首页 > 最新文献

Marine Mammal Science最新文献

英文 中文
Temporal Variability of Sei Whale (Balaenoptera borealis) Acoustic Detections in Southern New England Waters 新英格兰南部水域塞鲸(Balaenoptera borealis)声学探测的时间变异性
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-08-02 DOI: 10.1111/mms.70060
Hannah Jasinski, Sara C. Tennant, Dana A. Cusano, Genevieve E. Davis, Sofie M. Van Parijs, Susan E. Parks
<p>Sei whales (<i>Balaenoptera borealis</i>) are a large and endangered baleen whale species (Horwood <span>2009</span>). They have a highly variable diet that can consist of copepods, euphausiids, crustaceans, and fish, with different prey preferences depending on the region (Horwood <span>2009</span>; Mizroch et al. <span>1984</span>; Prieto et al. <span>2012</span>). Sei whales have a global distribution in temperate and subpolar waters, including along the United States (U.S.) Northeast coast (Prieto et al. <span>2012</span>). Separate populations have been identified in the North Atlantic, North Pacific, and Southern Hemisphere (Pérez-Álvarez et al. <span>2021</span>).</p><p>The International Whaling Commission (IWC) recognizes two stocks of sei whales in the western North Atlantic for management purposes—the Nova Scotian stock (including the east coast of the United States) and the Iceland-Denmark Strait stock (Donovan <span>1991</span>; Mitchell and Chapman <span>1977</span>). Although the biological relevance of the stocks is inconclusive, and genetic evidence for the current division in the North Atlantic is lacking (Huijser et al. <span>2018</span>), there is some evidence for at least two discrete feeding grounds: one off the Gulf of Maine and Nova Scotia and one in the Labrador Sea (Mitchell and Chapman <span>1977</span>; Prieto et al. <span>2014</span>). Sei whales undertake seasonal migrations, navigating from low-latitude wintering areas to high-latitude summer feeding grounds (Horwood <span>2009</span>; Prieto et al. <span>2012</span>, <span>2014</span>). The whales that feed off the east coast of the United States and Canada have also demonstrated seasonal longitudinal movement across the North Atlantic (Olsen et al. <span>2009</span>; Prieto et al. <span>2012</span>, <span>2014</span>). The locations of their wintering and calving grounds are unknown (Perry et al. <span>1999</span>).</p><p>One of the primary methods used to study sei whale presence and distribution has been through the use of passive acoustic monitoring (PAM), which is a continuous and cost-effective way to monitor the occurrence of vocal marine mammals (Zimmer <span>2011</span>). Sei whales regularly make vocalizations, including a variety of tonal and broadband sounds (Baumgartner et al. <span>2008</span>; Calderan et al. <span>2014</span>; Cerchio and Weir <span>2022</span>; Cusano et al. <span>2023</span>; Mcdonald et al. <span>2005</span>; Rankin and Barlow <span>2007</span>; Tremblay et al. <span>2019</span>). One call type in particular, the downsweep, has been consistently and definitively attributed to sei whales, allowing it to be used to detect sei whales with PAM in the North Atlantic (Baumgartner and Mussoline <span>2011</span>). A downsweep is characterized by a continuous, descending frequency modulation from approximately 82 to 34 Hz, though the frequency range appears to vary depending on geographic location in the western North Atlantic (Baumga
塞鲸(Balaenoptera borealis)是一种大型濒临灭绝的须鲸物种(Horwood 2009)。它们的饮食变化很大,可能包括桡足类、巨足类、甲壳类和鱼类,根据地区的不同,它们对猎物的偏好也不同(Horwood 2009; Mizroch et al. 1984; Prieto et al. 2012)。鲸鱼在温带和亚极地水域有全球分布,包括沿美国(美国)。东北海岸(Prieto et al. 2012)。在北大西洋、北太平洋和南半球发现了不同的种群(psamez -Álvarez et al. 2021)。国际捕鲸委员会(IWC)承认北大西洋西部有两种鲸鱼种群用于管理——新斯科舍省种群(包括美国东海岸)和冰岛-丹麦海峡种群(Donovan 1991; Mitchell and Chapman 1977)。尽管种群的生物学相关性尚无定论,北大西洋目前的划分也缺乏遗传证据(Huijser et al. 2018),但至少有两个独立的觅食地存在一些证据:一个在缅因湾和新斯科舍省,另一个在拉布拉多海(Mitchell and Chapman 1977; Prieto et al. 2014)。塞鲸进行季节性迁徙,从低纬度越冬区航行到高纬度夏季觅食地(Horwood 2009; Prieto et al. 2012, 2014)。以美国和加拿大东海岸为食的鲸鱼也表现出季节性的跨越北大西洋的纵向运动(Olsen et al. 2009; Prieto et al. 2012, 2014)。它们的越冬和产犊地的位置是未知的(Perry et al. 1999)。用于研究鲸鱼存在和分布的主要方法之一是使用被动声学监测(PAM),这是一种持续且具有成本效益的监测发声海洋哺乳动物发生的方法(Zimmer 2011)。鲸鱼经常发声,包括各种音调和宽带声音(Baumgartner等人,2008;Calderan等人,2014;Cerchio和Weir 2022; Cusano等人,2023;Mcdonald等人,2005;Rankin和Barlow 2007; Tremblay等人,2019)。有一种特别的叫声类型,即下扫,一直被明确地归因于塞鲸,这使得它可以用来检测北大西洋的塞鲸的PAM(鲍姆加特纳和墨索林,2011)。下扫的特征是一个连续的、下降的频率调制,从大约82到34 Hz,尽管频率范围似乎取决于北大西洋西部的地理位置(Baumgartner et al. 2008; Cusano et al. 2023; Macklin et al. 2024)。对鲸鱼下掠的检测已被用于确定它们的季节性存在和变异性(Davis et al. 2020; Romagosa et al. 2020; Van Parijs et al. 2023),它们的行为模式(Baumgartner and Fratantoni 2008; Romagosa et al. 2020),并确定其他呼叫类型(Cerchio and Weir 2022; Tremblay et al. 2019)。最近的被动声学研究显示,与2004-2010年相比,2011-2014年新英格兰南部觅食地的平均鲸鱼声音出现增加(Davis et al. 2020),类似于北大西洋露脊鲸(Eubalaena glacialis)的变化(Davis et al. 2017)。同一项研究还表明,在新英格兰南部水域全年都能发现鲸鱼,3月至7月是声音出现的高峰期(Davis et al. 2020)。同样,Van Parijs等人(2023)发现PAM在该地区全年都有声音存在。塞鲸在新英格兰南部的普遍存在,以及自2010年以来塞鲸对该地区的使用增加,将新英格兰南部确定为塞鲸的重要区域,应该继续全年监测。PAM是监测包括鲸鱼在内的物种的有效工具,这些物种可能受到海上风能和其他海洋能源开发的干扰(Van Parijs et al. 2023)。截至2025年1月,海上风能作为美国沿海清洁能源转型的重要组成部分正在迅速发展(Best and Halpin 2019; Snyder and Kaiser 2009)。在美国东北部,目前在缅因州和新泽西州之间有32个处于多个开发阶段的海上风能项目(Musial et al. 2023)。尽管海上风电具有清洁能源的优势,但必须监测建设和运营对海洋生态系统及其居民(包括海洋哺乳动物)的影响(Bailey et al. 2014)。例如,打桩、钻孔和疏浚等活动已知会导致海洋哺乳动物离开或避开某些区域(Bergström et al. 2014)。船舶交通和建筑相关活动的增加增加了噪音暴露和船舶碰撞的风险,后者已经是鲸鱼的已知威胁(Van Der Hoop et al. 2013)。 监测风能地区的海洋哺乳动物对于评估和减轻对这些动物的潜在风险和影响至关重要(Bailey et al. 2014),特别是对鲸鱼等濒危物种。Davis等人(2020)和Van Parijs等人(2023)结合多年的被动声学数据,证实了新英格兰南部的全年存在。由于鲸鱼的存在被认为在不同年份之间是可变的(Prieto et al. 2014),本研究的目标是利用最近的被动声学数据确定该地区鲸鱼的季节性存在,并连续三年比较鲸鱼下扫探测的季节性和日变化趋势。为了进行这项分析,从2020年11月到2023年9月,在新英格兰南部水域收集了被动声学数据。被动声学记录仪(SoundTrap500、600;Ocean Instruments Inc.)部署在Cox Ledge附近的三个位置(Cox 01、Cox 02和Cox 03):马萨诸塞州和罗德岛州南部(图1)。记录点深度较浅(30 ~ 45 m)。两个记录仪的间隔至少为15公里。由于鲸鱼发声的探测距离估计为10-15公里(Baumgartner et al. 2008),因此不太可能同时在多个记录器上听到探测到的声音;因此,调用被认为是独立的。所有地点连续记录;但是,每次部署的天数从309天到998天不等(表1)。SoundTrap声学记录仪在20 Hz和60 kHz之间表现出平坦的频率响应(±3 dB),有效记录范围为20 Hz至24或32 kHz,具体取决于记录仪的采样率(Van Parijs et al. 2023)。所有记录仪的系统端到端校准为- 175.1至- 177.6 dB re 1 V/μPa,自噪声在100 Hz-2 kHz为&lt;海况0,在2 kHz以上为&lt; 36 dB re 1μPa (Van Parijs et al. 2023)。使用VEMCO VR2AR声学接收器和砝子,将soundtrap安装在固定底系泊上方2-3米处,水下浮子垂直延伸至水柱约6米处(Van Parijs et al. 2023)。对于这些部署,所有SoundTraps都以48到64 kHz的采样率进行记录(表1)。声学数据通过低频检测和分类系统(LFDCS; (Baumgartner and Mussoline 2011))进行处理,以检测鲸鱼的叫声。LFDCS对数据进行下采样(此
{"title":"Temporal Variability of Sei Whale (Balaenoptera borealis) Acoustic Detections in Southern New England Waters","authors":"Hannah Jasinski,&nbsp;Sara C. Tennant,&nbsp;Dana A. Cusano,&nbsp;Genevieve E. Davis,&nbsp;Sofie M. Van Parijs,&nbsp;Susan E. Parks","doi":"10.1111/mms.70060","DOIUrl":"https://doi.org/10.1111/mms.70060","url":null,"abstract":"&lt;p&gt;Sei whales (&lt;i&gt;Balaenoptera borealis&lt;/i&gt;) are a large and endangered baleen whale species (Horwood &lt;span&gt;2009&lt;/span&gt;). They have a highly variable diet that can consist of copepods, euphausiids, crustaceans, and fish, with different prey preferences depending on the region (Horwood &lt;span&gt;2009&lt;/span&gt;; Mizroch et al. &lt;span&gt;1984&lt;/span&gt;; Prieto et al. &lt;span&gt;2012&lt;/span&gt;). Sei whales have a global distribution in temperate and subpolar waters, including along the United States (U.S.) Northeast coast (Prieto et al. &lt;span&gt;2012&lt;/span&gt;). Separate populations have been identified in the North Atlantic, North Pacific, and Southern Hemisphere (Pérez-Álvarez et al. &lt;span&gt;2021&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;The International Whaling Commission (IWC) recognizes two stocks of sei whales in the western North Atlantic for management purposes—the Nova Scotian stock (including the east coast of the United States) and the Iceland-Denmark Strait stock (Donovan &lt;span&gt;1991&lt;/span&gt;; Mitchell and Chapman &lt;span&gt;1977&lt;/span&gt;). Although the biological relevance of the stocks is inconclusive, and genetic evidence for the current division in the North Atlantic is lacking (Huijser et al. &lt;span&gt;2018&lt;/span&gt;), there is some evidence for at least two discrete feeding grounds: one off the Gulf of Maine and Nova Scotia and one in the Labrador Sea (Mitchell and Chapman &lt;span&gt;1977&lt;/span&gt;; Prieto et al. &lt;span&gt;2014&lt;/span&gt;). Sei whales undertake seasonal migrations, navigating from low-latitude wintering areas to high-latitude summer feeding grounds (Horwood &lt;span&gt;2009&lt;/span&gt;; Prieto et al. &lt;span&gt;2012&lt;/span&gt;, &lt;span&gt;2014&lt;/span&gt;). The whales that feed off the east coast of the United States and Canada have also demonstrated seasonal longitudinal movement across the North Atlantic (Olsen et al. &lt;span&gt;2009&lt;/span&gt;; Prieto et al. &lt;span&gt;2012&lt;/span&gt;, &lt;span&gt;2014&lt;/span&gt;). The locations of their wintering and calving grounds are unknown (Perry et al. &lt;span&gt;1999&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;One of the primary methods used to study sei whale presence and distribution has been through the use of passive acoustic monitoring (PAM), which is a continuous and cost-effective way to monitor the occurrence of vocal marine mammals (Zimmer &lt;span&gt;2011&lt;/span&gt;). Sei whales regularly make vocalizations, including a variety of tonal and broadband sounds (Baumgartner et al. &lt;span&gt;2008&lt;/span&gt;; Calderan et al. &lt;span&gt;2014&lt;/span&gt;; Cerchio and Weir &lt;span&gt;2022&lt;/span&gt;; Cusano et al. &lt;span&gt;2023&lt;/span&gt;; Mcdonald et al. &lt;span&gt;2005&lt;/span&gt;; Rankin and Barlow &lt;span&gt;2007&lt;/span&gt;; Tremblay et al. &lt;span&gt;2019&lt;/span&gt;). One call type in particular, the downsweep, has been consistently and definitively attributed to sei whales, allowing it to be used to detect sei whales with PAM in the North Atlantic (Baumgartner and Mussoline &lt;span&gt;2011&lt;/span&gt;). A downsweep is characterized by a continuous, descending frequency modulation from approximately 82 to 34 Hz, though the frequency range appears to vary depending on geographic location in the western North Atlantic (Baumga","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145521569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skittish Males in High Latitudes: Complex Social and Acoustic Response of Adult Male Sperm Whales When Harassed by Orcas 高纬度地区易受惊的雄性:被虎鲸骚扰时成年雄性抹香鲸的复杂社会和声音反应
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-08-02 DOI: 10.1111/mms.70057
Mel Cosentino, Emily T. Griffiths, Jade A. van Dam, Ceres H. van Dongen

Orcas ( Orcinus orca ) are an indisputable apex predator of the seas (Jefferson et al. 1991), predating on animals that are much larger and heavier than themselves, including the great whales (Ford and Reeves 2008; Pitman et al. 2014; Silber et al. 1990; Totterdell et al. 2022). Stomach content analysis from orcas in the 1970s revealed predation on sperm whales ( Physeter macrocephalus , Yukhov et al. 1975), and the first published observation of a successful predatory event was in 1997 (Pitman et al. 2001). Previously, all reported aggressive interactions between orcas and sperm whales occurred in latitudes below 45 and involved groups of females, subadults, and young individuals (Gemmell et al. 2015; Nanayakkara et al. 2020; Sucunza et al. 2022), although in some cases adult males were also present (Arnbom et al. 1987; Pitman et al. 2001; Whitt et al. 2015). Females and juvenile sperm whales live in highly social groups in lower latitudes year-round, while sexually mature males migrate to higher latitudes, becoming, or at least appearing to be, increasingly solitary with age (Best 1979; Ohsumi 1966), occasionally returning to warmer waters to breed (Steiner et al. 2012).

The descriptions of aggressive interactions between groups of orcas and sperm whales reveal that sperm whales will remain tightly clustered at the surface or possibly adopt a defensive formation: the Rosette or the Flotilla formation. In the Rosette formation, the animals form a circle with heads pointing to the center or outwards (calves are protected in the center), and in the Flotilla formation, sperm whales organize in rows and columns, positioning parallel to each other with heads pointing in the same direction (Arnbom et al. 1987; Nanayakkara et al. 2020; Pitman et al. 2001). Although the surface behavior of sperm whales has been well documented during these interactions, acoustic behaviors have not been investigated. Sperm whales produce short, broadband echolocation pulses, also described as clicks, which they use for navigation, foraging, and communication. The call types are described based on characteristics of the clicks themselves, as well as the variations in temporal patterning (some regular, others not so). Adult males in high latitudes are known to emit at least four types of sounds: usual clicks, creaks, clangs, and codas (Curé et al. 2013; Madsen et al. 2002; Oliveira et al. 2013; Teloni et al. 2008). Codas are primarily used for communication and social purposes, and therefore are not commonly produced by solitary males (Frantzis and Alexiadou 2008; Weilgart and Whitehead 1997

逆戟鲸(Orcinus orca)是无可争议的海洋顶级捕食者(Jefferson et al. 1991),捕食比自己大得多、重得多的动物,包括大鲸(Ford and Reeves 2008; Pitman et al. 2014; Silber et al. 1990; Totterdell et al. 2022)。20世纪70年代对逆戟鲸胃内容物的分析揭示了抹香鲸的捕食行为(Physeter macrocephalus, Yukhov et al. 1975), 1997年首次发表的成功捕食事件的观察结果(Pitman et al. 2001)。以前,所有报道的逆戟鲸和抹香鲸之间的进攻性相互作用都发生在纬度低于45的地区,涉及雌性、亚成年鲸和幼鲸(Gemmell等人,2015;Nanayakkara等人,2020;Sucunza等人,2022),尽管在某些情况下成年雄性也存在(Arnbom等人,1987;Pitman等人,2001;Whitt等人,2015)。雌抹香鲸和幼抹香鲸常年生活在低纬度高度群居的群体中,而性成熟的雄抹香鲸则会迁移到高纬度地区,随着年龄的增长变得或至少看起来越来越孤独(Best 1979; Ohsumi 1966),偶尔会回到温暖的水域繁殖(Steiner et al. 2012)。对虎鲸群和抹香鲸群之间攻击性相互作用的描述表明,抹香鲸将紧密地聚集在水面上,或者可能采取防御队形:玫瑰队形或舰队队形。在Rosette队形中,动物们形成一个圆圈,头部指向中心或向外(小牛在中心受到保护),而在Flotilla队形中,抹香鲸排成一排或一列,彼此平行,头部指向同一方向(Arnbom et al. 1987; Nanayakkara et al. 2020; Pitman et al. 2001)。尽管抹香鲸在这些相互作用中的表面行为已经被很好地记录下来,但声学行为尚未被调查。抹香鲸产生短的、宽带的回声定位脉冲,也被称为“咔嚓”声,它们用它来导航、觅食和交流。调用类型是根据点击本身的特征以及时间模式的变化(有些是规则的,有些则不是)来描述的。已知高纬度地区的成年雄性至少会发出四种声音:通常的咔嚓声、嘎吱声、铿锵声和尾声(cur<s:1> et al. 2013; Madsen et al. 2002; Oliveira et al. 2013; Teloni et al. 2008)。尾语主要用于交流和社交目的,因此通常不会由孤独的雄性产生(Frantzis and Alexiadou 2008; Weilgart and Whitehead 1997)。然而,cur<s:1>等人(2013)在挪威北部暴露于东北太平洋海洋哺乳动物逆戟鲸声音的被标记成年雄性中发现了尾鲸。此外,在这项研究中,大多数鲸鱼都中断了潜水,在距离同种生物100米的地方浮出水面。这种反应是出乎意料的,因为抹香鲸在安第斯群岛附近形成的群体并不常见,至少在进行这项研究的夏季是如此(Lettevall等人,2002;Morange等人,2024),该地区的逆戟鲸主要以鱼类和海豹为食(Jourdain和Vongraven 2017; Jourdain等人,2019,2020;Similä等人,1996)。这种反应表明,成年雄性抹香鲸,在北极水域以外的季节性迁徙,将虎鲸视为潜在的危险,并且可能能够区分出海洋哺乳动物捕食的虎鲸比其他生态型的威胁更大。目前尚不清楚逆戟鲸和抹香鲸之间的攻击性相互作用在高纬度地区发生的频率;然而,耙痕等间接证据表明,这种现象可能比观测结果更为普遍。例如,1962年至1974年间,在50°南纬地区被捕鲸者捕获的抹香鲸中,65.3%的抹香鲸(包括成年雄性)身上都有逆戟鲸耙。这些划伤更常发生在体长小于13.5米的幼鲸身上(Shevchenko 1975)。抹香鲸身上的耙痕既可以出现在身体上,也可以出现在附属物上,比如吸虫或胸鳍。身体上的耙痕通常出现在雄性头部的左侧,通常被认为是种内相互作用的结果,而吸虫或鳍上较小的耙痕被认为是虎鲸或其他大型海豚捕食和/或骚扰事件的结果(Best 1979; O'Callaghan et al., 2024)。在挪威北部,居住在该地区的有照片的个体中,多达70%的人在某个时间点上有可能是虎鲸耙在他们的吸虫上留下的伤疤(van Dongen 2022)。当然,记录在捕鲸船计数或研究人员的照片id目录中的动物都是在逆戟鲸袭击中幸存下来的动物。在这里,我们报告了发生在2008年、2009年、2011年和2013年挪威北部逆戟鲸和成年雄性抹香鲸之间的四次相互作用。 其中三项观测是由研究人员和船员在布雷克峡谷进行的,布雷克峡谷是位于挪威北部Andøya岛西北的海底峡谷,这艘30米长的观鲸船由Whalesafari运营(图1)。2009年记录的互动没有具体说明笔记中使用的船只;因此,我们不能确定使用的是哪艘船。由于观鲸商业企业的性质和优先事项,确切的地点只有两次(2008年和2011年),尽管所有遭遇都发生在布雷克峡谷的69.34°-69.47°N和15.58°-15.86°E范围内。目前,该地区没有鲸鱼观赏条例;然而,多年来,捕鲸协会根据个人观察,制定了自己的减少影响的协议(见de la Cruz-Modino和Cosentino 2022)。M/S Reine有两个定制的安装在船体上的定向水听器,采样率为44.1 kHz (Nielsen and Møhl 2006),使船员能够听到鲸类动物的声音,并根据水听器之间的响度差异,在动物浮上水面之前接近它们。然而,来自水听器的音频流并不总是被记录下来。因此,我们将重点报道2011年的遭遇,包括照片、视频片段、语音记录和水声记录。其他作品则完全基于照片(2009)、录音(2013)或视频片段(2008)。每次骚扰事件都被定义为逆戟鲸打断抹香鲸的行为。在存在的地方,视频和照片被用来尽可能详细地描述两个物种的行为,以估计存在的最小个体数量,并用于照片识别尝试。这些吸虫和尸体的照片与《捕鲸法》的照片id目录相匹配,该目录包含1987年至2021年在布莱克峡谷及周围水域拍摄的900多头抹香鲸(《捕鲸法》,未发表的数据)。在分析逆戟鲸与大型鲸的相互作用的研究中,人们普遍认为位于附属物上的较小耙痕来自高纬度地区的逆戟鲸(Mehta等人,2007年;Weller 2002年;Weller等人,2018年)。较小的耙痕包含三条线,大约间隔2.5-5.1厘米,而可能来自抹香鲸的耙痕为12-16厘米(Best 1979; George et al. 1994; Mehta et al. 2007)。耙痕之间的间距由经验丰富的观察者根据平均体长(14.35 m, Jørgensen 2000; Similä et al. 2022)和吸虫宽度(26%,Nishiwaki et al. 1963)之间的比值估算,即3.7 m。在现有的情况下,使用Audacity 3.0版本(Audacity Team 2023)手动审计所得的双通道wav文件,以获得海洋哺乳动物的发声,并使用Matlab版本2020b (Mathworks,
{"title":"Skittish Males in High Latitudes: Complex Social and Acoustic Response of Adult Male Sperm Whales When Harassed by Orcas","authors":"Mel Cosentino,&nbsp;Emily T. Griffiths,&nbsp;Jade A. van Dam,&nbsp;Ceres H. van Dongen","doi":"10.1111/mms.70057","DOIUrl":"https://doi.org/10.1111/mms.70057","url":null,"abstract":"<p>Orcas (\u0000 <i>Orcinus orca</i>\u0000 ) are an indisputable apex predator of the seas (Jefferson et al. <span>1991</span>), predating on animals that are much larger and heavier than themselves, including the great whales (Ford and Reeves <span>2008</span>; Pitman et al. <span>2014</span>; Silber et al. <span>1990</span>; Totterdell et al. <span>2022</span>). Stomach content analysis from orcas in the 1970s revealed predation on sperm whales (\u0000 <i>Physeter macrocephalus</i>\u0000 , Yukhov et al. <span>1975</span>), and the first published observation of a successful predatory event was in 1997 (Pitman et al. <span>2001</span>). Previously, all reported aggressive interactions between orcas and sperm whales occurred in latitudes below 45 and involved groups of females, subadults, and young individuals (Gemmell et al. <span>2015</span>; Nanayakkara et al. <span>2020</span>; Sucunza et al. <span>2022</span>), although in some cases adult males were also present (Arnbom et al. <span>1987</span>; Pitman et al. <span>2001</span>; Whitt et al. <span>2015</span>). Females and juvenile sperm whales live in highly social groups in lower latitudes year-round, while sexually mature males migrate to higher latitudes, becoming, or at least appearing to be, increasingly solitary with age (Best <span>1979</span>; Ohsumi <span>1966</span>), occasionally returning to warmer waters to breed (Steiner et al. <span>2012</span>).</p><p>The descriptions of aggressive interactions between groups of orcas and sperm whales reveal that sperm whales will remain tightly clustered at the surface or possibly adopt a defensive formation: the Rosette or the Flotilla formation. In the Rosette formation, the animals form a circle with heads pointing to the center or outwards (calves are protected in the center), and in the Flotilla formation, sperm whales organize in rows and columns, positioning parallel to each other with heads pointing in the same direction (Arnbom et al. <span>1987</span>; Nanayakkara et al. <span>2020</span>; Pitman et al. <span>2001</span>). Although the surface behavior of sperm whales has been well documented during these interactions, acoustic behaviors have not been investigated. Sperm whales produce short, broadband echolocation pulses, also described as clicks, which they use for navigation, foraging, and communication. The call types are described based on characteristics of the clicks themselves, as well as the variations in temporal patterning (some regular, others not so). Adult males in high latitudes are known to emit at least four types of sounds: usual clicks, creaks, clangs, and codas (Curé et al. <span>2013</span>; Madsen et al. <span>2002</span>; Oliveira et al. <span>2013</span>; Teloni et al. <span>2008</span>). Codas are primarily used for communication and social purposes, and therefore are not commonly produced by solitary males (Frantzis and Alexiadou <span>2008</span>; Weilgart and Whitehead <span>1997","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"41 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145297156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preliminary Insights Into the Mechanisms of Narrow-Band High-Frequency Sounds: Vestibular Sac Development and Neonatal Pulsed Sounds in East Asian Finless Porpoises 东亚江豚窄频带高频声音机制的初步认识:前庭囊发育和新生脉冲声
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-08-01 DOI: 10.1111/mms.70058
Tomoyoshi Terada, Ayumu Furuyama, Noriko Funasaka, Ikuo Wakabayashi, Mika Kuroda
<p>Odontocetes rely on sounds to navigate and communicate underwater, with most species capable of producing broadband sounds ranging from several tens of kHz to over 100 kHz. Many odontocetes produce tonal sounds known as whistles for communication and pulsed sounds for both echolocation and communication (Janik <span>2009</span>). However, some odontocete species produce only pulsed sounds and do not produce whistles (Morisaka and Connor <span>2007</span>). Among these species, members of the families Pontoporiidae, Kogiidae, Phocoenidae, and the genus <i>Cephalorhynchus</i> in Delphinidae primarily produce narrow-band high-frequency (NBHF) sounds, which are thought to have evolved as a cryptic strategy to avoid detection by predators (Morisaka and Connor <span>2007</span>). NBHF sounds typically exceed 100 kHz; however, franciscana dolphins (<i>Pontoporia blainvillei</i>) have been reported to produce low-frequency whistles within the human audible range (below 20 kHz) (Cremer et al. <span>2017</span>). Similarly, in the genus <i>Cephalorhynchus</i>, Commerson's dolphins (<i>C. commersonii</i>) (Reyes et al. <span>2016</span>; Martin et al. <span>2021</span>), Heaviside's dolphins (<i>C. heavisidii</i>) (Martin et al. <span>2018</span>), and Hector's dolphins (<i>C. hectori</i>) (Nielsen et al. <span>2024</span>) produce pulsed sounds that extend into lower frequency ranges, reaching below 50 kHz, along with whistles within the human audible range. In the family Phocoenidae, neonatal Yangtze finless porpoises (<i>Neophocaena asiaeorientalis asiaeorientalis</i>) have been reported to produce simultaneous low- and high-frequency sounds (Li et al. <span>2008</span>). Outside these taxa, Peale's dolphins (<i>Lagenorhynchus australis</i>) are known to produce sounds similar to those of the genus <i>Cephalorhynchus</i> (Kyhn et al. <span>2010</span>; Martin et al. <span>2024</span>). This ability may play a critical role in understanding how efficient echolocation and acoustic communication have evolved in cetaceans. However, the mechanisms underlying the flexible modulation of sound frequencies in odontocetes remain unknown.</p><p>Kuroda et al. (<span>2020</span>) conducted a comprehensive review on the mechanisms by which odontocetes modify the frequency of their sounds. They investigated several hypotheses that had been proposed previously, including the folded structure of the vestibular sacs (presence or absence of folds), the porpoise capsule (presence or absence), the size of the emitting surface (large or small), and the shape of the melon (no branch, two branches, or peanut-shaped). Their findings revealed that the folded structure was observed exclusively in the vestibular sacs of families Phocoenidae and cushion structure nearby phonic lips in Kogiidae. This suggests that, at least in these taxa, the folded structure may play a critical role in the production of NBHF sounds (Kuroda et al. <span>2020</span>). The vestibular sacs are soft t
齿形螈依靠声音在水下导航和交流,大多数物种能够发出从几十千赫到100千赫以上的宽带声音。许多齿螈会发出有音调的声音,如口哨声,用于交流,脉冲声用于回声定位和交流(Janik 2009)。然而,一些齿齿动物只产生脉冲声而不产生哨声(Morisaka和Connor 2007)。在这些物种中,飞鸽科的Pontoporiidae, Kogiidae, Phocoenidae和Cephalorhynchus属的成员主要产生窄带高频(NBHF)声音,这被认为是进化为避免被捕食者发现的一种隐藏策略(Morisaka和Connor 2007)。NBHF声音通常超过100千赫;然而,据报道,franciscana海豚(Pontoporia blainvillei)会发出人类可听范围内(低于20 kHz)的低频哨声(Cremer et al. 2017)。同样,在头颈海豚属中,科默森海豚(C. commersonii) (Reyes et al. 2016; Martin et al. 2021),海威赛德海豚(C. heavisidii) (Martin et al. 2018)和赫克托尔海豚(C. hectori) (Nielsen et al. 2024)产生的脉冲声音延伸到较低的频率范围,达到50 kHz以下,以及人类可听到范围内的哨声。据报道,在江豚科,新生长江江豚(Neophocaena asiaeorientalis asiaeorientalis)可以同时发出低频和高频声音(Li et al. 2008)。在这些分类群之外,已知Peale's dolphin (Lagenorhynchus australis)发出的声音与Cephalorhynchus属的声音相似(Kyhn et al. 2010; Martin et al. 2024)。这种能力可能在理解有效的回声定位和声音交流在鲸类动物中是如何进化的过程中起着关键作用。然而,齿形虫中声音频率的灵活调制机制仍然未知。Kuroda等人(2020)对齿螈改变声音频率的机制进行了全面的综述。他们调查了之前提出的几个假设,包括前庭囊的折叠结构(是否有褶皱),海豚囊(是否有褶皱),发射表面的大小(大或小),以及甜瓜的形状(没有分支,两个分支或花生形状)。研究结果表明,折叠结构只存在于飞蛾科前庭囊中,而在飞蛾科音唇附近存在垫状结构。这表明,至少在这些分类群中,折叠结构可能在NBHF声音的产生中发挥关键作用(Kuroda et al. 2020)。前庭囊是一种软组织,可能与咔嗒声的产生有关,可以通过防止声能在背部和侧面的损失来增强声音的方向性(Huggenberger et al. 2009)。Huggenberger等人(2009)将港鼠的前庭囊描述为“位于喷水孔前部,通过水平狭缝状开口与鼻道相连;形成皱褶的高度可达1.5厘米;这些皱褶汇聚成一个中央沟,将前庭囊分为前后区,只有中央沟与鼻通道直接接触。”前庭囊中有折叠结构的存在已被报道在狐猴科和狐猴科;然而,这些褶皱的结构是如何随着体长而发展的尚不清楚。东亚江豚(N. a. sunameri)是海豚科的一员,是一种小型齿形动物,通常最大体长约2米,分布在台湾海峡至韩国和日本的沿海地区。据报道,东亚江豚的前庭囊具有折叠结构(Kuroda et al. 2020)。人们认为长江江豚在幼崽时期会发出低频和高频的声音,但成年后只发出NBHF的声音(Li et al. 2005,2008)。如果前庭囊的折叠结构有助于NBHF音的产生,那么可以预期,折叠的发展与向NBHF音的过渡有关。Li et al.(2008)报道了一个20天大的新生儿在不同的时间发出低频和NBHF的声音,这表明这些声音可能有不同的产生机制。然而,由于这项研究的重点是长江江豚,因此尚不清楚这些发现是否代表了在新豚属中观察到的共同衍生特征。为了阐明新生儿声音与前庭囊发育之间的关系,本研究结合了圈养小牛的声音分析和搁浅野生鼠海豚前庭囊的解剖分析。 我们以东亚江豚为研究对象,探讨前庭囊折叠结构对NBHF音产生的潜在贡献。前庭囊是用滞留在伊势三川湾的标本测量的,伊势三川湾是日本东亚江豚的主要栖息地之一(吉田等人,2001年)。所有的收集都是由日本农林水产大臣根据《渔业资源保护法》授权的。只有体长可测量的标本(例如,尾鳍未受损)和完全完整的前庭囊被包括在内,分解程度从新鲜到严重不等。收集后,所有样品首先冷冻,然后解冻并固定在10%中性缓冲福尔马林中。福尔马林固定后,用剪刀沿前庭囊边缘切开上部,露出内部褶皱。测量是根据Huggenberger等人(2009)对前庭囊的描述确定的,包括9个参数:高度、开口宽度、分支长度、宽度、长度、褶皱数量、开口处褶皱深度(即“开口褶皱深度”)、开口外褶皱深度(即“褶皱深度”)和面积(图S1)。用直尺测量高度、开口宽度、分支长度、宽度、长度、开口褶皱深度和褶皱深度的最大值,记录到毫米以下,2毫米以下记录为1毫米。褶皱的数量是通过计算那些直接连接到中心沟的褶皱来确定的。在MATLAB (The MathWorks, United States)中基于像素计数自动计算区域。样品被固定在一张1厘米见方的棋盘图案的纸上,这是在面积计算过程中确定每厘米像素的尺度。使用谷歌Pixel 8a(谷歌LLC,美国)上的相机捕获样品图像,并使用MATLAB计算机视觉工具箱中的单相机校准器进行畸变校正。为了研究前庭囊的发育过程,我们构建了广义线性模型(GLMs),每个测量值作为响应变量(高度、开口宽度、分支长度、宽度、长度、褶皱数、开口褶皱深度、褶皱深度和面积)。所有分析均使用R 4.4.1版本(R Core Team 2024)进行。由于该分析旨在确定增长相关趋势的拐点,而不是构建最佳拟合预测模型,因此线性和分段回归被统一应用于所有变量,包括面积等二维变量。所有应答变量均采用体长作为解释变量。此外,侧面信息也被用作六种测量的解释变量,两侧都有数据(宽度、长度、褶皱数量、开口褶皱深度、褶皱深度和面积)。考虑到回归随体长变化的可能性,假设两种模型结构:正态线性回归和分段回归。正态线性模型采用“glm”函数。在分段包装软件中,通过将常规线性模型修改为“分段”函数,建立分段模型。2.1-2 (Muggeo 2008)。除折叠数外,所有模型的概率分布均服从高斯分布。对于折叠数模型,假设概率分布服从泊松分布。在包括零模型在内的所有解释变量组合中,根据赤池信息准则(Akaike’s Information Criterion, AIC; Akaike 1974)选择最优模型。为了研究折叠发育的时间,使用“glm”函数进行了逻辑回归分析。Kuroda等人(2020)指出,褶皱结构的发展可能在NBHF音的产生中发挥关键作用。因此,为了检查在什么体长处褶皱开始形成,我们计算了“褶皱发育比”,定义为深度超过检测极限(≥2mm)的褶皱数除以褶皱总数。由于很难确定一个结构是否符合褶皱的条件,我们采用检测限作为客观标准,以确保个体之间的一致性和可重复性。假定概率分布服从二项分布。解释变量包括体长和侧边,使用Wald检验评估其对反应变量影响的显著性。该录音于2024年1月
{"title":"Preliminary Insights Into the Mechanisms of Narrow-Band High-Frequency Sounds: Vestibular Sac Development and Neonatal Pulsed Sounds in East Asian Finless Porpoises","authors":"Tomoyoshi Terada,&nbsp;Ayumu Furuyama,&nbsp;Noriko Funasaka,&nbsp;Ikuo Wakabayashi,&nbsp;Mika Kuroda","doi":"10.1111/mms.70058","DOIUrl":"https://doi.org/10.1111/mms.70058","url":null,"abstract":"&lt;p&gt;Odontocetes rely on sounds to navigate and communicate underwater, with most species capable of producing broadband sounds ranging from several tens of kHz to over 100 kHz. Many odontocetes produce tonal sounds known as whistles for communication and pulsed sounds for both echolocation and communication (Janik &lt;span&gt;2009&lt;/span&gt;). However, some odontocete species produce only pulsed sounds and do not produce whistles (Morisaka and Connor &lt;span&gt;2007&lt;/span&gt;). Among these species, members of the families Pontoporiidae, Kogiidae, Phocoenidae, and the genus &lt;i&gt;Cephalorhynchus&lt;/i&gt; in Delphinidae primarily produce narrow-band high-frequency (NBHF) sounds, which are thought to have evolved as a cryptic strategy to avoid detection by predators (Morisaka and Connor &lt;span&gt;2007&lt;/span&gt;). NBHF sounds typically exceed 100 kHz; however, franciscana dolphins (&lt;i&gt;Pontoporia blainvillei&lt;/i&gt;) have been reported to produce low-frequency whistles within the human audible range (below 20 kHz) (Cremer et al. &lt;span&gt;2017&lt;/span&gt;). Similarly, in the genus &lt;i&gt;Cephalorhynchus&lt;/i&gt;, Commerson's dolphins (&lt;i&gt;C. commersonii&lt;/i&gt;) (Reyes et al. &lt;span&gt;2016&lt;/span&gt;; Martin et al. &lt;span&gt;2021&lt;/span&gt;), Heaviside's dolphins (&lt;i&gt;C. heavisidii&lt;/i&gt;) (Martin et al. &lt;span&gt;2018&lt;/span&gt;), and Hector's dolphins (&lt;i&gt;C. hectori&lt;/i&gt;) (Nielsen et al. &lt;span&gt;2024&lt;/span&gt;) produce pulsed sounds that extend into lower frequency ranges, reaching below 50 kHz, along with whistles within the human audible range. In the family Phocoenidae, neonatal Yangtze finless porpoises (&lt;i&gt;Neophocaena asiaeorientalis asiaeorientalis&lt;/i&gt;) have been reported to produce simultaneous low- and high-frequency sounds (Li et al. &lt;span&gt;2008&lt;/span&gt;). Outside these taxa, Peale's dolphins (&lt;i&gt;Lagenorhynchus australis&lt;/i&gt;) are known to produce sounds similar to those of the genus &lt;i&gt;Cephalorhynchus&lt;/i&gt; (Kyhn et al. &lt;span&gt;2010&lt;/span&gt;; Martin et al. &lt;span&gt;2024&lt;/span&gt;). This ability may play a critical role in understanding how efficient echolocation and acoustic communication have evolved in cetaceans. However, the mechanisms underlying the flexible modulation of sound frequencies in odontocetes remain unknown.&lt;/p&gt;&lt;p&gt;Kuroda et al. (&lt;span&gt;2020&lt;/span&gt;) conducted a comprehensive review on the mechanisms by which odontocetes modify the frequency of their sounds. They investigated several hypotheses that had been proposed previously, including the folded structure of the vestibular sacs (presence or absence of folds), the porpoise capsule (presence or absence), the size of the emitting surface (large or small), and the shape of the melon (no branch, two branches, or peanut-shaped). Their findings revealed that the folded structure was observed exclusively in the vestibular sacs of families Phocoenidae and cushion structure nearby phonic lips in Kogiidae. This suggests that, at least in these taxa, the folded structure may play a critical role in the production of NBHF sounds (Kuroda et al. &lt;span&gt;2020&lt;/span&gt;). The vestibular sacs are soft t","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145521512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variation in Social Structure Among Multiple Stocks of Island-Associated Common Bottlenose Dolphins (Tursiops truncatus) in Hawaiian Waters 夏威夷水域岛屿相关的多种群宽吻海豚(Tursiops truncatus)社会结构的变化
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-07-31 DOI: 10.1111/mms.70051
Enrico Corsi, Robin W. Baird, Annette E. Harnish, Antoinette M. Gorgone, Jens J. Currie, Stephanie H. Stack, Jeremy J. Kiszka

The drivers of animal social structures remain poorly understood, particularly in species such as cetaceans that are wide-ranging and challenging to study. Understanding the factors shaping sociality can shed light on population ecology, gene flow, and information transmission. Here, we investigated variation in social structure among three independent island-associated stocks of common bottlenose dolphins (Tursiops truncatus) around the main Hawaiian Islands. We generated social networks for each stock using photo-identification data from 2002 to 2022. We calculated modularity, density, degree centralization, and betweenness centralization to assess network structure. We measured the stocks' available habitat and calculated their population densities. We also quantified association strength with the half-weight association index (HWI) and compared it within- and between-clusters, and by sex for each stock. HWIs revealed that within-cluster associations were much stronger than between-cluster in all stocks. Network modularity and HWI showed the lowest fragmentation into distinct clusters and the strongest associations in the smallest of the three habitats (Kaua‘i-Ni‘ihau). We found no conclusive evidence of sex differences in HWI. Our findings suggest that denser populations might drive social network fragmentation. Our study highlights the importance of further investigating the drivers of sociality.

动物社会结构的驱动因素仍然知之甚少,特别是像鲸类这样的物种,它们分布广泛,研究起来很有挑战性。了解形成社会性的因素有助于揭示种群生态学、基因流动和信息传递。在这里,我们调查了夏威夷主要岛屿周围三个独立的普通宽吻海豚(Tursiops truncatus)种群的社会结构变化。我们使用2002年至2022年的照片识别数据为每种股票生成社交网络。我们计算了模块化、密度、集中度和中间集中度来评估网络结构。我们测量了种群的可用栖息地,并计算了它们的种群密度。我们还用半权重关联指数(HWI)量化了关联强度,并对每个股票在集群内和集群之间以及按性别进行了比较。hwi显示,在所有股票中,集群内的关联要比集群间的关联强得多。网络模块性和HWI在最小的生境(Kaua 'i-Ni 'ihau)中显示出最小的集群分裂性和最强的关联。我们没有发现HWI存在性别差异的确凿证据。我们的研究结果表明,更密集的人口可能会导致社会网络的分裂。我们的研究强调了进一步调查社会性驱动因素的重要性。
{"title":"Variation in Social Structure Among Multiple Stocks of Island-Associated Common Bottlenose Dolphins (Tursiops truncatus) in Hawaiian Waters","authors":"Enrico Corsi,&nbsp;Robin W. Baird,&nbsp;Annette E. Harnish,&nbsp;Antoinette M. Gorgone,&nbsp;Jens J. Currie,&nbsp;Stephanie H. Stack,&nbsp;Jeremy J. Kiszka","doi":"10.1111/mms.70051","DOIUrl":"https://doi.org/10.1111/mms.70051","url":null,"abstract":"<div>\u0000 \u0000 <p>The drivers of animal social structures remain poorly understood, particularly in species such as cetaceans that are wide-ranging and challenging to study. Understanding the factors shaping sociality can shed light on population ecology, gene flow, and information transmission. Here, we investigated variation in social structure among three independent island-associated stocks of common bottlenose dolphins (<i>Tursiops truncatus</i>) around the main Hawaiian Islands. We generated social networks for each stock using photo-identification data from 2002 to 2022. We calculated modularity, density, degree centralization, and betweenness centralization to assess network structure. We measured the stocks' available habitat and calculated their population densities. We also quantified association strength with the half-weight association index (HWI) and compared it within- and between-clusters, and by sex for each stock. HWIs revealed that within-cluster associations were much stronger than between-cluster in all stocks. Network modularity and HWI showed the lowest fragmentation into distinct clusters and the strongest associations in the smallest of the three habitats (Kaua‘i-Ni‘ihau). We found no conclusive evidence of sex differences in HWI. Our findings suggest that denser populations might drive social network fragmentation. Our study highlights the importance of further investigating the drivers of sociality.</p>\u0000 </div>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145522396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First At-Sea Identifications of Ginkgo-Toothed Beaked Whale (Mesoplodon ginkgodens): Acoustics, Genetics, and Biological Observations Off Baja California, México 银杏齿喙鲸(Mesoplodon ginkgodens)的首次海上鉴定:声学、遗传学和生物学观察
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-07-28 DOI: 10.1111/mms.70052
E. Elizabeth Henderson, Lisa T. Ballance, Gustavo Cárdenas-Hinojosa, Jay Barlow, Annamaria I. DeAngelis, Sergio Martínez-Aguilar, Craig Hayslip, L. Todd Pusser, Mario Márquez Segovia, C. Scott Baker, Debbie Steel, Rodrigo Huerta-Patiño, Luis Manuel Enriquez Paredes, Robert L. Brownell Jr, Robert L. Pitman

In 2024, an expedition was conducted off northwestern Baja California, México, to find and identify the beaked whale species that produced the BW43 echolocation pulse previously recorded in this area and elsewhere in the North Pacific. There were five Mesoplodon sightings and 21 BW43 acoustic detections on both a towed array and drifting pole buoy recorders over the course of the survey. Three of the sightings had concurrent acoustic detections, and a biopsy sample and environmental DNA were also collected from one of the sightings. The genetic identification confirms that the Mesoplodon sighted and acoustically recorded was the ginkgo-toothed beaked whale (Mesoplodon ginkgodens), and the co-occurrence of these sightings with the BW43 acoustic detections definitively links the species and its echolocation pulse. This is the first time that genetically confirmed ginkgo-toothed beaked whales have been observed at sea and definitively linked to the BW43 pulse. This paper details the encounters, acoustic behavior, genetics, coloration, and external morphology of this species, including a comprehensive review of its distribution using historical sightings, strandings, and acoustic detection data from the North Pacific Ocean.

2024年,在下加利福尼亚州西北部的m西科进行了一次探险,以寻找和识别产生BW43回声定位脉冲的喙鲸物种,这些脉冲之前在该地区和北太平洋的其他地方被记录下来。在整个调查过程中,拖曳阵列和漂流浮标记录仪上有5次中齿龙目击和21次BW43声波探测。其中三个目击事件同时进行了声学检测,并从其中一个目击事件中收集了活检样本和环境DNA。基因鉴定证实,看到并记录到的中齿鲸是银杏齿喙鲸(Mesoplodon ginkgodens),这些目击与BW43声学探测的共同出现明确地将物种与其回声定位脉冲联系起来。这是第一次在海上观察到经基因证实的银杏牙喙鲸,并确定与BW43脉冲有关。本文详细介绍了该物种的遭遇、声学行为、遗传学、颜色和外部形态,包括利用北太平洋的历史观测、搁浅和声学探测数据对其分布进行全面回顾。
{"title":"First At-Sea Identifications of Ginkgo-Toothed Beaked Whale (Mesoplodon ginkgodens): Acoustics, Genetics, and Biological Observations Off Baja California, México","authors":"E. Elizabeth Henderson,&nbsp;Lisa T. Ballance,&nbsp;Gustavo Cárdenas-Hinojosa,&nbsp;Jay Barlow,&nbsp;Annamaria I. DeAngelis,&nbsp;Sergio Martínez-Aguilar,&nbsp;Craig Hayslip,&nbsp;L. Todd Pusser,&nbsp;Mario Márquez Segovia,&nbsp;C. Scott Baker,&nbsp;Debbie Steel,&nbsp;Rodrigo Huerta-Patiño,&nbsp;Luis Manuel Enriquez Paredes,&nbsp;Robert L. Brownell Jr,&nbsp;Robert L. Pitman","doi":"10.1111/mms.70052","DOIUrl":"https://doi.org/10.1111/mms.70052","url":null,"abstract":"<p>In 2024, an expedition was conducted off northwestern Baja California, México, to find and identify the beaked whale species that produced the BW43 echolocation pulse previously recorded in this area and elsewhere in the North Pacific. There were five <i>Mesoplodon</i> sightings and 21 BW43 acoustic detections on both a towed array and drifting pole buoy recorders over the course of the survey. Three of the sightings had concurrent acoustic detections, and a biopsy sample and environmental DNA were also collected from one of the sightings. The genetic identification confirms that the <i>Mesoplodon</i> sighted and acoustically recorded was the ginkgo-toothed beaked whale (<i>Mesoplodon ginkgodens</i>), and the co-occurrence of these sightings with the BW43 acoustic detections definitively links the species and its echolocation pulse. This is the first time that genetically confirmed ginkgo-toothed beaked whales have been observed at sea and definitively linked to the BW43 pulse. This paper details the encounters, acoustic behavior, genetics, coloration, and external morphology of this species, including a comprehensive review of its distribution using historical sightings, strandings, and acoustic detection data from the North Pacific Ocean.</p>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145522394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Underwater Vocalization Behavior of Harbor Seals(Phoca vitulina) 斑海豹的水下发声行为
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-07-28 DOI: 10.1111/mms.70056
Joy Willmer, Maryann S. Watson, Britas Klemens Eriksson, Ilse Van Opzeeland

Harbor seals (Phoca vitulina) are one of the most important apex-predators in the Wadden Sea. However, baseline information on their distribution and behavior is still sparse and geographically restricted. Passive acoustic monitoring (PAM) of their underwater sounds can provide information about their fine-scaled distribution and habitat use. This study is the first to analyze underwater vocal behavior of harbor seals in the Wadden Sea, exploring temporal patterns and characteristics of vocalizations. Passive acoustic data from the Dutch Wadden Sea were collected east of Lauwersoog during the breeding season in July 2021 and south of the island of Vlieland in September 2022. We describe and document four acoustically distinct harbor seal call types based on spectro-temporal call characteristics. Results showed a significantly higher vocal activity for two out of the four call types during the breeding season and clear differences in the dial distribution of calls. The results of this study provide a basis for PAM-based monitoring of harbor seal activity and a potential fundament for AI-based call detection algorithms. The increasing evidence for the importance of underwater sound for aquatic habitat quality and suitability emphasizes the need to acoustically map critical habitats and document the natural sounds of living organisms.

斑海豹(Phoca vitulina)是瓦登海最重要的顶端食肉动物之一。然而,关于它们的分布和行为的基线信息仍然很少,而且地理上受到限制。对其水下声音进行被动声学监测可以提供它们精细分布和栖息地利用的信息。本研究首次分析了瓦登海斑海豹的水下发声行为,探索了发声的时间模式和特征。在2021年7月的繁殖季节和2022年9月的弗利兰岛南部收集了来自荷兰瓦登海的被动声学数据。我们描述并记录了基于光谱-时间呼叫特征的四种声学上不同的海豹呼叫类型。结果表明,在繁殖季节,四种呼叫类型中有两种的声音活动明显增加,并且呼叫的拨号分布存在明显差异。该研究结果为基于pam的海豹活动监测提供了基础,并为基于人工智能的呼叫检测算法提供了潜在的基础。越来越多的证据表明,水声对水生栖息地质量和适宜性的重要性,强调了对关键栖息地进行声学测绘和记录生物自然声音的必要性。
{"title":"Underwater Vocalization Behavior of Harbor Seals(Phoca vitulina)","authors":"Joy Willmer,&nbsp;Maryann S. Watson,&nbsp;Britas Klemens Eriksson,&nbsp;Ilse Van Opzeeland","doi":"10.1111/mms.70056","DOIUrl":"https://doi.org/10.1111/mms.70056","url":null,"abstract":"<p>Harbor seals (<i>Phoca vitulina</i>) are one of the most important apex-predators in the Wadden Sea. However, baseline information on their distribution and behavior is still sparse and geographically restricted. Passive acoustic monitoring (PAM) of their underwater sounds can provide information about their fine-scaled distribution and habitat use. This study is the first to analyze underwater vocal behavior of harbor seals in the Wadden Sea, exploring temporal patterns and characteristics of vocalizations. Passive acoustic data from the Dutch Wadden Sea were collected east of Lauwersoog during the breeding season in July 2021 and south of the island of Vlieland in September 2022. We describe and document four acoustically distinct harbor seal call types based on spectro-temporal call characteristics. Results showed a significantly higher vocal activity for two out of the four call types during the breeding season and clear differences in the dial distribution of calls. The results of this study provide a basis for PAM-based monitoring of harbor seal activity and a potential fundament for AI-based call detection algorithms. The increasing evidence for the importance of underwater sound for aquatic habitat quality and suitability emphasizes the need to acoustically map critical habitats and document the natural sounds of living organisms.</p>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145522393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Acoustic Detection of Eubalaena japonica South of the Bering Strait 白令海峡以南真海葵的最新声学探测
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-07-25 DOI: 10.1111/mms.70054
Dana L. Wright, Eric Braen, Jessica Crance, Catherine Berchok
<p>The North Pacific right whale (NPRW; <i>Eubalaena japonica</i>) is one of the most endangered whale species (Brownell et al. <span>2001</span>; Young et al. <span>2024</span>). It comprises genetically distinct western and eastern populations (Pastene et al. <span>2022</span>), both of which were decimated by legal and illegal whaling in the 19th and 20th centuries (Ivashchenko and Clapham <span>2012</span>, Ivaschchenko, Clapham and Brownell <span>2017</span>, Shelden et al. <span>2005</span>). Today, the endangered western population is believed to number in the hundreds (Pastene et al. <span>2022</span>), while the Critically Endangered eastern population numbers less than 50 (Cooke and Clapham <span>2018</span>; Wade et al. <span>2011</span>).</p><p>Mid-19th century whaling records indicate that at that time, NPRWs ranged northward to the Bering Strait (Smith et al. <span>2012</span>). However, some uncertainty remains as to whether some of the northern records were actually bowhead whales (<i>Balaena mysticetus</i>), as these two species were not consistently distinguished from one another at the onset of American commercial whaling in this area (Smith et al. <span>2012</span>). For the past three decades, the remnant eastern population has occurred predominantly in the southeastern Bering Sea (Shelden et al. <span>2005</span>; Zerbini et al. <span>2015</span>).</p><p>Recently, both visual observations and acoustic detections have confirmed the presence of right whales in the northern Bering Sea. Notably, a known male right whale was observed feeding approximately 15 km south of St. Lawrence Island on 26 July 2018, and was resighted feeding off the Chukotka Peninsula 3 weeks later (Crance and Kennedy <span>2024</span>; Filatova et al. <span>2019</span>; Figure 1). Until the publication of this Note, the northernmost acoustic record of a right whale came from a moored acoustic recorder located 185 km south of St. Lawrence Island in 2016 (Figure 1), with calling detected from 27 July through the end of recording on 25 September (Wright et al. <span>2019</span>). These detections included gunshot calls, defined as brief (< 0.2 s), broadband signals that can be produced in bouts for periods ranging from 30 min to several hours (Crance et al. <span>2017</span>, <span>2019</span>; Rone et al. <span>2012</span>) as well as bouts of right whale upcalls, which are defined as ~1 s 80–160 Hz frequency sweeps that occur in irregular spacing and are the presumed contact call of all three right whale species (McDonald and Moore <span>2002</span>, Munger et al. <span>2008</span>, Parks <span>2022</span>).</p><p>Since 2012, the NOAA Alaska Fisheries Science Center Marine Mammal Laboratory (AFSC-MML) has maintained a network of subsurface moorings with passive acoustic recorders in the US Arctic waters. The northernmost Bering Sea mooring—NM01—has been stationed 107 km south of the Bering Strait (Figure 1, Table 1). All acoustic data from the NM01 reco
北太平洋露脊鲸(Eubalaena japonica; NPRW)是最濒危的鲸种之一(Brownell et al. 2001; Young et al. 2024)。它由遗传上不同的西部和东部种群组成(Pastene et al. 2022),这两个种群都在19世纪和20世纪因合法和非法捕鲸而大量灭绝(Ivashchenko和Clapham 2012, Ivaschchenko, Clapham和Brownell 2017, Shelden et al. 2005)。如今,濒临灭绝的西部种群据信有数百只(Pastene et al. 2022),而极度濒危的东部种群数量不到50只(Cooke and Clapham 2018; Wade et al. 2011)。19世纪中期的捕鲸记录表明,当时的nprw向北延伸至白令海峡(Smith et al. 2012)。然而,北方的一些记录是否真的是露脊鲸(Balaena mysticetus)仍然存在一些不确定性,因为在美国在该地区开始商业捕鲸时,这两个物种并没有被一致地区分开来(Smith et al. 2012)。在过去的三十年中,剩余的东部种群主要出现在白令海东南部(Shelden et al. 2005; Zerbini et al. 2015)。最近,视觉观察和声学探测都证实了白令海北部有露脊鲸的存在。值得注意的是,2018年7月26日,一只已知的雄性露脊鲸被观察到在圣劳伦斯岛以南约15公里处进食,并在3周后被发现在楚科奇半岛进食(Crance and Kennedy 2024; Filatova et al. 2019;图1)。在本说明发表之前,露脊鲸最北端的声音记录来自2016年位于圣劳伦斯岛以南185公里处的系泊录音机(图1),从7月27日到9月25日记录结束时检测到呼叫(Wright et al. 2019)。这些检测包括枪击调用,定义为短暂(& lt; 0.2 s),宽带信号,可以生产的发作时间从30分钟到数小时不等(Crance et al . 2017, 2019;檐沟et al . 2012年)的露脊鲸向上,这被定义为~ 1 s 80 - 160赫兹频率扫描,发生在不规则的间距和假定接触的所有三个露脊鲸物种(麦当劳和摩尔2002年,芒格et al . 2008年,公园2022)。自2012年以来,美国国家海洋和大气管理局阿拉斯加渔业科学中心海洋哺乳动物实验室(AFSC-MML)在美国北极水域维护了一个地下系泊网络,并配备了被动声学记录仪。最北端的白令海系泊——nm01——驻扎在白令海峡以南107公里处(图1,表1)。2012年8月至2022年9月期间,NM01记录仪1的所有声学数据都由训练有素的分析师使用内部MATLAB脚本SoundChecker (Wright et al. 2019)手动分析,除了弓头鲸,座头鲸(Megaptera novaeangliae),灰鲸(Eschrichtius robustus),海象(Odobenus rosmarus divergens),小须鲸(Balaenoptera acutorostrata)和身份不明的鳍状动物叫声外,NPRW还会发出叫声。原始录音被分成10分钟的。wav文件,并生成频谱图(225-s窗口;0-800 Hz),以便手动分析该频率范围内的信号。使用预生成的频谱图以225秒的分辨率对每个信号进行视觉分类,必要时通过听觉检查进行确认。本说明仅提供NPRW结果。使用呼叫特征(例如,呼叫间隔,频率范围和呼叫长度)和上下文线索(例如,其他物种和季节的存在;Wright等人。2025)将露脊鲸的声音与其他物种区分开来。例如,NPRW可以产生高密度的枪声(在之前的NPRW研究中观察到平均69-133次枪声h- 1; Crance等人,2017;Rone等人,2012),其中可以包括图案序列,在某些情况下,至少在NPRW的东部种群中形成歌曲(Crance等人,2019)。虽然弓头鲸也会发出枪声(w<s:1> rsig和Clark 1993),但没有证据表明弓头鲸会发出高密度的枪声,尽管之前对弓头鲸的声学曲目和歌曲进行了广泛的研究(Clark和Johnson 1984; Clark等人2015;Cummings和Holliday 1987; Stafford等人2008,2018;Tervo等人2009)。从记录开始(2012年8月)到2022年6月,在NM01站点未检测到露脊鲸的叫声。2022年7月,在NM01-13日和7月14日连续2天检测到变间距高密度枪响(表1;图2)。使用间隔5秒的时间阈值来定义不同的回合(Crance et al. 2019)。7月13日,从UTC时间18:07至18:54共记录了996次枪击,共发生19次,平均每轮52.4次枪击(表2)。7月14日,在协调世界时14时10分至15时20分共发现了2494次枪击,共发生37次,平均每轮67.4次。 这些比率高于之前报道的NPRW,其范围从平均每小时69-133个呼叫到每小时最多835个呼叫(Rone等人,2012;Crance等人,2017,2019)。然而,这两天的发作次数都在之前报道的NPRW的范围内(3-75次/天;Crance et al. 2019)。由于采样设计,尚不清楚这些检测是否代表单个动物或多个动物的呼叫。检测到的所有回合都不匹配先前记录的四种NPRW歌曲类型中的任何一种(Crance et al. 2019)。然而,这些检测的时间与前几年白令海南部记录地点NPRW歌曲的季节性发生一致(Crance et al. 2019)。或者,我们的发现与之前的NPRW研究之间的差异可能反映了东西方人群在呼唤方面的差异。呼唤率和西部西北西北地区鸣叫行为的证据目前尚不清楚。我们假设最近在该地区对NPRW的声学检测与影响鲸鱼主要觅食地猎物分布的环境条件变化有关。自2000年以来,白令海东南部大陆架经历了由季节性海冰范围和风力决定的“温暖”和“寒冷”交替状态(Stabeno et al. 2012)。该地区季节性海冰的减少导致夏季白令海陆架东部的冷底融水面积减少,即所谓的“冷池”(Rohan et al. 2022)。冷池是构成白令海东部陆架生态系统动态的关键海洋学特征(Mueter and Litzow 2008; Stabeno et al. 2012),包括在冷池范围较小的年份,白令海东南部陆架上NPRW的主要猎物——花状桡足类动物较少(Kimmel et al. 2018)。白令陆架上露脊鲸猎物分布的北移与冷池收缩和陆架水域变暖有关(Kimmel等人,2018,2023),这些变化也在浮游动物群落建模工作中得到了复制(Wright等人,2023)。2018年在白令海北部发现露脊鲸的同时,白令海东部出现了有记录以来最严重的冷池(Stabeno和Bell 2019)。同样,2019年和2021年再次形成了减少的冷池(2020年没有原位采样;Rohan et al. 2022),表明夏季冷池范围持续有限。因此,尽管2022年冷池范围更大(Rohan et al. 2022)
{"title":"Recent Acoustic Detection of Eubalaena japonica South of the Bering Strait","authors":"Dana L. Wright,&nbsp;Eric Braen,&nbsp;Jessica Crance,&nbsp;Catherine Berchok","doi":"10.1111/mms.70054","DOIUrl":"https://doi.org/10.1111/mms.70054","url":null,"abstract":"&lt;p&gt;The North Pacific right whale (NPRW; &lt;i&gt;Eubalaena japonica&lt;/i&gt;) is one of the most endangered whale species (Brownell et al. &lt;span&gt;2001&lt;/span&gt;; Young et al. &lt;span&gt;2024&lt;/span&gt;). It comprises genetically distinct western and eastern populations (Pastene et al. &lt;span&gt;2022&lt;/span&gt;), both of which were decimated by legal and illegal whaling in the 19th and 20th centuries (Ivashchenko and Clapham &lt;span&gt;2012&lt;/span&gt;, Ivaschchenko, Clapham and Brownell &lt;span&gt;2017&lt;/span&gt;, Shelden et al. &lt;span&gt;2005&lt;/span&gt;). Today, the endangered western population is believed to number in the hundreds (Pastene et al. &lt;span&gt;2022&lt;/span&gt;), while the Critically Endangered eastern population numbers less than 50 (Cooke and Clapham &lt;span&gt;2018&lt;/span&gt;; Wade et al. &lt;span&gt;2011&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;Mid-19th century whaling records indicate that at that time, NPRWs ranged northward to the Bering Strait (Smith et al. &lt;span&gt;2012&lt;/span&gt;). However, some uncertainty remains as to whether some of the northern records were actually bowhead whales (&lt;i&gt;Balaena mysticetus&lt;/i&gt;), as these two species were not consistently distinguished from one another at the onset of American commercial whaling in this area (Smith et al. &lt;span&gt;2012&lt;/span&gt;). For the past three decades, the remnant eastern population has occurred predominantly in the southeastern Bering Sea (Shelden et al. &lt;span&gt;2005&lt;/span&gt;; Zerbini et al. &lt;span&gt;2015&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;Recently, both visual observations and acoustic detections have confirmed the presence of right whales in the northern Bering Sea. Notably, a known male right whale was observed feeding approximately 15 km south of St. Lawrence Island on 26 July 2018, and was resighted feeding off the Chukotka Peninsula 3 weeks later (Crance and Kennedy &lt;span&gt;2024&lt;/span&gt;; Filatova et al. &lt;span&gt;2019&lt;/span&gt;; Figure 1). Until the publication of this Note, the northernmost acoustic record of a right whale came from a moored acoustic recorder located 185 km south of St. Lawrence Island in 2016 (Figure 1), with calling detected from 27 July through the end of recording on 25 September (Wright et al. &lt;span&gt;2019&lt;/span&gt;). These detections included gunshot calls, defined as brief (&lt; 0.2 s), broadband signals that can be produced in bouts for periods ranging from 30 min to several hours (Crance et al. &lt;span&gt;2017&lt;/span&gt;, &lt;span&gt;2019&lt;/span&gt;; Rone et al. &lt;span&gt;2012&lt;/span&gt;) as well as bouts of right whale upcalls, which are defined as ~1 s 80–160 Hz frequency sweeps that occur in irregular spacing and are the presumed contact call of all three right whale species (McDonald and Moore &lt;span&gt;2002&lt;/span&gt;, Munger et al. &lt;span&gt;2008&lt;/span&gt;, Parks &lt;span&gt;2022&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;Since 2012, the NOAA Alaska Fisheries Science Center Marine Mammal Laboratory (AFSC-MML) has maintained a network of subsurface moorings with passive acoustic recorders in the US Arctic waters. The northernmost Bering Sea mooring—NM01—has been stationed 107 km south of the Bering Strait (Figure 1, Table 1). All acoustic data from the NM01 reco","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145522215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vertebral Morphology in Dolphins (Delphinidae): A 3D Approach 海豚(飞燕科)椎体形态学:三维方法
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-07-22 DOI: 10.1111/mms.70053
María Constanza Marchesi

This is the first 3D geometric morphometric study of vertebral morphology in such a large and diverse group of dolphins (24 species). The aim was to describe and compare vertebral shape within Delphinidae, and assess its relationship with the biomechanical demands of each species. Phylomorphospaces were used to visualize shape variation among closely related species with different habitats. Associations between vertebral shape and size, habitat, diving depth, and vertebral count were explored following dimensionality reduction. The torso and tailstock exhibited the greatest morphological variations. Shape variation was significantly associated with size, habitat, and vertebral count in specific regions, depending on the factor. The estimated ancestral shape suggests an oceanic habitat. Coastal and riverine taxa showed reduced vertebral count and shapes associated with greater flexibility, supporting the idea that these traits may have evolved secondarily within Delphinidae. The greatest modifications were observed for deep-diving and extremely fast-swimming species. Overall, these results support the hypothesis that diversification in vertebral morphology, linked to ecological specialization, may have contributed to the explosive radiation of delphinids. This work also provides a morphological baseline for future studies exploring phylogenetic constraints in delphinid evolution.

这是第一次在如此庞大和多样化的海豚群体(24个物种)中对脊椎形态进行三维几何形态计量学研究。目的是描述和比较在飞燕科椎体形状,并评估其与生物力学需求的每个物种的关系。形态学空间用于观察不同生境下亲缘关系密切的物种之间的形状变化。在降维之后,探讨了椎体形状和大小、栖息地、潜水深度和椎体计数之间的关系。躯干和尾部表现出最大的形态变化。形状变化与特定区域的大小、栖息地和椎体计数显著相关,这取决于因素。估计的祖先形状表明海洋栖息地。沿海和河流分类群显示出更少的脊椎数量和更大的灵活性相关的形状,支持了这些特征可能是在海豚科中次要进化的观点。在深潜和游泳速度极快的物种中观察到最大的变化。总的来说,这些结果支持了一种假设,即与生态专门化有关的椎体形态多样化可能导致了海豚的爆炸性辐射。这项工作也为今后探索海豚进化的系统发育限制提供了形态学基础。
{"title":"Vertebral Morphology in Dolphins (Delphinidae): A 3D Approach","authors":"María Constanza Marchesi","doi":"10.1111/mms.70053","DOIUrl":"https://doi.org/10.1111/mms.70053","url":null,"abstract":"<div>\u0000 \u0000 <p>This is the first 3D geometric morphometric study of vertebral morphology in such a large and diverse group of dolphins (24 species). The aim was to describe and compare vertebral shape within Delphinidae, and assess its relationship with the biomechanical demands of each species. Phylomorphospaces were used to visualize shape variation among closely related species with different habitats. Associations between vertebral shape and size, habitat, diving depth, and vertebral count were explored following dimensionality reduction. The torso and tailstock exhibited the greatest morphological variations. Shape variation was significantly associated with size, habitat, and vertebral count in specific regions, depending on the factor. The estimated ancestral shape suggests an oceanic habitat. Coastal and riverine taxa showed reduced vertebral count and shapes associated with greater flexibility, supporting the idea that these traits may have evolved secondarily within Delphinidae. The greatest modifications were observed for deep-diving and extremely fast-swimming species. Overall, these results support the hypothesis that diversification in vertebral morphology, linked to ecological specialization, may have contributed to the explosive radiation of delphinids. This work also provides a morphological baseline for future studies exploring phylogenetic constraints in delphinid evolution.</p>\u0000 </div>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145522370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Summer Diet of Humpback Whales in the Northern Strait of Georgia, British Columbia (Canada), Revealed by Stable Isotope Analysis 加拿大不列颠哥伦比亚省乔治亚北海峡座头鲸夏季饮食的稳定同位素分析
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-07-22 DOI: 10.1111/mms.70050
Joan M. Moreaux, Brian P. V. Hunt, Christie J. McMillan, Valentina Melica, Villy Christensen, Sheila J. Thornton

North Pacific humpback whales (Megaptera novaeangliae) have recovered rapidly following their depletion by commercial whaling. Diet studies are necessary to assess food web implications of their recovery. This study investigates the diet composition of humpback whales foraging in the northern Strait of Georgia, British Columbia, Canada, an area experiencing a recent return of humpback whales. Humpback whale skin samples (n = 108), juvenile herring (n = 202), adult herring (n = 23), euphausiids (n = 63), and amphipods (n = 6) were collected in the summer months of 2022 and 2023 and analyzed for carbon (δ13C) and nitrogen (δ15N) stable isotopes. Applying these isotope data, the Bayesian mixing model MixSIAR was used to estimate the contribution of each prey type to humpback whale diet. We found that, during the summer months, humpback whales primarily consumed euphausiids (85.3%, range: 76.4%–94.0%) and juvenile herring (10.2%, range: 0.8%–21.0%), with minimal contributions from adult herring and amphipods. Diet composition was consistent across months and years. These findings provide critical insights into humpback whale foraging ecology, informing conservation efforts for both predator and prey species in the region.

北太平洋座头鲸(Megaptera novaeangliae)在商业捕鲸耗尽后迅速恢复。饮食研究对于评估其恢复对食物网的影响是必要的。本研究调查了在加拿大不列颠哥伦比亚省乔治亚海峡北部觅食的座头鲸的饮食组成,该地区最近经历了座头鲸的回归。在2022年和2023年夏季收集了座头鲸(n = 108)、青鱼(n = 202)、青鱼(n = 23)、青鱼(n = 63)和片脚类(n = 6)的皮肤样本,分析了碳(δ13C)和氮(δ15N)的稳定同位素。利用这些同位素数据,使用贝叶斯混合模型MixSIAR来估计每个猎物类型对座头鲸饮食的贡献。我们发现,在夏季,座头鲸主要食用青鱼(85.3%,范围:76.4% ~ 94.0%)和青鱼幼鱼(10.2%,范围:0.8% ~ 21.0%),成年青鱼和片脚类的贡献很小。饮食组成在几个月和几年里是一致的。这些发现为座头鲸的觅食生态提供了重要的见解,为该地区的捕食者和猎物物种的保护工作提供了信息。
{"title":"Summer Diet of Humpback Whales in the Northern Strait of Georgia, British Columbia (Canada), Revealed by Stable Isotope Analysis","authors":"Joan M. Moreaux,&nbsp;Brian P. V. Hunt,&nbsp;Christie J. McMillan,&nbsp;Valentina Melica,&nbsp;Villy Christensen,&nbsp;Sheila J. Thornton","doi":"10.1111/mms.70050","DOIUrl":"https://doi.org/10.1111/mms.70050","url":null,"abstract":"<p>North Pacific humpback whales (<i>Megaptera novaeangliae</i>) have recovered rapidly following their depletion by commercial whaling. Diet studies are necessary to assess food web implications of their recovery. This study investigates the diet composition of humpback whales foraging in the northern Strait of Georgia, British Columbia, Canada, an area experiencing a recent return of humpback whales. Humpback whale skin samples (<i>n</i> = 108), juvenile herring (<i>n</i> = 202), adult herring (<i>n</i> = 23), euphausiids (<i>n</i> = 63), and amphipods (<i>n</i> = 6) were collected in the summer months of 2022 and 2023 and analyzed for carbon (δ<sup>13</sup>C) and nitrogen (δ<sup>15</sup>N) stable isotopes. Applying these isotope data, the Bayesian mixing model MixSIAR was used to estimate the contribution of each prey type to humpback whale diet. We found that, during the summer months, humpback whales primarily consumed euphausiids (85.3%, range: 76.4%–94.0%) and juvenile herring (10.2%, range: 0.8%–21.0%), with minimal contributions from adult herring and amphipods. Diet composition was consistent across months and years. These findings provide critical insights into humpback whale foraging ecology, informing conservation efforts for both predator and prey species in the region.</p>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"42 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145522369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence for a Decrease in Vocalizations During Bubble Burst Production in Atlantic Bottlenose Dolphins (Tursiops truncatus) 大西洋宽吻海豚(Tursiops truncatus)泡沫破裂时发声减少的证据
IF 1.9 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Pub Date : 2025-07-19 DOI: 10.1111/mms.70049
Emma C. Miller, Christianna D. Royse, Christine R. Harris, Christine M. Johnson

In Atlantic bottlenose dolphins, prior work has suggested that whistle vocalizations often have been observed to co-occur with one bubble type, the bubble stream. However, vocal correlates have not been identified for another type of bubble, the bubble burst. While watching research session recordings, we serendipitously observed an absence of dolphin vocalization during bubble bursts. We formally investigated this in two studies by examining bubble bursts produced by 11 dolphins participating in various tasks with an exploratory study (n = 553) and a preregistered, confirmatory study (n = 150). In both studies, we compare the amplitude during the production of the bubble burst to the 2 s prior to its production, and the presence/absence of different vocal types. Amplitude during the bubble burst was significantly quieter than the 2 s prior, and there were significant reductions in all vocal types, especially among whistles and burst-pulses, in both studies. Physiological evidence supports this phenomenon, since dolphin vocal production depends on pneumatic pressure in the nasal system, which may be relieved when the bubble burst is produced. However, testing in acoustically isolated conditions is necessary to confirm our observations. Aspects of the bubble burst itself, and its vocal suppression, may serve communicative purposes in dolphins.

在大西洋宽吻海豚中,先前的研究表明,哨声经常被观察到与一种气泡类型(气泡流)同时发生。然而,另一种类型的泡沫,即泡沫破裂,其声音相关性尚未被确定。在观看研究录音时,我们偶然发现海豚在泡泡破裂时没有发声。我们在两项研究中正式调查了这一点,通过检查11只海豚参与各种任务产生的气泡破裂,其中一项是探索性研究(n = 553),另一项是预登记的验证性研究(n = 150)。在这两项研究中,我们比较了气泡产生过程中的振幅与气泡产生前的2秒,以及不同声音类型的存在/缺失。气泡破裂时的振幅明显比之前的2秒更安静,在两项研究中,所有声音类型,特别是口哨声和脉冲声,都有明显的减少。生理证据支持这一现象,因为海豚的发声依赖于鼻腔系统的气压,当气泡破裂时,气压可能会减轻。然而,在声学隔离条件下进行测试是必要的,以证实我们的观察结果。泡泡本身破裂的某些方面,以及它对声音的抑制,可能有助于海豚的交流目的。
{"title":"Evidence for a Decrease in Vocalizations During Bubble Burst Production in Atlantic Bottlenose Dolphins (Tursiops truncatus)","authors":"Emma C. Miller,&nbsp;Christianna D. Royse,&nbsp;Christine R. Harris,&nbsp;Christine M. Johnson","doi":"10.1111/mms.70049","DOIUrl":"https://doi.org/10.1111/mms.70049","url":null,"abstract":"<p>In Atlantic bottlenose dolphins, prior work has suggested that whistle vocalizations often have been observed to co-occur with one bubble type, the bubble stream. However, vocal correlates have not been identified for another type of bubble, the bubble burst. While watching research session recordings, we serendipitously observed an absence of dolphin vocalization during bubble bursts. We formally investigated this in two studies by examining bubble bursts produced by 11 dolphins participating in various tasks with an exploratory study (<i>n</i> = 553) and a preregistered, confirmatory study (<i>n</i> = 150). In both studies, we compare the amplitude during the production of the bubble burst to the 2 s prior to its production, and the presence/absence of different vocal types. Amplitude during the bubble burst was significantly quieter than the 2 s prior, and there were significant reductions in all vocal types, especially among whistles and burst-pulses, in both studies. Physiological evidence supports this phenomenon, since dolphin vocal production depends on pneumatic pressure in the nasal system, which may be relieved when the bubble burst is produced. However, testing in acoustically isolated conditions is necessary to confirm our observations. Aspects of the bubble burst itself, and its vocal suppression, may serve communicative purposes in dolphins.</p>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"41 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.70049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145297212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Marine Mammal Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1