首页 > 最新文献

Molecular plant pathology最新文献

英文 中文
Correction to 'Identification of differentially expressed genes in a resistant versus a susceptible blueberry cultivar after infection by Colletotrichum acutatum'. 对 "抗性与易感性蓝莓栽培品种在受到Colletotrichum acutatum感染后差异表达基因的鉴定 "的更正。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 DOI: 10.1111/mpp.13495
{"title":"Correction to 'Identification of differentially expressed genes in a resistant versus a susceptible blueberry cultivar after infection by Colletotrichum acutatum'.","authors":"","doi":"10.1111/mpp.13495","DOIUrl":"10.1111/mpp.13495","url":null,"abstract":"","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13495"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel MAP kinase-interacting protein MoSmi1 regulates development and pathogenicity in Magnaporthe oryzae. 一种新的与 MAP 激酶相互作用的蛋白 MoSmi1 可调控木格氏真菌的发育和致病性。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 DOI: 10.1111/mpp.13493
Yu Wang, Xinyue Cui, Junlian Xiao, Xiaoru Kang, Jinmei Hu, Zhicheng Huang, Na Li, Chuyu Yang, Yuemin Pan, Shulin Zhang

The cell wall is the first barrier against external adversity and plays roles in maintaining normal physiological functions of fungi. Previously, we reported a nucleosome assembly protein, MoNap1, in Magnaporthe oryzae that plays a role in cell wall integrity (CWI), stress response, and pathogenicity. Moreover, MoNap1 negatively regulates the expression of MoSMI1 encoded by MGG_03970. Here, we demonstrated that deletion of MoSMI1 resulted in a significant defect in appressorium function, CWI, cell morphology, and pathogenicity. Further investigation revealed that MoSmi1 interacted with MoOsm1 and MoMps1 and affected the phosphorylation levels of MoOsm1, MoMps1, and MoPmk1, suggesting that MoSmi1 regulates biological functions by mediating mitogen-activated protein kinase (MAPK) signalling pathway in M. oryzae. In addition, transcriptome data revealed that MoSmi1 regulates many infection-related processes in M. oryzae, such as membrane-related pathway and oxidation reduction process. In conclusion, our study demonstrated that MoSmi1 regulates CWI by mediating the MAPK pathway to affect development and pathogenicity of M. oryzae.

细胞壁是抵御外部逆境的第一道屏障,在维持真菌正常生理功能方面发挥作用。此前,我们报道了一种核糖体组装蛋白--MoNap1,它在木格氏真菌的细胞壁完整性(CWI)、应激反应和致病性中发挥作用。此外,MoNap1 负向调节由 MGG_03970 编码的 MoSMI1 的表达。在这里,我们证明了缺失 MoSMI1 会导致贴壁功能、CWI、细胞形态和致病性的显著缺陷。进一步研究发现,MoSmi1与MoOsm1和MoMps1相互作用,并影响MoOsm1、MoMps1和MoPmk1的磷酸化水平,表明MoSmi1通过介导有丝分裂原激活蛋白激酶(MAPK)信号通路调控M.此外,转录组数据显示,MoSmi1 还调控着许多与 M. oryzae 感染相关的过程,如膜相关途径和氧化还原过程。总之,我们的研究表明,MoSmi1 通过介导 MAPK 通路来调控 CWI,从而影响 M. oryzae 的发育和致病性。
{"title":"A novel MAP kinase-interacting protein MoSmi1 regulates development and pathogenicity in Magnaporthe oryzae.","authors":"Yu Wang, Xinyue Cui, Junlian Xiao, Xiaoru Kang, Jinmei Hu, Zhicheng Huang, Na Li, Chuyu Yang, Yuemin Pan, Shulin Zhang","doi":"10.1111/mpp.13493","DOIUrl":"10.1111/mpp.13493","url":null,"abstract":"<p><p>The cell wall is the first barrier against external adversity and plays roles in maintaining normal physiological functions of fungi. Previously, we reported a nucleosome assembly protein, MoNap1, in Magnaporthe oryzae that plays a role in cell wall integrity (CWI), stress response, and pathogenicity. Moreover, MoNap1 negatively regulates the expression of MoSMI1 encoded by MGG_03970. Here, we demonstrated that deletion of MoSMI1 resulted in a significant defect in appressorium function, CWI, cell morphology, and pathogenicity. Further investigation revealed that MoSmi1 interacted with MoOsm1 and MoMps1 and affected the phosphorylation levels of MoOsm1, MoMps1, and MoPmk1, suggesting that MoSmi1 regulates biological functions by mediating mitogen-activated protein kinase (MAPK) signalling pathway in M. oryzae. In addition, transcriptome data revealed that MoSmi1 regulates many infection-related processes in M. oryzae, such as membrane-related pathway and oxidation reduction process. In conclusion, our study demonstrated that MoSmi1 regulates CWI by mediating the MAPK pathway to affect development and pathogenicity of M. oryzae.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13493"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting symptom severity in PSTVd-infected tomato plants using the PSTVd genome sequence. 利用 PSTVd 基因组序列预测受 PSTVd 感染的番茄植株的症状严重程度。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 DOI: 10.1111/mpp.13469
Jianqiang Sun, Yosuke Matsushita

Viroids, one of the smallest known infectious agents, induce symptoms of varying severity, ranging from latent to severe, based on the combination of viroid isolates and host plant species. Because viroids are transmissible between plant species, asymptomatic viroid-infected plants may serve as latent sources of infection for other species that could exhibit severe symptoms, occasionally leading to agricultural and economic losses. Therefore, predicting the symptoms induced by viroids in host plants without biological experiments could remarkably enhance control measures against viroid damage. Here, we developed an algorithm using unsupervised machine learning to predict the severity of disease symptoms caused by viroids (e.g., potato spindle tuber viroid; PSTVd) in host plants (e.g., tomato). This algorithm, mimicking the RNA silencing mechanism thought to be linked to viroid pathogenicity, requires only the genome sequences of the viroids and host plants. It involves three steps: alignment of synthetic short sequences of the viroids to the host plant genome, calculation of the alignment coverage, and clustering of the viroids based on coverage using UMAP and DBSCAN. Validation through inoculation experiments confirmed the effectiveness of the algorithm in predicting the severity of disease symptoms induced by viroids. As the algorithm only requires the genome sequence data, it may be applied to any viroid and plant combination. These findings underscore a correlation between viroid pathogenicity and the genome sequences of viroid isolates and host plants, potentially aiding in the prevention of viroid outbreaks and the breeding of viroid-resistant crops.

病毒病是已知的最小传染源之一,根据病毒病分离株和寄主植物种类的组合,可引起不同严重程度的症状,从潜伏到严重不等。由于病毒病可在植物物种间传播,无症状的病毒感染植物可能成为其他物种的潜伏传染源,从而表现出严重症状,有时会导致农业和经济损失。因此,在不进行生物实验的情况下预测病毒病在寄主植物中诱发的症状,可以大大加强病毒病危害的控制措施。在此,我们利用无监督机器学习开发了一种算法,用于预测寄主植物(如番茄)中由病毒病(如马铃薯纺锤形块茎病毒;PSTVd)引起的疾病症状的严重程度。该算法模仿被认为与病毒致病性有关的 RNA 沉默机制,只需要病毒和宿主植物的基因组序列。它包括三个步骤:将病毒体的合成短序列与宿主植物基因组进行比对、计算比对覆盖率,以及使用 UMAP 和 DBSCAN 根据覆盖率对病毒体进行聚类。通过接种实验验证了该算法在预测病毒引起的病害症状严重程度方面的有效性。由于该算法只需要基因组序列数据,因此可以应用于任何病毒和植物的组合。这些发现强调了拟病毒致病性与拟病毒分离株和寄主植物基因组序列之间的相关性,可能有助于预防拟病毒爆发和培育抗拟病毒作物。
{"title":"Predicting symptom severity in PSTVd-infected tomato plants using the PSTVd genome sequence.","authors":"Jianqiang Sun, Yosuke Matsushita","doi":"10.1111/mpp.13469","DOIUrl":"10.1111/mpp.13469","url":null,"abstract":"<p><p>Viroids, one of the smallest known infectious agents, induce symptoms of varying severity, ranging from latent to severe, based on the combination of viroid isolates and host plant species. Because viroids are transmissible between plant species, asymptomatic viroid-infected plants may serve as latent sources of infection for other species that could exhibit severe symptoms, occasionally leading to agricultural and economic losses. Therefore, predicting the symptoms induced by viroids in host plants without biological experiments could remarkably enhance control measures against viroid damage. Here, we developed an algorithm using unsupervised machine learning to predict the severity of disease symptoms caused by viroids (e.g., potato spindle tuber viroid; PSTVd) in host plants (e.g., tomato). This algorithm, mimicking the RNA silencing mechanism thought to be linked to viroid pathogenicity, requires only the genome sequences of the viroids and host plants. It involves three steps: alignment of synthetic short sequences of the viroids to the host plant genome, calculation of the alignment coverage, and clustering of the viroids based on coverage using UMAP and DBSCAN. Validation through inoculation experiments confirmed the effectiveness of the algorithm in predicting the severity of disease symptoms induced by viroids. As the algorithm only requires the genome sequence data, it may be applied to any viroid and plant combination. These findings underscore a correlation between viroid pathogenicity and the genome sequences of viroid isolates and host plants, potentially aiding in the prevention of viroid outbreaks and the breeding of viroid-resistant crops.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13469"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The root-knot nematode effector MiEFF12 targets the host ER quality control system to suppress immune responses and allow parasitism. 根结线虫效应子MiEFF12以宿主ER质量控制系统为靶标,抑制免疫反应,实现寄生。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 DOI: 10.1111/mpp.13491
Salomé Soulé, Kaiwei Huang, Karine Mulet, Joffrey Mejias, Jérémie Bazin, Nhat My Truong, Junior Lusu Kika, Stéphanie Jaubert, Pierre Abad, Jianlong Zhao, Bruno Favery, Michaël Quentin

Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.

根结线虫(RKNs)是一种微小的寄生蠕虫,能够侵染数千种植物的根部,造成全球农作物的大量减产。它们躲避植物的免疫系统,操纵植物细胞的生理机能和新陈代谢,将少数根细胞转化为巨细胞,作为线虫的取食场所。RKN 通过在植物体内分泌效应分子(主要是劫持宿主细胞过程的蛋白质)来促进寄生。我们在此描述了一种保守的 RKN 特异性效应分子--效应分子 12(EFF12),它只在线虫的食道腺中合成,我们还证明了它在寄生中的功能。在植物体内,MiEFF12 定位于内质网(ER)。RNA 序列分析和免疫抑制生物测定相结合,揭示了 MiEFF12 对宿主免疫调节的贡献。酵母双杂交、分离荧光素酶和共免疫沉淀等方法确定了ER质量控制系统的一个重要组成部分--茄属植物bap-like(PBL)和碱性亮氨酸拉链60(BZIP60)蛋白是MiEFF12的宿主靶标。最后,在烟草中沉默 PBL 基因会降低对 Meloidogyne incognita 感染的易感性。我们的研究结果表明,EFF12操纵了PBL功能,从而改变了植物的免疫反应,使其能够寄生。
{"title":"The root-knot nematode effector MiEFF12 targets the host ER quality control system to suppress immune responses and allow parasitism.","authors":"Salomé Soulé, Kaiwei Huang, Karine Mulet, Joffrey Mejias, Jérémie Bazin, Nhat My Truong, Junior Lusu Kika, Stéphanie Jaubert, Pierre Abad, Jianlong Zhao, Bruno Favery, Michaël Quentin","doi":"10.1111/mpp.13491","DOIUrl":"10.1111/mpp.13491","url":null,"abstract":"<p><p>Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13491"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The trichothecene mycotoxin deoxynivalenol facilitates cell-to-cell invasion during wheat-tissue colonization by Fusarium graminearum. 单端孢霉烯霉菌毒素脱氧雪腐镰刀菌醇(deoxynivalenol)在禾谷镰刀菌的小麦组织定殖过程中促进了细胞间的侵染。
IF 4.9 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-06-01 DOI: 10.1111/mpp.13485
Victoria J Armer, Martin Urban, Tom Ashfield, Michael J Deeks, Kim E Hammond-Kosack

Fusarium head blight disease on small-grain cereals is primarily caused by the ascomycete fungal pathogen Fusarium graminearum. Infection of floral spike tissues is characterized by the biosynthesis and secretion of potent trichothecene mycotoxins, of which deoxynivalenol (DON) is widely reported due to its negative impacts on grain quality and consumer safety. The TRI5 gene encodes an essential enzyme in the DON biosynthesis pathway and the single gene deletion mutant, ΔTri5, is widely reported to restrict disease progression to the inoculated spikelet. In this study, we present novel bioimaging evidence revealing that DON facilitates the traversal of the cell wall through plasmodesmata, a process essential for successful colonization of host tissue. Chemical complementation of ΔTri5 did not restore macro- or microscopic phenotypes, indicating that DON secretion is tightly regulated both spatially and temporally. A comparative qualitative and quantitative morphological cellular analysis revealed infections had no impact on plant cell wall thickness. Immunolabelling of callose at plasmodesmata during infection indicates that DON can increase deposits when applied exogenously but is reduced when F. graminearum hyphae are present. This study highlights the complexity of the interconnected roles of mycotoxin production, cell wall architecture and plasmodesmata in this highly specialized interaction.

小粒谷物上的镰刀菌头枯病主要由子囊真菌病原体禾谷镰刀菌(Fusarium graminearum)引起。感染花穗组织的特征是生物合成和分泌强效单端孢霉烯霉菌毒素,其中脱氧雪腐镰刀菌烯醇(DON)因其对谷物质量和消费者安全的负面影响而被广泛报道。TRI5 基因编码 DON 生物合成途径中的一个重要酶,单基因缺失突变体 ΔTri5 被广泛报道可限制病害向接种小穗的发展。在本研究中,我们提出了新的生物成像证据,揭示了 DON 有助于通过质膜穿越细胞壁,这是成功定殖宿主组织所必需的过程。ΔTri5的化学互补不能恢复宏观或微观表型,这表明DON的分泌在空间和时间上都受到严格调控。细胞形态定性和定量比较分析表明,感染对植物细胞壁厚度没有影响。感染期间质膜上胼胝质的免疫标记表明,外源施加 DON 会增加沉积物,但当禾谷镰孢菌丝存在时,沉积物会减少。这项研究强调了霉菌毒素生产、细胞壁结构和质粒在这种高度专业化的相互作用中相互关联的复杂作用。
{"title":"The trichothecene mycotoxin deoxynivalenol facilitates cell-to-cell invasion during wheat-tissue colonization by Fusarium graminearum.","authors":"Victoria J Armer, Martin Urban, Tom Ashfield, Michael J Deeks, Kim E Hammond-Kosack","doi":"10.1111/mpp.13485","DOIUrl":"10.1111/mpp.13485","url":null,"abstract":"<p><p>Fusarium head blight disease on small-grain cereals is primarily caused by the ascomycete fungal pathogen Fusarium graminearum. Infection of floral spike tissues is characterized by the biosynthesis and secretion of potent trichothecene mycotoxins, of which deoxynivalenol (DON) is widely reported due to its negative impacts on grain quality and consumer safety. The TRI5 gene encodes an essential enzyme in the DON biosynthesis pathway and the single gene deletion mutant, ΔTri5, is widely reported to restrict disease progression to the inoculated spikelet. In this study, we present novel bioimaging evidence revealing that DON facilitates the traversal of the cell wall through plasmodesmata, a process essential for successful colonization of host tissue. Chemical complementation of ΔTri5 did not restore macro- or microscopic phenotypes, indicating that DON secretion is tightly regulated both spatially and temporally. A comparative qualitative and quantitative morphological cellular analysis revealed infections had no impact on plant cell wall thickness. Immunolabelling of callose at plasmodesmata during infection indicates that DON can increase deposits when applied exogenously but is reduced when F. graminearum hyphae are present. This study highlights the complexity of the interconnected roles of mycotoxin production, cell wall architecture and plasmodesmata in this highly specialized interaction.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 6","pages":"e13485"},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel xylanase from a myxobacterium triggers a plant immune response in Nicotiana benthamiana. 一种来自霉菌的新型木聚糖酶会引发烟草中的植物免疫反应。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-06-01 DOI: 10.1111/mpp.13488
Yuqiang Zhao, Kun Yang, Yanxin Wang, Xu Li, Chengyao Xia, Yan Huang, Zhoukun Li, Cancan Zhu, Zhongli Cui, Xianfeng Ye

Xylanases derived from fungi, including phytopathogenic and nonpathogenic fungi, are commonly known to trigger plant immune responses. However, there is limited research on the ability of bacterial-derived xylanases to trigger plant immunity. Here, a novel xylanase named CcXyn was identified from the myxobacterium Cystobacter sp. 0969, which displays broad-spectrum activity against both phytopathogenic fungi and bacteria. CcXyn belongs to the glycoside hydrolases (GH) 11 family and shares a sequence identity of approximately 32.0%-45.0% with fungal xylanases known to trigger plant immune responses. Treatment of Nicotiana benthamiana with purified CcXyn resulted in the induction of hypersensitive response (HR) and defence responses, such as the production of reactive oxygen species (ROS) and upregulation of defence gene expression, ultimately enhancing the resistance of N. benthamiana to Phytophthora nicotianae. These findings indicated that CcXyn functions as a microbe-associated molecular pattern (MAMP) elicitor for plant immune responses, independent of its enzymatic activity. Similar to fungal xylanases, CcXyn was recognized by the NbRXEGL1 receptor on the cell membrane of N. benthamiana. Downstream signalling was shown to be independent of the BAK1 and SOBIR1 co-receptors, indicating the involvement of other co-receptors in signal transduction following CcXyn recognition in N. benthamiana. Moreover, xylanases from other myxobacteria also demonstrated the capacity to trigger plant immune responses in N. benthamiana, indicating that xylanases in myxobacteria are ubiquitous in triggering plant immune functions. This study expands the understanding of xylanases with plant immune response-inducing properties and provides a theoretical basis for potential applications of myxobacteria in biocontrol strategies against phytopathogens.

众所周知,从真菌(包括植物病原真菌和非病原真菌)中提取的木聚糖酶可引发植物免疫反应。然而,有关细菌衍生的木聚糖酶触发植物免疫反应能力的研究却很有限。本文从囊胞杆菌(Cystobacter sp. 0969)中发现了一种名为 CcXyn 的新型木聚糖酶,它对植物病原真菌和细菌都具有广谱活性。CcXyn 属于糖苷水解酶(GH)11 家族,与已知会引发植物免疫反应的真菌木聚糖酶的序列相同度约为 32.0%-45.0%。用纯化的 CcXyn 处理烟草,可诱导超敏反应(HR)和防御反应,如产生活性氧(ROS)和上调防御基因的表达,最终增强烟草对烟草疫霉的抗性。这些研究结果表明,CcXyn 是一种微生物相关分子模式(MAMP)诱导剂,可引起植物免疫反应,与其酶活性无关。与真菌木聚糖酶类似,CcXyn 也能被 N. benthamiana 细胞膜上的 NbRXEGL1 受体识别。下游信号传导与 BAK1 和 SOBIR1 共受体无关,这表明在 N. benthamiana 中 CcXyn 被识别后,其他共受体参与了信号传导。此外,其他木霉菌中的木聚糖酶也有能力触发本根玉米中的植物免疫反应,这表明木霉菌中的木聚糖酶在触发植物免疫功能方面无所不在。这项研究拓展了人们对具有植物免疫反应诱导特性的木聚糖酶的认识,并为粘杆菌在针对植物病原体的生物防治策略中的潜在应用提供了理论基础。
{"title":"A novel xylanase from a myxobacterium triggers a plant immune response in Nicotiana benthamiana.","authors":"Yuqiang Zhao, Kun Yang, Yanxin Wang, Xu Li, Chengyao Xia, Yan Huang, Zhoukun Li, Cancan Zhu, Zhongli Cui, Xianfeng Ye","doi":"10.1111/mpp.13488","DOIUrl":"10.1111/mpp.13488","url":null,"abstract":"<p><p>Xylanases derived from fungi, including phytopathogenic and nonpathogenic fungi, are commonly known to trigger plant immune responses. However, there is limited research on the ability of bacterial-derived xylanases to trigger plant immunity. Here, a novel xylanase named CcXyn was identified from the myxobacterium Cystobacter sp. 0969, which displays broad-spectrum activity against both phytopathogenic fungi and bacteria. CcXyn belongs to the glycoside hydrolases (GH) 11 family and shares a sequence identity of approximately 32.0%-45.0% with fungal xylanases known to trigger plant immune responses. Treatment of Nicotiana benthamiana with purified CcXyn resulted in the induction of hypersensitive response (HR) and defence responses, such as the production of reactive oxygen species (ROS) and upregulation of defence gene expression, ultimately enhancing the resistance of N. benthamiana to Phytophthora nicotianae. These findings indicated that CcXyn functions as a microbe-associated molecular pattern (MAMP) elicitor for plant immune responses, independent of its enzymatic activity. Similar to fungal xylanases, CcXyn was recognized by the NbRXEGL1 receptor on the cell membrane of N. benthamiana. Downstream signalling was shown to be independent of the BAK1 and SOBIR1 co-receptors, indicating the involvement of other co-receptors in signal transduction following CcXyn recognition in N. benthamiana. Moreover, xylanases from other myxobacteria also demonstrated the capacity to trigger plant immune responses in N. benthamiana, indicating that xylanases in myxobacteria are ubiquitous in triggering plant immune functions. This study expands the understanding of xylanases with plant immune response-inducing properties and provides a theoretical basis for potential applications of myxobacteria in biocontrol strategies against phytopathogens.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 6","pages":"e13488"},"PeriodicalIF":4.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The F-box protein OsFBX156 positively regulates rice defence against the blast fungus Magnaporthe oryzae by mediating ubiquitination-dependent degradation of OsHSP71.1. F-box 蛋白 OsFBX156 通过介导 OsHSP71.1 的泛素依赖性降解,积极调控水稻对稻瘟病真菌 Magnaporthe oryzae 的防御能力。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-06-01 DOI: 10.1111/mpp.13459
Yudan Zhao, Xionghui Zhong, Guojuan Xu, Xiaoying Zhu, Yanlong Shi, Minghao Liu, Ruyi Wang, Houxiang Kang, Xiaoman You, Yuese Ning, Guo-Liang Wang, Xuli Wang

F-box protein is a subunit of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which plays a critical role in regulating different pathways in plant immunity. In this study, we identified the rice (Oryza sativa) F-box protein OsFBX156, which targets the heat shock protein 70 (OsHSP71.1) to regulate resistance to the rice blast fungus Magnaporthe oryzae. Overexpression of OsFBX156 or knockout of OsHSP71.1 in rice resulted in the elevation of pathogenesis-related (PR) genes and an induction burst of reactive oxygen species (ROS) after flg22 and chitin treatments, thereby enhancing resistance to M. oryzae. Furthermore, OsFBX156 can promote the degradation of OsHSP71.1 through the 26S proteasome pathway. This study sheds lights on a novel mechanism wherein the F-box protein OsFBX156 targets OsHSP71.1 for degradation to promote ROS production and PR gene expression, thereby positively regulating rice innate immunity.

F-box 蛋白是 SCF(SKP1-CUL1-F-box 蛋白)E3 泛素连接酶复合物的一个亚基,在调控植物免疫的不同途径中发挥着关键作用。在这项研究中,我们发现了水稻(Oryza sativa)的 F-box 蛋白 OsFBX156,它以热休克蛋白 70(OsHSP71.1)为靶标,调节对稻瘟病真菌 Magnaporthe oryzae 的抗性。在水稻中过表达 OsFBX156 或敲除 OsHSP71.1 会导致致病相关基因(PR)的升高,并在 flg22 和几丁质处理后诱导活性氧(ROS)的爆发,从而增强对 M. oryzae 的抗性。此外,OsFBX156 还能通过 26S 蛋白酶体途径促进 OsHSP71.1 的降解。本研究揭示了一种新的机制,即F-盒蛋白OsFBX156靶向降解OsHSP71.1,促进ROS产生和PR基因表达,从而积极调控水稻先天免疫。
{"title":"The F-box protein OsFBX156 positively regulates rice defence against the blast fungus Magnaporthe oryzae by mediating ubiquitination-dependent degradation of OsHSP71.1.","authors":"Yudan Zhao, Xionghui Zhong, Guojuan Xu, Xiaoying Zhu, Yanlong Shi, Minghao Liu, Ruyi Wang, Houxiang Kang, Xiaoman You, Yuese Ning, Guo-Liang Wang, Xuli Wang","doi":"10.1111/mpp.13459","DOIUrl":"10.1111/mpp.13459","url":null,"abstract":"<p><p>F-box protein is a subunit of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which plays a critical role in regulating different pathways in plant immunity. In this study, we identified the rice (Oryza sativa) F-box protein OsFBX156, which targets the heat shock protein 70 (OsHSP71.1) to regulate resistance to the rice blast fungus Magnaporthe oryzae. Overexpression of OsFBX156 or knockout of OsHSP71.1 in rice resulted in the elevation of pathogenesis-related (PR) genes and an induction burst of reactive oxygen species (ROS) after flg22 and chitin treatments, thereby enhancing resistance to M. oryzae. Furthermore, OsFBX156 can promote the degradation of OsHSP71.1 through the 26S proteasome pathway. This study sheds lights on a novel mechanism wherein the F-box protein OsFBX156 targets OsHSP71.1 for degradation to promote ROS production and PR gene expression, thereby positively regulating rice innate immunity.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 6","pages":"e13459"},"PeriodicalIF":4.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A MYB-related transcription factor regulates effector gene expression in an oomycete pathogen. 一种与 MYB 相关的转录因子调节一种卵菌病原体中效应基因的表达。
IF 4.9 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-06-01 DOI: 10.1111/mpp.13468
Hui Qian, Long Lin, Zhichao Zhang, Xinyi Gu, Danyu Shen, Zhiyuan Yin, Wenwu Ye, Daolong Dou, Yuanchao Wang

Phytophthora pathogens possess hundreds of effector genes that exhibit diverse expression patterns during infection, yet how the expression of effector genes is precisely regulated remains largely elusive. Previous studies have identified a few potential conserved transcription factor binding sites (TFBSs) in the promoters of Phytophthora effector genes. Here, we report a MYB-related protein, PsMyb37, in Phytophthora sojae, the major causal agent of root and stem rot in soybean. Yeast one-hybrid and electrophoretic mobility shift assays showed that PsMyb37 binds to the TACATGTA motif, the most prevalent TFBS in effector gene promoters. The knockout mutant of PsMyb37 exhibited significantly reduced virulence on soybean and was more sensitive to oxidative stress. Consistently, transcriptome analysis showed that numerous effector genes associated with suppressing plant immunity or scavenging reactive oxygen species were down-regulated in the PsMyb37 knockout mutant during infection compared to the wild-type P. sojae. Several promoters of effector genes were confirmed to drive the expression of luciferase in a reporter assay. These results demonstrate that a MYB-related transcription factor contributes to the expression of effector genes in P. sojae.

噬菌体病原体拥有数百个效应基因,这些基因在感染过程中表现出不同的表达模式,但效应基因的表达如何受到精确调控在很大程度上仍然是个谜。以前的研究发现了疫霉菌效应基因启动子中几个潜在的保守转录因子结合位点(TFBSs)。在此,我们报告了大豆根腐病和茎腐病主要病原 Phytophthora sojae 中的一种 MYB 相关蛋白 PsMyb37。酵母单杂交和电泳迁移实验表明,PsMyb37 与效应基因启动子中最常见的 TFBS--TACATGTA 基序结合。PsMyb37 基因敲除突变体对大豆的毒力明显降低,而且对氧化应激更敏感。转录组分析表明,与野生型 P. sojae 相比,PsMyb37 基因敲除突变体在感染期间下调了许多与抑制植物免疫或清除活性氧相关的效应基因。一些效应基因的启动子被证实能在报告实验中驱动荧光素酶的表达。这些结果表明,与 MYB 相关的转录因子促进了 P. sojae 中效应基因的表达。
{"title":"A MYB-related transcription factor regulates effector gene expression in an oomycete pathogen.","authors":"Hui Qian, Long Lin, Zhichao Zhang, Xinyi Gu, Danyu Shen, Zhiyuan Yin, Wenwu Ye, Daolong Dou, Yuanchao Wang","doi":"10.1111/mpp.13468","DOIUrl":"10.1111/mpp.13468","url":null,"abstract":"<p><p>Phytophthora pathogens possess hundreds of effector genes that exhibit diverse expression patterns during infection, yet how the expression of effector genes is precisely regulated remains largely elusive. Previous studies have identified a few potential conserved transcription factor binding sites (TFBSs) in the promoters of Phytophthora effector genes. Here, we report a MYB-related protein, PsMyb37, in Phytophthora sojae, the major causal agent of root and stem rot in soybean. Yeast one-hybrid and electrophoretic mobility shift assays showed that PsMyb37 binds to the TACATGTA motif, the most prevalent TFBS in effector gene promoters. The knockout mutant of PsMyb37 exhibited significantly reduced virulence on soybean and was more sensitive to oxidative stress. Consistently, transcriptome analysis showed that numerous effector genes associated with suppressing plant immunity or scavenging reactive oxygen species were down-regulated in the PsMyb37 knockout mutant during infection compared to the wild-type P. sojae. Several promoters of effector genes were confirmed to drive the expression of luciferase in a reporter assay. These results demonstrate that a MYB-related transcription factor contributes to the expression of effector genes in P. sojae.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 6","pages":"e13468"},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive substitutions at two amino acids of HCPro modify its functional properties to separately increase the virulence of a potyviral chimera. HCPro 两个氨基酸的适应性替代改变了其功能特性,从而分别提高了潜病毒嵌合体的毒力。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-06-01 DOI: 10.1111/mpp.13487
Hao Sun, Malgorzata Ciska, Mongia Makki, Francisco Tenllado, Tomás Canto

We had previously reported that a plum pox virus (PPV)-based chimera that had its P1-HCPro bi-cistron replaced by a modified one from potato virus Y (PVY) increased its virulence in some Nicotiana benthamiana plants, after mechanical passages. This correlated with the natural acquisition of amino acid substitutions in several proteins, including in HCPro at either position 352 (Ile→Thr) or 454 (Leu→Arg), or of mutations in non-coding regions. Thr in position 352 is not found among natural potyviruses, while Arg in 454 is a reversion to the native PVY HCPro amino acid. We show here that both mutations separately contributed to the increased virulence observed in the passaged chimeras that acquired them, and that Thr in position 352 is no intragenic suppressor to a Leu in position 454, because their combined effects were cumulative. We demonstrate that Arg in position 454 improved HCPro autocatalytic cleavage, while Thr in position 352 increased its accumulation and the silencing suppression of a reporter in agropatch assays. We assessed infection by four cloned chimera variants expressing HCPro with none of the two substitutions, one of them or both, in wild-type versus DCL2/4-silenced transgenic plants. We found that during infection, the transgenic context of altered small RNAs affected the accumulation of the four HCPro variants differently and hence, also infection virulence.

我们以前曾报道过,一种基于梅花痘病毒(PPV)的嵌合体,其 P1-HCPro 双组字体被马铃薯病毒 Y(PVY)的改良组字体所取代,经过机械传递后,它在一些烟草植物中的毒力增强了。这与几种蛋白质中氨基酸替代的自然获得有关,包括 HCPro 的 352 位(Ile→Thr)或 454 位(Leu→Arg),或非编码区的突变。352 位上的 Thr 在天然壶状病毒中并不存在,而 454 位上的 Arg 则是 PVY HCPro 的原生氨基酸。我们在此表明,这两个突变分别导致了获得这两个突变的传代嵌合体的毒力增强,而且 352 位的 Thr 对 454 位的 Leu 没有基因内抑制作用,因为它们的综合效应是累积性的。我们证明,454 位的 Arg 提高了 HCPro 的自催化裂解能力,而 352 位的 Thr 则增加了 HCPro 的积累,并抑制了农配试验中报告基因的沉默。我们评估了四种表达 HCPro 的克隆嵌合体变体在野生型与 DCL2/4 沉默的转基因植物中的感染情况。我们发现,在感染过程中,小 RNA 改变的转基因环境对四种 HCPro 变体的积累产生了不同的影响,因此也影响了感染的毒力。
{"title":"Adaptive substitutions at two amino acids of HCPro modify its functional properties to separately increase the virulence of a potyviral chimera.","authors":"Hao Sun, Malgorzata Ciska, Mongia Makki, Francisco Tenllado, Tomás Canto","doi":"10.1111/mpp.13487","DOIUrl":"10.1111/mpp.13487","url":null,"abstract":"<p><p>We had previously reported that a plum pox virus (PPV)-based chimera that had its P1-HCPro bi-cistron replaced by a modified one from potato virus Y (PVY) increased its virulence in some Nicotiana benthamiana plants, after mechanical passages. This correlated with the natural acquisition of amino acid substitutions in several proteins, including in HCPro at either position 352 (Ile→Thr) or 454 (Leu→Arg), or of mutations in non-coding regions. Thr in position 352 is not found among natural potyviruses, while Arg in 454 is a reversion to the native PVY HCPro amino acid. We show here that both mutations separately contributed to the increased virulence observed in the passaged chimeras that acquired them, and that Thr in position 352 is no intragenic suppressor to a Leu in position 454, because their combined effects were cumulative. We demonstrate that Arg in position 454 improved HCPro autocatalytic cleavage, while Thr in position 352 increased its accumulation and the silencing suppression of a reporter in agropatch assays. We assessed infection by four cloned chimera variants expressing HCPro with none of the two substitutions, one of them or both, in wild-type versus DCL2/4-silenced transgenic plants. We found that during infection, the transgenic context of altered small RNAs affected the accumulation of the four HCPro variants differently and hence, also infection virulence.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 6","pages":"e13487"},"PeriodicalIF":4.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178974/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positive roles of the Ca2+ sensors GbCML45 and GbCML50 in improving cotton Verticillium wilt resistance. Ca2+ 传感器 GbCML45 和 GbCML50 在提高棉花轮纹病抗性中的积极作用。
IF 4.9 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-06-01 DOI: 10.1111/mpp.13483
Feifei Yi, Yuzhe Li, Aosong Song, Xinying Shi, Shanci Hu, Shuang Wu, Lili Shao, Zongyan Chu, Kun Xu, Liangliang Li, Lam-Son Phan Tran, Weiqiang Li, Yingfan Cai

As a universal second messenger, cytosolic calcium (Ca2+) functions in multifaceted intracellular processes, including growth, development and responses to biotic/abiotic stresses in plant. The plant-specific Ca2+ sensors, calmodulin and calmodulin-like (CML) proteins, function as members of the second-messenger system to transfer Ca2+ signal into downstream responses. However, the functions of CMLs in the responses of cotton (Gossypium spp.) after Verticillium dahliae infection, which causes the serious vascular disease Verticillium wilt, remain elusive. Here, we discovered that the expression level of GbCML45 was promoted after V. dahliae infection in roots of cotton, suggesting its potential role in Verticillium wilt resistance. We found that knockdown of GbCML45 in cotton plants decreased resistance while overexpression of GbCML45 in Arabidopsis thaliana plants enhanced resistance to V. dahliae infection. Furthermore, there was physiological interaction between GbCML45 and its close homologue GbCML50 by using yeast two-hybrid and bimolecular fluorescence assays, and both proteins enhanced cotton resistance to V. dahliae infection in a Ca2+-dependent way in a knockdown study. Detailed investigations indicated that several defence-related pathways, including salicylic acid, ethylene, reactive oxygen species and nitric oxide signalling pathways, as well as accumulations of lignin and callose, are responsible for GbCML45- and GbCML50-modulated V. dahliae resistance in cotton. These results collectively indicated that GbCML45 and GbCML50 act as positive regulators to improve cotton Verticillium wilt resistance, providing potential targets for exploitation of improved Verticillium wilt-tolerant cotton cultivars by genetic engineering and molecular breeding.

作为一种通用的第二信使,细胞膜钙(Ca2+)在细胞内的多方面过程中发挥作用,包括植物的生长、发育和对生物/非生物胁迫的反应。植物特有的 Ca2+ 传感器、钙调素和类钙调素(CML)蛋白作为第二信使系统的成员,将 Ca2+ 信号转导到下游反应中。然而,CMLs 在棉花(Gossypium spp.)感染大丽轮枝菌(Verticillium dahliae)(大丽轮枝菌会引起严重的维管束病害)后的反应中的功能仍然难以捉摸。在这里,我们发现大丽轮枝菌感染棉花后,GbCML45 在棉花根部的表达水平会升高,这表明它在抗轮枝菌枯萎病中的潜在作用。我们发现,在棉花植株中敲除 GbCML45 会降低其抗性,而在拟南芥植株中过表达 GbCML45 则会增强其对大丽花病毒感染的抗性。此外,通过酵母双杂交和双分子荧光测定,GbCML45 与其近源同源物 GbCML50 之间存在生理相互作用,而且在基因敲除研究中,这两种蛋白都以 Ca2+ 依赖性方式增强了棉花对大丽花病毒感染的抗性。详细研究表明,几种防御相关途径,包括水杨酸、乙烯、活性氧和一氧化氮信号途径,以及木质素和胼胝质的积累,都是 GbCML45 和 GbCML50 调节棉花抗大丽花病毒性的原因。这些结果共同表明,GbCML45 和 GbCML50 是提高棉花轮纹枯萎病抗性的积极调节因子,为通过基因工程和分子育种改良耐轮纹枯萎病棉花品种提供了潜在的目标。
{"title":"Positive roles of the Ca<sup>2+</sup> sensors GbCML45 and GbCML50 in improving cotton Verticillium wilt resistance.","authors":"Feifei Yi, Yuzhe Li, Aosong Song, Xinying Shi, Shanci Hu, Shuang Wu, Lili Shao, Zongyan Chu, Kun Xu, Liangliang Li, Lam-Son Phan Tran, Weiqiang Li, Yingfan Cai","doi":"10.1111/mpp.13483","DOIUrl":"10.1111/mpp.13483","url":null,"abstract":"<p><p>As a universal second messenger, cytosolic calcium (Ca<sup>2+</sup>) functions in multifaceted intracellular processes, including growth, development and responses to biotic/abiotic stresses in plant. The plant-specific Ca<sup>2+</sup> sensors, calmodulin and calmodulin-like (CML) proteins, function as members of the second-messenger system to transfer Ca<sup>2+</sup> signal into downstream responses. However, the functions of CMLs in the responses of cotton (Gossypium spp.) after Verticillium dahliae infection, which causes the serious vascular disease Verticillium wilt, remain elusive. Here, we discovered that the expression level of GbCML45 was promoted after V. dahliae infection in roots of cotton, suggesting its potential role in Verticillium wilt resistance. We found that knockdown of GbCML45 in cotton plants decreased resistance while overexpression of GbCML45 in Arabidopsis thaliana plants enhanced resistance to V. dahliae infection. Furthermore, there was physiological interaction between GbCML45 and its close homologue GbCML50 by using yeast two-hybrid and bimolecular fluorescence assays, and both proteins enhanced cotton resistance to V. dahliae infection in a Ca<sup>2+</sup>-dependent way in a knockdown study. Detailed investigations indicated that several defence-related pathways, including salicylic acid, ethylene, reactive oxygen species and nitric oxide signalling pathways, as well as accumulations of lignin and callose, are responsible for GbCML45- and GbCML50-modulated V. dahliae resistance in cotton. These results collectively indicated that GbCML45 and GbCML50 act as positive regulators to improve cotton Verticillium wilt resistance, providing potential targets for exploitation of improved Verticillium wilt-tolerant cotton cultivars by genetic engineering and molecular breeding.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 6","pages":"e13483"},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular plant pathology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1