附近合法经营的渔船上自由放养的个体身上,通过皮肤活检收集虎鲸皮肤样本。2岁的个体在离船只或海岸15米范围内浮出水面时,使用弓弓和消毒的不锈钢镖在背鳍下方的身体中外侧区域进行远程活检(Reisinger et al. 2014)。对个体进行识别,然后根据现有的照片识别目录进行采样(Tixier et al. 2021)。样品保存在70%的乙醇中,直到用于基因分析。 使用从machery - nagel NucleoSpin tissue试剂盒中提取基因组DNA的方法,从31个人的约25 mg皮肤组织中提取基因组DNA。使用New England BioLabs Monarch基因组DNA纯化试剂盒重新提取由于DNA质量较低而难以进行基因分型的三个样本。采用Nanodrop8000分光光度计吸光度法测定DNA浓度,对浓度较高的样品归一化为20 ng/μL。根据Rosel(2003)的研究,两性均扩增X染色体ZFX区域的382个碱基对片段,而男性仅扩增Y染色体SRY区域的339个碱基对片段,从而确定性别。每个样品扩增19个微卫星位点(表1和表S1),反应体积为15 μL,反应体积为1× Promega GoTaq反应缓冲液(含1.5 mM MgCl2)、200 μM dNTP、0.8 U Promega GoTaq DNA聚合酶、每种引物0.2 μL、样品DNA 1 μL(≈20 ng),剩余体积为超纯水。使用的PCR图谱如下:在94°C下30 s;然后进行33次循环,分别为94℃下20 s, Ta℃下30 s(表S1)和72℃下30 s;然后在72°C下最后延长10分钟。PCR产物随后使用赛默飞世尔科学SeqStudio遗传分析仪和应用生物系统ABI LIZ500作为内部尺寸标准进行分析。在Thermo Fisher Connect网络界面上使用PeakScanner软件(Applied Biosystems)进行基因分型。所有基因型均由两个不同的阅读器独立测定。将31份样本(从多次活检的个体获得的DNA)中的4份样本的重复数据纳入数据集,并进行基因分型,以检查基因分型的一致性。此外,使用GenAlEx 6.5版(Peakall and Smouse 2012)估计了标准身份概率(PI)和兄弟姐妹身份概率(PIsib) (Waits等人,2001年)。这些值分别说明了群体中随机选择的两个个体和群体中两个相关个体具有相同基因型的概率。去除重复后估计遗传多样性。利用FSTAT version 2.9.4 (Goudet 1995)和GenAlEx计算每个位点等位基因数(Na)、等位基因丰富度(AR)、观察杂合度(Ho)、期望杂合度(He)和近交系数(FIS)。使用GENEPOP 4.7版和马尔可夫链蒙特卡罗方法(10,00
{"title":"Genetic Diversity and Effective Population Size of the Endangered Crozet Killer Whales","authors":"Tomé Delaire, Paul Tixier, Christophe Guinet, Erwan Auguin, Amélia Viricel","doi":"10.1111/mms.70059","DOIUrl":"https://doi.org/10.1111/mms.70059","url":null,"abstract":"<p>Genetic diversity and effective population size (<i>N</i><sub><i>e</i></sub>) are two key parameters involved in the long-term persistence of a population and, as such, are important metrics to assess the conservation status of a population (Frankham et al. <span>2010</span>; Hoban et al. <span>2020</span>; Lande and Shannon <span>1996</span>). The population standing genetic variation (i.e., pre-existing genetic variation) is a basis for evolution and enables organisms to adapt to changing environmental conditions (Barrett and Schluter <span>2008</span>; Frankham et al. <span>2010</span>; Matuszewski et al. <span>2015</span>; Reed and Frankham <span>2003</span>). Furthermore, the risk of extinction of a population is greater for small effective population sizes, as it results in the loss of genetic diversity due to genetic drift and increases the risk of inbreeding depression (Gilpin and Soulé <span>1986</span>; Hedrick and Kalinowski <span>2000</span>; Kardos et al. <span>2023</span>; Keller and Waller <span>2002</span>). Events in the population demographic history, such as bottlenecks or founder events, can result in reductions of genetic diversity and in small effective population sizes (Allendorf et al. <span>2013</span>; Garner et al. 2005). It has been estimated that an effective population size of at least 1000 effective breeders is required to ensure long-term persistence and sufficient adaptive potential for a given population, while an effective population size > 100 individuals should prevent negative effects due to inbreeding (Frankham <span>1995</span>; Frankham et al. <span>2014</span>).</p><p>The killer whale (<i>Orcinus orca</i>) is a cosmopolitan apex predator whose populations rarely include more than a few 100 individuals and, therefore, can be subject to erosion of genetic diversity and risks of extinction (Foote et al. <span>2023</span>; Ford et al. <span>2018</span>; Hoelzel et al. <span>2002</span>; Kardos et al. <span>2023</span>; Parsons et al. <span>2013</span>). These populations can show large variation in their habitat, level of specialization in their feeding preferences and behavior, but also in their demographic trajectories and the types and levels of threats to which they are exposed (De Bruyn et al. <span>2013</span>; Foote et al. <span>2016</span>; Ford et al. <span>1998</span>; Hoelzel et al. <span>2007</span>; Jourdain et al. <span>2024</span>; Morin et al. <span>2010</span>; Riesch et al. <span>2012</span>). In particular, over the past decades, some populations have greatly declined due to decreases in prey availability and/or negative interactions with humans (Beck et al. <span>2014</span>; Ford et al. <span>2011</span>, <span>2018</span>; Guinet et al. <span>2015</span>; Tixier et al. <span>2017</span>), while others have shown significantly positive trends (Matkin et al. <span>2014</span>; Towers et al. <span>2015</span>).</p><p>Two morphologically, ecologically, and genetically distinct forms of","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145521563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannah Jasinski, Sara C. Tennant, Dana A. Cusano, Genevieve E. Davis, Sofie M. Van Parijs, Susan E. Parks
<p>Sei whales (<i>Balaenoptera borealis</i>) are a large and endangered baleen whale species (Horwood <span>2009</span>). They have a highly variable diet that can consist of copepods, euphausiids, crustaceans, and fish, with different prey preferences depending on the region (Horwood <span>2009</span>; Mizroch et al. <span>1984</span>; Prieto et al. <span>2012</span>). Sei whales have a global distribution in temperate and subpolar waters, including along the United States (U.S.) Northeast coast (Prieto et al. <span>2012</span>). Separate populations have been identified in the North Atlantic, North Pacific, and Southern Hemisphere (Pérez-Álvarez et al. <span>2021</span>).</p><p>The International Whaling Commission (IWC) recognizes two stocks of sei whales in the western North Atlantic for management purposes—the Nova Scotian stock (including the east coast of the United States) and the Iceland-Denmark Strait stock (Donovan <span>1991</span>; Mitchell and Chapman <span>1977</span>). Although the biological relevance of the stocks is inconclusive, and genetic evidence for the current division in the North Atlantic is lacking (Huijser et al. <span>2018</span>), there is some evidence for at least two discrete feeding grounds: one off the Gulf of Maine and Nova Scotia and one in the Labrador Sea (Mitchell and Chapman <span>1977</span>; Prieto et al. <span>2014</span>). Sei whales undertake seasonal migrations, navigating from low-latitude wintering areas to high-latitude summer feeding grounds (Horwood <span>2009</span>; Prieto et al. <span>2012</span>, <span>2014</span>). The whales that feed off the east coast of the United States and Canada have also demonstrated seasonal longitudinal movement across the North Atlantic (Olsen et al. <span>2009</span>; Prieto et al. <span>2012</span>, <span>2014</span>). The locations of their wintering and calving grounds are unknown (Perry et al. <span>1999</span>).</p><p>One of the primary methods used to study sei whale presence and distribution has been through the use of passive acoustic monitoring (PAM), which is a continuous and cost-effective way to monitor the occurrence of vocal marine mammals (Zimmer <span>2011</span>). Sei whales regularly make vocalizations, including a variety of tonal and broadband sounds (Baumgartner et al. <span>2008</span>; Calderan et al. <span>2014</span>; Cerchio and Weir <span>2022</span>; Cusano et al. <span>2023</span>; Mcdonald et al. <span>2005</span>; Rankin and Barlow <span>2007</span>; Tremblay et al. <span>2019</span>). One call type in particular, the downsweep, has been consistently and definitively attributed to sei whales, allowing it to be used to detect sei whales with PAM in the North Atlantic (Baumgartner and Mussoline <span>2011</span>). A downsweep is characterized by a continuous, descending frequency modulation from approximately 82 to 34 Hz, though the frequency range appears to vary depending on geographic location in the western North Atlantic (Baumga
塞鲸(Balaenoptera borealis)是一种大型濒临灭绝的须鲸物种(Horwood 2009)。它们的饮食变化很大,可能包括桡足类、巨足类、甲壳类和鱼类,根据地区的不同,它们对猎物的偏好也不同(Horwood 2009; Mizroch et al. 1984; Prieto et al. 2012)。鲸鱼在温带和亚极地水域有全球分布,包括沿美国(美国)。东北海岸(Prieto et al. 2012)。在北大西洋、北太平洋和南半球发现了不同的种群(psamez -Álvarez et al. 2021)。国际捕鲸委员会(IWC)承认北大西洋西部有两种鲸鱼种群用于管理——新斯科舍省种群(包括美国东海岸)和冰岛-丹麦海峡种群(Donovan 1991; Mitchell and Chapman 1977)。尽管种群的生物学相关性尚无定论,北大西洋目前的划分也缺乏遗传证据(Huijser et al. 2018),但至少有两个独立的觅食地存在一些证据:一个在缅因湾和新斯科舍省,另一个在拉布拉多海(Mitchell and Chapman 1977; Prieto et al. 2014)。塞鲸进行季节性迁徙,从低纬度越冬区航行到高纬度夏季觅食地(Horwood 2009; Prieto et al. 2012, 2014)。以美国和加拿大东海岸为食的鲸鱼也表现出季节性的跨越北大西洋的纵向运动(Olsen et al. 2009; Prieto et al. 2012, 2014)。它们的越冬和产犊地的位置是未知的(Perry et al. 1999)。用于研究鲸鱼存在和分布的主要方法之一是使用被动声学监测(PAM),这是一种持续且具有成本效益的监测发声海洋哺乳动物发生的方法(Zimmer 2011)。鲸鱼经常发声,包括各种音调和宽带声音(Baumgartner等人,2008;Calderan等人,2014;Cerchio和Weir 2022; Cusano等人,2023;Mcdonald等人,2005;Rankin和Barlow 2007; Tremblay等人,2019)。有一种特别的叫声类型,即下扫,一直被明确地归因于塞鲸,这使得它可以用来检测北大西洋的塞鲸的PAM(鲍姆加特纳和墨索林,2011)。下扫的特征是一个连续的、下降的频率调制,从大约82到34 Hz,尽管频率范围似乎取决于北大西洋西部的地理位置(Baumgartner et al. 2008; Cusano et al. 2023; Macklin et al. 2024)。对鲸鱼下掠的检测已被用于确定它们的季节性存在和变异性(Davis et al. 2020; Romagosa et al. 2020; Van Parijs et al. 2023),它们的行为模式(Baumgartner and Fratantoni 2008; Romagosa et al. 2020),并确定其他呼叫类型(Cerchio and Weir 2022; Tremblay et al. 2019)。最近的被动声学研究显示,与2004-2010年相比,2011-2014年新英格兰南部觅食地的平均鲸鱼声音出现增加(Davis et al. 2020),类似于北大西洋露脊鲸(Eubalaena glacialis)的变化(Davis et al. 2017)。同一项研究还表明,在新英格兰南部水域全年都能发现鲸鱼,3月至7月是声音出现的高峰期(Davis et al. 2020)。同样,Van Parijs等人(2023)发现PAM在该地区全年都有声音存在。塞鲸在新英格兰南部的普遍存在,以及自2010年以来塞鲸对该地区的使用增加,将新英格兰南部确定为塞鲸的重要区域,应该继续全年监测。PAM是监测包括鲸鱼在内的物种的有效工具,这些物种可能受到海上风能和其他海洋能源开发的干扰(Van Parijs et al. 2023)。截至2025年1月,海上风能作为美国沿海清洁能源转型的重要组成部分正在迅速发展(Best and Halpin 2019; Snyder and Kaiser 2009)。在美国东北部,目前在缅因州和新泽西州之间有32个处于多个开发阶段的海上风能项目(Musial et al. 2023)。尽管海上风电具有清洁能源的优势,但必须监测建设和运营对海洋生态系统及其居民(包括海洋哺乳动物)的影响(Bailey et al. 2014)。例如,打桩、钻孔和疏浚等活动已知会导致海洋哺乳动物离开或避开某些区域(Bergström et al. 2014)。船舶交通和建筑相关活动的增加增加了噪音暴露和船舶碰撞的风险,后者已经是鲸鱼的已知威胁(Van Der Hoop et al. 2013)。 监测风能地区的海洋哺乳动物对于评估和减轻对这些动物的潜在风险和影响至关重要(Bailey et al. 2014),特别是对鲸鱼等濒危物种。Davis等人(2020)和Van Parijs等人(2023)结合多年的被动声学数据,证实了新英格兰南部的全年存在。由于鲸鱼的存在被认为在不同年份之间是可变的(Prieto et al. 2014),本研究的目标是利用最近的被动声学数据确定该地区鲸鱼的季节性存在,并连续三年比较鲸鱼下扫探测的季节性和日变化趋势。为了进行这项分析,从2020年11月到2023年9月,在新英格兰南部水域收集了被动声学数据。被动声学记录仪(SoundTrap500、600;Ocean Instruments Inc.)部署在Cox Ledge附近的三个位置(Cox 01、Cox 02和Cox 03):马萨诸塞州和罗德岛州南部(图1)。记录点深度较浅(30 ~ 45 m)。两个记录仪的间隔至少为15公里。由于鲸鱼发声的探测距离估计为10-15公里(Baumgartner et al. 2008),因此不太可能同时在多个记录器上听到探测到的声音;因此,调用被认为是独立的。所有地点连续记录;但是,每次部署的天数从309天到998天不等(表1)。SoundTrap声学记录仪在20 Hz和60 kHz之间表现出平坦的频率响应(±3 dB),有效记录范围为20 Hz至24或32 kHz,具体取决于记录仪的采样率(Van Parijs et al. 2023)。所有记录仪的系统端到端校准为- 175.1至- 177.6 dB re 1 V/μPa,自噪声在100 Hz-2 kHz为<;海况0,在2 kHz以上为<; 36 dB re 1μPa (Van Parijs et al. 2023)。使用VEMCO VR2AR声学接收器和砝子,将soundtrap安装在固定底系泊上方2-3米处,水下浮子垂直延伸至水柱约6米处(Van Parijs et al. 2023)。对于这些部署,所有SoundTraps都以48到64 kHz的采样率进行记录(表1)。声学数据通过低频检测和分类系统(LFDCS; (Baumgartner and Mussoline 2011))进行处理,以检测鲸鱼的叫声。LFDCS对数据进行下采样(此
{"title":"Temporal Variability of Sei Whale (Balaenoptera borealis) Acoustic Detections in Southern New England Waters","authors":"Hannah Jasinski, Sara C. Tennant, Dana A. Cusano, Genevieve E. Davis, Sofie M. Van Parijs, Susan E. Parks","doi":"10.1111/mms.70060","DOIUrl":"https://doi.org/10.1111/mms.70060","url":null,"abstract":"<p>Sei whales (<i>Balaenoptera borealis</i>) are a large and endangered baleen whale species (Horwood <span>2009</span>). They have a highly variable diet that can consist of copepods, euphausiids, crustaceans, and fish, with different prey preferences depending on the region (Horwood <span>2009</span>; Mizroch et al. <span>1984</span>; Prieto et al. <span>2012</span>). Sei whales have a global distribution in temperate and subpolar waters, including along the United States (U.S.) Northeast coast (Prieto et al. <span>2012</span>). Separate populations have been identified in the North Atlantic, North Pacific, and Southern Hemisphere (Pérez-Álvarez et al. <span>2021</span>).</p><p>The International Whaling Commission (IWC) recognizes two stocks of sei whales in the western North Atlantic for management purposes—the Nova Scotian stock (including the east coast of the United States) and the Iceland-Denmark Strait stock (Donovan <span>1991</span>; Mitchell and Chapman <span>1977</span>). Although the biological relevance of the stocks is inconclusive, and genetic evidence for the current division in the North Atlantic is lacking (Huijser et al. <span>2018</span>), there is some evidence for at least two discrete feeding grounds: one off the Gulf of Maine and Nova Scotia and one in the Labrador Sea (Mitchell and Chapman <span>1977</span>; Prieto et al. <span>2014</span>). Sei whales undertake seasonal migrations, navigating from low-latitude wintering areas to high-latitude summer feeding grounds (Horwood <span>2009</span>; Prieto et al. <span>2012</span>, <span>2014</span>). The whales that feed off the east coast of the United States and Canada have also demonstrated seasonal longitudinal movement across the North Atlantic (Olsen et al. <span>2009</span>; Prieto et al. <span>2012</span>, <span>2014</span>). The locations of their wintering and calving grounds are unknown (Perry et al. <span>1999</span>).</p><p>One of the primary methods used to study sei whale presence and distribution has been through the use of passive acoustic monitoring (PAM), which is a continuous and cost-effective way to monitor the occurrence of vocal marine mammals (Zimmer <span>2011</span>). Sei whales regularly make vocalizations, including a variety of tonal and broadband sounds (Baumgartner et al. <span>2008</span>; Calderan et al. <span>2014</span>; Cerchio and Weir <span>2022</span>; Cusano et al. <span>2023</span>; Mcdonald et al. <span>2005</span>; Rankin and Barlow <span>2007</span>; Tremblay et al. <span>2019</span>). One call type in particular, the downsweep, has been consistently and definitively attributed to sei whales, allowing it to be used to detect sei whales with PAM in the North Atlantic (Baumgartner and Mussoline <span>2011</span>). A downsweep is characterized by a continuous, descending frequency modulation from approximately 82 to 34 Hz, though the frequency range appears to vary depending on geographic location in the western North Atlantic (Baumga","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145521569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}