Pub Date : 2022-08-09DOI: 10.3390/polysaccharides3030032
T. West
This review examines the immobilization of A. pullulans cells for production of the fungal polysaccharide pullulan. Pullulan is a water-soluble gum that exists structurally as a glucan consisting primarily of maltotriose units, which has a variety of food, non-food and biomedical applications. Cells can be immobilized by carrier-binding or entrapment techniques. The number of studies utilizing carrier-binding as a method to immobilize A. pullulans cells appears to outnumber the investigations using cell entrapment. A variety of solid supports, including polyurethane foam, sponge, diatomaceous earth, ion-exchanger, zeolite and plastic composite, have been employed to immobilize pullulan-producing A. pullulans cells. The most effective solid support that was used to adsorb the fungal cells was polyurethane foam which produced polysaccharide after 18 cycles of use. To entrap pullulan-producing fungal cells, agents such as polyurethane foam, polyvinyl alcohol, calcium alginate, agar, agarose, carrageenan and chitosan were investigated. Polysaccharide production by cells entrapped in polyurethane foam, polyvinyl alcohol or calcium alginate was highest and the immobilized cells could be reutilized for several cycles. It was shown that the pullulan content of the polysaccharide synthesized by cells entrapped in calcium alginate beads was low, which limits the method’s usefulness for pullulan production. Further, many of the entrapped fungal cells synthesized polysaccharide with a low pullulan content. It was concluded that carrier-binding techniques may be more effective than entrapment techniques for A. pullulans cell immobilization, since carrier-binding is less likely to affect the pullulan content of the polysaccharide being synthesized.
{"title":"Production of the Polysaccharide Pullulan by Aureobasidium pullulans Cell Immobilization","authors":"T. West","doi":"10.3390/polysaccharides3030032","DOIUrl":"https://doi.org/10.3390/polysaccharides3030032","url":null,"abstract":"This review examines the immobilization of A. pullulans cells for production of the fungal polysaccharide pullulan. Pullulan is a water-soluble gum that exists structurally as a glucan consisting primarily of maltotriose units, which has a variety of food, non-food and biomedical applications. Cells can be immobilized by carrier-binding or entrapment techniques. The number of studies utilizing carrier-binding as a method to immobilize A. pullulans cells appears to outnumber the investigations using cell entrapment. A variety of solid supports, including polyurethane foam, sponge, diatomaceous earth, ion-exchanger, zeolite and plastic composite, have been employed to immobilize pullulan-producing A. pullulans cells. The most effective solid support that was used to adsorb the fungal cells was polyurethane foam which produced polysaccharide after 18 cycles of use. To entrap pullulan-producing fungal cells, agents such as polyurethane foam, polyvinyl alcohol, calcium alginate, agar, agarose, carrageenan and chitosan were investigated. Polysaccharide production by cells entrapped in polyurethane foam, polyvinyl alcohol or calcium alginate was highest and the immobilized cells could be reutilized for several cycles. It was shown that the pullulan content of the polysaccharide synthesized by cells entrapped in calcium alginate beads was low, which limits the method’s usefulness for pullulan production. Further, many of the entrapped fungal cells synthesized polysaccharide with a low pullulan content. It was concluded that carrier-binding techniques may be more effective than entrapment techniques for A. pullulans cell immobilization, since carrier-binding is less likely to affect the pullulan content of the polysaccharide being synthesized.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"1996 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82477568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-28DOI: 10.3390/polysaccharides3030031
S. Fränzle, Felix Blind
There is strong adsorption of metal ions and their complexes to chitin, which depends on both the oxidation and complexation states of many of the said elements (whereas others display chemical reactions detectable via electrochemical methods while being retained by chitin); thus, ad- and desorption at ambient water concentrations (often in the nMol/L range) are controlled by the presence and photochemical properties (concerning Eu and probably U and Ag) of mainly biogenic organic matter (both DOC and POC, and DON). With chitin forming the outer hull of mobile organisms (animals), this biopolymer is expected to take part in metal distribution in aquatic (limnetic and riverine) ecosystems. Having studied the attachment of many different elements to both crayfish and grafted (marine shrimp) chitin, with the highest accumulations observed in Bi, V, Ni, and LREEs, one should consider secondary biochemical transformations which take place at different water and sediment levels. After chitin had been embedded into sediment, methanogenesis (which requires Ni), Bi, and Sb biomethylations and photodesorption in the illuminated water column will occur if there are appropriate organics, causing the vertical separation of Eu from other REEs, at least during the daytime. Eutrophication will enhance both the production and especially the photooxidation rates of organics in water because phosphorylated sugars and lipids are formed quantitatively within min P, which enter water and undergo Eu-mediated photooxidation much more readily. Another biopolymer, gelatin, acts as an inert matrix-enhancing organic photooxidation product via Eu, producing chemical waves, indicating autocatalysis upon light impact. From the redox-related photodesorption of metal analytes from chitin, both sensors and devices for (light-assisted) electrochemical energy conversion are being developed by our workgroup. The electrochemical determination of adsorption thermodynamics on chitin is thus directly linked to its applications in environmental monitoring and technology.
{"title":"Reversible Metal Ion/Complex Binding to Chitin Controlled by Ligand, Redox, and Photochemical Reactions and Active Movement of Chitin on Aquatic Arthropods","authors":"S. Fränzle, Felix Blind","doi":"10.3390/polysaccharides3030031","DOIUrl":"https://doi.org/10.3390/polysaccharides3030031","url":null,"abstract":"There is strong adsorption of metal ions and their complexes to chitin, which depends on both the oxidation and complexation states of many of the said elements (whereas others display chemical reactions detectable via electrochemical methods while being retained by chitin); thus, ad- and desorption at ambient water concentrations (often in the nMol/L range) are controlled by the presence and photochemical properties (concerning Eu and probably U and Ag) of mainly biogenic organic matter (both DOC and POC, and DON). With chitin forming the outer hull of mobile organisms (animals), this biopolymer is expected to take part in metal distribution in aquatic (limnetic and riverine) ecosystems. Having studied the attachment of many different elements to both crayfish and grafted (marine shrimp) chitin, with the highest accumulations observed in Bi, V, Ni, and LREEs, one should consider secondary biochemical transformations which take place at different water and sediment levels. After chitin had been embedded into sediment, methanogenesis (which requires Ni), Bi, and Sb biomethylations and photodesorption in the illuminated water column will occur if there are appropriate organics, causing the vertical separation of Eu from other REEs, at least during the daytime. Eutrophication will enhance both the production and especially the photooxidation rates of organics in water because phosphorylated sugars and lipids are formed quantitatively within min P, which enter water and undergo Eu-mediated photooxidation much more readily. Another biopolymer, gelatin, acts as an inert matrix-enhancing organic photooxidation product via Eu, producing chemical waves, indicating autocatalysis upon light impact. From the redox-related photodesorption of metal analytes from chitin, both sensors and devices for (light-assisted) electrochemical energy conversion are being developed by our workgroup. The electrochemical determination of adsorption thermodynamics on chitin is thus directly linked to its applications in environmental monitoring and technology.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81762854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-08DOI: 10.3390/polysaccharides3030030
H. Ornaghi, E. F. Kerche, R. Neves, F. Monticeli, Lucas Dall Agnol
Polysaccharides are formed by a long chain of monosaccharides, with the main function of promoting energetic and structural reserves for plants and animals. They can be applied as a base of electrolytes, using ionic liquids (ILs) as a solvent base. The study of electrolytes is an emerging field, as they are applied as secondary batteries, fuel cells, solar cells, supercapacitors and chemical sensors. They operate stably under extreme conditions, maintaining their high thermal stability. Furthermore, their low cost and environmentally safe character, compared to conventional electrolytes, have attracted considerable attention in the scientific field. ILs are composed entirely of ions and could be potentially applied as solvents. As electrolytes, ILs are environmentally friendly, and their use in combination with polysaccharides leads to a synergic effect. In the present study, a systematic review was performed of all papers published from 2014 to 2022 regarding ILs and polysaccharides through a search of three databases. Due to the large number of results found, only papers about electrolytes were considered and the main findings described. This study allows for easy identification of the most relevant fields of study with respect to ILs and polysaccharides, as well as the main gaps to be explored in the literature.
{"title":"A Systematic Review of New Trends in Ionic Liquids Applied to Electrolytes on Polysaccharides","authors":"H. Ornaghi, E. F. Kerche, R. Neves, F. Monticeli, Lucas Dall Agnol","doi":"10.3390/polysaccharides3030030","DOIUrl":"https://doi.org/10.3390/polysaccharides3030030","url":null,"abstract":"Polysaccharides are formed by a long chain of monosaccharides, with the main function of promoting energetic and structural reserves for plants and animals. They can be applied as a base of electrolytes, using ionic liquids (ILs) as a solvent base. The study of electrolytes is an emerging field, as they are applied as secondary batteries, fuel cells, solar cells, supercapacitors and chemical sensors. They operate stably under extreme conditions, maintaining their high thermal stability. Furthermore, their low cost and environmentally safe character, compared to conventional electrolytes, have attracted considerable attention in the scientific field. ILs are composed entirely of ions and could be potentially applied as solvents. As electrolytes, ILs are environmentally friendly, and their use in combination with polysaccharides leads to a synergic effect. In the present study, a systematic review was performed of all papers published from 2014 to 2022 regarding ILs and polysaccharides through a search of three databases. Due to the large number of results found, only papers about electrolytes were considered and the main findings described. This study allows for easy identification of the most relevant fields of study with respect to ILs and polysaccharides, as well as the main gaps to be explored in the literature.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90872127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-27DOI: 10.3390/polysaccharides3030029
E. Díaz-Montes
Biodegradable films emerge as alternative biomaterials to conventional packaging from fossil sources, which, in addition to offering protection and increasing the shelf life of food products, are ecologically sustainable. The materials mostly used in their formulation are based on natural polysaccharides, plasticizing agents, and bioactive components (e.g., antimicrobial agents or antioxidants). The formulation of biodegradable films from polysaccharides and various plasticizers represents an alternative for primary packaging that can be assigned to specific food products, which opens the possibility of having multiple options of biodegradable films for the same product. This review describes the main characteristics of the most abundant polysaccharides in nature and highlights their role in the formulation of biodegradable films. The compilation and discussion emphasize studies that report on the mechanical and barrier properties of biodegradable films when made from pure polysaccharides and when mixed with other polysaccharides and plasticizing agents.
{"title":"Polysaccharides: Sources, Characteristics, Properties, and Their Application in Biodegradable Films","authors":"E. Díaz-Montes","doi":"10.3390/polysaccharides3030029","DOIUrl":"https://doi.org/10.3390/polysaccharides3030029","url":null,"abstract":"Biodegradable films emerge as alternative biomaterials to conventional packaging from fossil sources, which, in addition to offering protection and increasing the shelf life of food products, are ecologically sustainable. The materials mostly used in their formulation are based on natural polysaccharides, plasticizing agents, and bioactive components (e.g., antimicrobial agents or antioxidants). The formulation of biodegradable films from polysaccharides and various plasticizers represents an alternative for primary packaging that can be assigned to specific food products, which opens the possibility of having multiple options of biodegradable films for the same product. This review describes the main characteristics of the most abundant polysaccharides in nature and highlights their role in the formulation of biodegradable films. The compilation and discussion emphasize studies that report on the mechanical and barrier properties of biodegradable films when made from pure polysaccharides and when mixed with other polysaccharides and plasticizing agents.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83818967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-22DOI: 10.3390/polysaccharides3030028
P. Hashemi, Saskia Wenderoth, A. Koschella, T. Heinze, P. Mischnick
Methyl cellulose and its derivatives are widely used in the food industry, cosmetics, and as construction materials. The properties of methyl celluloses (MC) strongly depend on their degrees and positions of substitution. In order to generate MCs with uncommon blocky substitution, we apply fully protected O-benzyl-O-methyl celluloses (BnMC). Such complex polysaccharide derivatives could not be deprotected completely and without shift of the composition by methods usually applied to mono- and oligosaccharides. Therefore, a facile debenzylation method was developed based on photo-initiated free-radical bromination in the presence of hydrobromic acid scavengers followed by alkaline treatment. The reaction proceeds under homogeneous conditions and without the aid of any catalyst. There is no need for expensive equipment, materials, anhydrous reagents, or running the reaction under anhydrous conditions. Reaction parameters were investigated and optimized for successful debenzylation of completely protected BnMC with degrees of methyl substitution (DSMe) around 1.9 (and DSBn around 1.1). Side-product-free and almost complete debenzylation was achieved when 1,2-epoxybutane (0.5 eq./eq. N-bromosuccinimide) and 2,6-di-tert-butylpyridine (0.5 eq./eq. N-bromosuccinimide) were used in the reaction. Furthermore, ATR-IR and 1H NMR spectroscopy confirmed the successful removal of benzyl ether groups. The method was developed to monitor the transglycosylation reaction of the BnMC with permethylated cellulose, for which the deprotection of many small samples in parallel is required. This comprises the determination of the methyl pattern in the glucosyl units by gas-liquid chromatography (GLC), as well as oligosaccharide analysis by liquid chromatography mass spectrometry (LC-MS) after perdeuteromethylation and partial hydrolysis to determine the methyl pattern in the chains. The unavoidable partial chain degradation during debenzylation does not interfere with this analytical application, but, most importantly, the DS and the methyl pattern were almost congruent for the debenzylated product and the original MC, indicating the full success of this approach The presented method provides an unprecedented opportunity for high throughput and parallel debenzylation of complicated glucans, such as BnMC (as a model compound), for analytical purposes. For comparison, debenzylation using Na/NH3 was applied to BnMC and resulted in a completely debenzylated product with a remarkably high recovery yield of 99 mol% and is, thus, the method of choice for synthetic applications, e.g., for the transglycosylation product prepared under the selected conditions in a preparative scale.
甲基纤维素及其衍生物广泛应用于食品工业、化妆品和建筑材料。甲基纤维素(MC)的性质在很大程度上取决于它们的取代度和位置。为了制备具有罕见块取代的纤维素,我们采用了完全保护的o -苄基- o -甲基纤维素(BnMC)。用通常用于单糖和低聚糖的方法,这种复杂的多糖衍生物不可能完全去保护而不改变其组成。因此,在氢溴酸清除剂存在的情况下,开发了一种基于光引发自由基溴化的简易脱苯方法,然后进行碱性处理。反应在均相条件下进行,没有任何催化剂的帮助。不需要昂贵的设备、材料、无水试剂,也不需要在无水条件下进行反应。研究并优化了反应参数,使完全保护的甲基取代度(DSMe)约为1.9 (DSBn约为1.1)的BnMC成功脱苄化。当1,2-环氧丁烷(0.5当量/当量)为甲基时,可实现无副产物和几乎完全的脱苯反应。n -溴琥珀酰亚胺)和2,6-二叔丁基吡啶(0.5当量/当量)。用n -溴琥珀酰亚胺进行反应。此外,ATR-IR和1H NMR证实了苯醚基团的成功去除。该方法用于监测BnMC与过甲基化纤维素的转糖基化反应,该反应需要并行地对许多小样品进行脱保护。这包括用气液色谱法(GLC)测定葡萄糖基单元中的甲基模式,以及在过氘甲基化和部分水解后用液相色谱质谱法(LC-MS)测定低聚糖链中的甲基模式。在脱苯过程中不可避免的部分链降解不会干扰该分析应用,但最重要的是,脱苯产物和原始MC的DS和甲基模式几乎一致,表明该方法的完全成功。该方法为复杂葡聚糖的高通量和平行脱苯提供了前所未有的机会,如BnMC(作为模型化合物),用于分析目的。相比之下,使用Na/NH3对BnMC进行脱苯反应,得到了完全脱苯的产物,回收率高达99 mol%,因此是合成应用的首选方法,例如,在制备规模下在选定条件下制备的转糖基化产物。
{"title":"Debenzylation of Benzyl-Protected Methylcellulose","authors":"P. Hashemi, Saskia Wenderoth, A. Koschella, T. Heinze, P. Mischnick","doi":"10.3390/polysaccharides3030028","DOIUrl":"https://doi.org/10.3390/polysaccharides3030028","url":null,"abstract":"Methyl cellulose and its derivatives are widely used in the food industry, cosmetics, and as construction materials. The properties of methyl celluloses (MC) strongly depend on their degrees and positions of substitution. In order to generate MCs with uncommon blocky substitution, we apply fully protected O-benzyl-O-methyl celluloses (BnMC). Such complex polysaccharide derivatives could not be deprotected completely and without shift of the composition by methods usually applied to mono- and oligosaccharides. Therefore, a facile debenzylation method was developed based on photo-initiated free-radical bromination in the presence of hydrobromic acid scavengers followed by alkaline treatment. The reaction proceeds under homogeneous conditions and without the aid of any catalyst. There is no need for expensive equipment, materials, anhydrous reagents, or running the reaction under anhydrous conditions. Reaction parameters were investigated and optimized for successful debenzylation of completely protected BnMC with degrees of methyl substitution (DSMe) around 1.9 (and DSBn around 1.1). Side-product-free and almost complete debenzylation was achieved when 1,2-epoxybutane (0.5 eq./eq. N-bromosuccinimide) and 2,6-di-tert-butylpyridine (0.5 eq./eq. N-bromosuccinimide) were used in the reaction. Furthermore, ATR-IR and 1H NMR spectroscopy confirmed the successful removal of benzyl ether groups. The method was developed to monitor the transglycosylation reaction of the BnMC with permethylated cellulose, for which the deprotection of many small samples in parallel is required. This comprises the determination of the methyl pattern in the glucosyl units by gas-liquid chromatography (GLC), as well as oligosaccharide analysis by liquid chromatography mass spectrometry (LC-MS) after perdeuteromethylation and partial hydrolysis to determine the methyl pattern in the chains. The unavoidable partial chain degradation during debenzylation does not interfere with this analytical application, but, most importantly, the DS and the methyl pattern were almost congruent for the debenzylated product and the original MC, indicating the full success of this approach The presented method provides an unprecedented opportunity for high throughput and parallel debenzylation of complicated glucans, such as BnMC (as a model compound), for analytical purposes. For comparison, debenzylation using Na/NH3 was applied to BnMC and resulted in a completely debenzylated product with a remarkably high recovery yield of 99 mol% and is, thus, the method of choice for synthetic applications, e.g., for the transglycosylation product prepared under the selected conditions in a preparative scale.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86422833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-11DOI: 10.3390/polysaccharides3020027
Juliana Botelho Moreira, B. Vaz, B. B. Cardias, Camila Gonzales Cruz, Ana Claudia Araujo de Almeida, Jorge Alberto Vieira Costa, M. G. Morais
Carbohydrates or polysaccharides are the main products derived from photosynthesis and carbon fixation in the Calvin cycle. Compared to other sources, polysaccharides derived from microalgae are safe, biocompatible, biodegradable, stable, and versatile. These polymeric macromolecules present complex biochemical structures according to each microalgal species. In addition, they exhibit emulsifying properties and biological characteristics that include antioxidant, anti-inflammatory, antitumor, and antimicrobial activities. Some microalgal species have a naturally high concentration of carbohydrates. Other species can adapt their metabolism to produce more sugars from changes in temperature and light, carbon source, macro and micronutrient limitations (mainly nitrogen), and saline stress. In addition to growing in adverse conditions, microalgae can use industrial effluents as an alternative source of nutrients. Microalgal polysaccharides are predominantly composed of pentose and hexose monosaccharide subunits with many glycosidic bonds. Microalgae polysaccharides can be structural constituents of the cell wall, energy stores, or protective polysaccharides and cell interaction. The industrial use of microalgae polysaccharides is on the rise. These microorganisms present rheological and biological properties, making them a promising candidate for application in the food industry and agriculture. Thus, microalgae polysaccharides are promising sustainable alternatives for potential applications in several sectors, and the choice of producing microalgal species depends on the required functional activity. In this context, this review article aims to provide an overview of microalgae technology for polysaccharide production, emphasizing its potential in the food, animal feed, and agriculture sector.
{"title":"Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture","authors":"Juliana Botelho Moreira, B. Vaz, B. B. Cardias, Camila Gonzales Cruz, Ana Claudia Araujo de Almeida, Jorge Alberto Vieira Costa, M. G. Morais","doi":"10.3390/polysaccharides3020027","DOIUrl":"https://doi.org/10.3390/polysaccharides3020027","url":null,"abstract":"Carbohydrates or polysaccharides are the main products derived from photosynthesis and carbon fixation in the Calvin cycle. Compared to other sources, polysaccharides derived from microalgae are safe, biocompatible, biodegradable, stable, and versatile. These polymeric macromolecules present complex biochemical structures according to each microalgal species. In addition, they exhibit emulsifying properties and biological characteristics that include antioxidant, anti-inflammatory, antitumor, and antimicrobial activities. Some microalgal species have a naturally high concentration of carbohydrates. Other species can adapt their metabolism to produce more sugars from changes in temperature and light, carbon source, macro and micronutrient limitations (mainly nitrogen), and saline stress. In addition to growing in adverse conditions, microalgae can use industrial effluents as an alternative source of nutrients. Microalgal polysaccharides are predominantly composed of pentose and hexose monosaccharide subunits with many glycosidic bonds. Microalgae polysaccharides can be structural constituents of the cell wall, energy stores, or protective polysaccharides and cell interaction. The industrial use of microalgae polysaccharides is on the rise. These microorganisms present rheological and biological properties, making them a promising candidate for application in the food industry and agriculture. Thus, microalgae polysaccharides are promising sustainable alternatives for potential applications in several sectors, and the choice of producing microalgal species depends on the required functional activity. In this context, this review article aims to provide an overview of microalgae technology for polysaccharide production, emphasizing its potential in the food, animal feed, and agriculture sector.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"2433 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86575927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-20DOI: 10.3390/polysaccharides3020026
R. R. Silva, C. Marques, T. R. Arruda, Samiris Côcco Teixeira, T. V. de Oliveira, P. Stringheta, Ana Clarissa dos Santos Pires, Nilda de Fátima Ferreira Soares
The growing environmental concern with the inappropriate disposal of conventional plastics has driven the development of eco-friendly food packaging. However, the intrinsic characteristics of polymers of a renewable origin, e.g., poor mechanical properties, continue to render their practical application difficult. For this, the present work studied the influence of ionic strength (IS) from 0 to 500 mM to modulate the physicochemical properties of methylcellulose (MC). Moreover, for protection against biological risks, Nisin-Z was incorporated into MC’s polymeric matrices, providing an active function. The incorporation of salts (LiCl and MgCl2) promoted an increase in the equilibrium moisture content in the polymer matrix, which in turn acted as a plasticizing agent. In this way, films with a hydrophobic surface (98°), high true strain (85%), and low stiffness (1.6 mPa) can be manufactured by addition of salts, modulating the IS to 500 mM. Furthermore, films with an IS of 500 mM, established with LiCl, catalyzed antibacterial activity against E. coli, conferring synergism and extending protection against biological hazards. Therefore, we demonstrated that the IS control of MC dispersion presents a new alternative to achieve films with the synergism of antibacterial activity against Gram-negative bacteria in addition to flexibility, elasticity, and hydrophobicity required in various applications in food packaging.
{"title":"Ionic Strength of Methylcellulose-Based Films: An Alternative for Modulating Mechanical Performance and Hydrophobicity for Potential Food Packaging Application","authors":"R. R. Silva, C. Marques, T. R. Arruda, Samiris Côcco Teixeira, T. V. de Oliveira, P. Stringheta, Ana Clarissa dos Santos Pires, Nilda de Fátima Ferreira Soares","doi":"10.3390/polysaccharides3020026","DOIUrl":"https://doi.org/10.3390/polysaccharides3020026","url":null,"abstract":"The growing environmental concern with the inappropriate disposal of conventional plastics has driven the development of eco-friendly food packaging. However, the intrinsic characteristics of polymers of a renewable origin, e.g., poor mechanical properties, continue to render their practical application difficult. For this, the present work studied the influence of ionic strength (IS) from 0 to 500 mM to modulate the physicochemical properties of methylcellulose (MC). Moreover, for protection against biological risks, Nisin-Z was incorporated into MC’s polymeric matrices, providing an active function. The incorporation of salts (LiCl and MgCl2) promoted an increase in the equilibrium moisture content in the polymer matrix, which in turn acted as a plasticizing agent. In this way, films with a hydrophobic surface (98°), high true strain (85%), and low stiffness (1.6 mPa) can be manufactured by addition of salts, modulating the IS to 500 mM. Furthermore, films with an IS of 500 mM, established with LiCl, catalyzed antibacterial activity against E. coli, conferring synergism and extending protection against biological hazards. Therefore, we demonstrated that the IS control of MC dispersion presents a new alternative to achieve films with the synergism of antibacterial activity against Gram-negative bacteria in addition to flexibility, elasticity, and hydrophobicity required in various applications in food packaging.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75304750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-14DOI: 10.3390/polysaccharides3020025
F. F. Razura-Carmona, A. Pérez-Larios, S. Sáyago-Ayerdi, M. Herrera-Martínez, J. Sánchez-Burgos
In recent years, interest in the development of nanometric materials with specific characteristics has grown; however, there are few scientific contributions that associate encapsulation methodologies and matrices with the particle objective (metabolic directions, type of administration, biological impact, and biocompatibility). This review focuses on describing the benefits and disadvantages of different techniques for designing custom particles and alternatives for the biofunctionalization nanomaterials regarding the biological impact of a nanomaterial with potential use in foods known as nutraceuticals. The study of optical properties, physicochemical factors, and characteristics such as rheological can predict its stability in the application matrix; however, not only should the characterization of a nanocomposite with applications in food be considered, but also the biological impact that it may present.
{"title":"Biofunctionalized Nanomaterials: Alternative for Encapsulation Process Enhancement","authors":"F. F. Razura-Carmona, A. Pérez-Larios, S. Sáyago-Ayerdi, M. Herrera-Martínez, J. Sánchez-Burgos","doi":"10.3390/polysaccharides3020025","DOIUrl":"https://doi.org/10.3390/polysaccharides3020025","url":null,"abstract":"In recent years, interest in the development of nanometric materials with specific characteristics has grown; however, there are few scientific contributions that associate encapsulation methodologies and matrices with the particle objective (metabolic directions, type of administration, biological impact, and biocompatibility). This review focuses on describing the benefits and disadvantages of different techniques for designing custom particles and alternatives for the biofunctionalization nanomaterials regarding the biological impact of a nanomaterial with potential use in foods known as nutraceuticals. The study of optical properties, physicochemical factors, and characteristics such as rheological can predict its stability in the application matrix; however, not only should the characterization of a nanocomposite with applications in food be considered, but also the biological impact that it may present.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89672307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-06DOI: 10.3390/polysaccharides3020024
J. Mantovan, F. Yamashita, S. Mali
Orange bagasse (OB) could be considered a sustainable, renewable, and low-cost biomass for the extraction of cellulose. In this context, reactive extrusion can be considered an excellent, eco-friendly, alternative process for the extraction of cellulose from lignocellulosic materials. Thus, the present study aimed to obtain cellulose-based materials with a reactive extrusion process and also to investigate the impact of pectin on the delignification process. Two groups of samples (OB and depectinizated OB) were submitted to extrusion with sulfuric acid or sodium hydroxide in one-step processes. The cellulose content of extruded materials was highly affected by pectin content in the raw material; the thermal profile (TGA curves) and crystallinity also changed. The cellulose content of modified materials ranged from 18.8% to 58.4%, with a process yield of 30.6% to 79.2%. The alkaline reagent provided the highest cellulose content among all extrusion treatments tested, mainly for OB without pectin. The extrusion process was considered an efficient and promising process for extracting cellulose from citrus residue. Materials produced in this study can be used as sources of cellulose fiber for various products and processes, such as in the food industry, fermentation substrates, or refined applications after subsequent treatments.
{"title":"Modification of Orange Bagasse with Reactive Extrusion to Obtain Cellulose-Based Materials","authors":"J. Mantovan, F. Yamashita, S. Mali","doi":"10.3390/polysaccharides3020024","DOIUrl":"https://doi.org/10.3390/polysaccharides3020024","url":null,"abstract":"Orange bagasse (OB) could be considered a sustainable, renewable, and low-cost biomass for the extraction of cellulose. In this context, reactive extrusion can be considered an excellent, eco-friendly, alternative process for the extraction of cellulose from lignocellulosic materials. Thus, the present study aimed to obtain cellulose-based materials with a reactive extrusion process and also to investigate the impact of pectin on the delignification process. Two groups of samples (OB and depectinizated OB) were submitted to extrusion with sulfuric acid or sodium hydroxide in one-step processes. The cellulose content of extruded materials was highly affected by pectin content in the raw material; the thermal profile (TGA curves) and crystallinity also changed. The cellulose content of modified materials ranged from 18.8% to 58.4%, with a process yield of 30.6% to 79.2%. The alkaline reagent provided the highest cellulose content among all extrusion treatments tested, mainly for OB without pectin. The extrusion process was considered an efficient and promising process for extracting cellulose from citrus residue. Materials produced in this study can be used as sources of cellulose fiber for various products and processes, such as in the food industry, fermentation substrates, or refined applications after subsequent treatments.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73962676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-03DOI: 10.3390/polysaccharides3020023
Mireia Buaki-Sogó, Laura García-Carmona, M. Gil-Agusti, M. García-Pellicer, A. Quijano-López
In this work, glucose oxidase (GOx) has been immobilized onto graphite rod electrodes through an assisted-chitosan adsorption reaching an enzyme coverage of 4 nmol/cm2. The direct and irreversible single adsorption of the Flavine Adenine Dinucleotide (FAD) cofactor has been minimized by electrode incubation in a chitosan (CH) solution containing the enzyme GOx. Chitosan keeps the enzyme structure and conformation due to electrostatic interactions preventing FAD dissociation from the protein envelope. Using chitosan, both the redox cofactor FAD and the protein envelope remain in the active form as demonstrated by the electrochemistry studies and the enzymatic activity in the electrochemical oxidation of glucose up to a concentration of 20 mM. The application of the modified electrodes for energy harvesting delivered a power density of 119 µW/cm2 with a cell voltage of 0.3 V. Thus, chitosan presents a stabilizing effect for the enzyme conformation promoted by the confinement effect in the chitosan solution by electrostatic interactions. Additionally, it facilitated the electron transfer from the enzyme to the electrode due to the presence of embedded chitosan in the enzyme structure acting as an electrical wiring between the electrode and the enzyme (electron transfer rate constant 2.2 s−1). This method involves advantages compared with previously reported chitosan immobilization methods, not only due to good stability of the enzyme, but also to the simplicity of the procedure that can be carried out even for not qualified technicians which enable their easy implementation in industry.
{"title":"Low-Denaturazing Glucose Oxidase Immobilization onto Graphite Electrodes by Incubation in Chitosan Solutions","authors":"Mireia Buaki-Sogó, Laura García-Carmona, M. Gil-Agusti, M. García-Pellicer, A. Quijano-López","doi":"10.3390/polysaccharides3020023","DOIUrl":"https://doi.org/10.3390/polysaccharides3020023","url":null,"abstract":"In this work, glucose oxidase (GOx) has been immobilized onto graphite rod electrodes through an assisted-chitosan adsorption reaching an enzyme coverage of 4 nmol/cm2. The direct and irreversible single adsorption of the Flavine Adenine Dinucleotide (FAD) cofactor has been minimized by electrode incubation in a chitosan (CH) solution containing the enzyme GOx. Chitosan keeps the enzyme structure and conformation due to electrostatic interactions preventing FAD dissociation from the protein envelope. Using chitosan, both the redox cofactor FAD and the protein envelope remain in the active form as demonstrated by the electrochemistry studies and the enzymatic activity in the electrochemical oxidation of glucose up to a concentration of 20 mM. The application of the modified electrodes for energy harvesting delivered a power density of 119 µW/cm2 with a cell voltage of 0.3 V. Thus, chitosan presents a stabilizing effect for the enzyme conformation promoted by the confinement effect in the chitosan solution by electrostatic interactions. Additionally, it facilitated the electron transfer from the enzyme to the electrode due to the presence of embedded chitosan in the enzyme structure acting as an electrical wiring between the electrode and the enzyme (electron transfer rate constant 2.2 s−1). This method involves advantages compared with previously reported chitosan immobilization methods, not only due to good stability of the enzyme, but also to the simplicity of the procedure that can be carried out even for not qualified technicians which enable their easy implementation in industry.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81005936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}