Pub Date : 2024-03-01DOI: 10.46488/nept.2024.v23i01.037
Arti Yadav, P. Rani, Deepak Kumar Yadav, Nisha Bhardwaj, Asha Gupta, N. Bishnoi
Lignin, being highly resistant, needs to be eliminated in the process of extraction of soluble reducing sugar and bioethanol production from lignocellulosic biomass. In the present work, pretreatment of sugarcane bagasse (SCB) was performed using NaOH of various concentrations (1-5%) to facilitate delignification. The hydrolysis efficiency of pretreated SCB was evaluated at different reaction times by the production of reducing sugar using the Cellic CTec2 enzyme. The maximum cellulose content of 57.6% and lignin removal of 62.04% were observed with 2% sodium hydroxide at 121°C autoclaved for 60 min. The hemicellulose content decreased with increasing NaOH concentration with the maximum decrease of 13.6% from native bagasse having 26.5% xylan content. The microstructure, morphology, and chemical composition of SCB were analyzed using Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform InfraRed (FTIR), and XRD. The hydrolysis with 10 FPU.g-1 of enzyme at 48 h of reaction time shows a maximum yield of 12.34 g.L-1 corresponding to 55.53 ± 0.45% at 2% NaOH pretreated SCB. This study claims that lignin components exhibited the highest susceptibility to NaOH pretreatment, which directly affects enzymatic hydrolysis.
{"title":"Enhancing Enzymatic Hydrolysis and Delignification of Sugarcane Bagasse Using Different Concentrations of Sodium Alkaline Pretreatment","authors":"Arti Yadav, P. Rani, Deepak Kumar Yadav, Nisha Bhardwaj, Asha Gupta, N. Bishnoi","doi":"10.46488/nept.2024.v23i01.037","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i01.037","url":null,"abstract":"Lignin, being highly resistant, needs to be eliminated in the process of extraction of soluble reducing sugar and bioethanol production from lignocellulosic biomass. In the present work, pretreatment of sugarcane bagasse (SCB) was performed using NaOH of various concentrations (1-5%) to facilitate delignification. The hydrolysis efficiency of pretreated SCB was evaluated at different reaction times by the production of reducing sugar using the Cellic CTec2 enzyme. The maximum cellulose content of 57.6% and lignin removal of 62.04% were observed with 2% sodium hydroxide at 121°C autoclaved for 60 min. The hemicellulose content decreased with increasing NaOH concentration with the maximum decrease of 13.6% from native bagasse having 26.5% xylan content. The microstructure, morphology, and chemical composition of SCB were analyzed using Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform InfraRed (FTIR), and XRD. The hydrolysis with 10 FPU.g-1 of enzyme at 48 h of reaction time shows a maximum yield of 12.34 g.L-1 corresponding to 55.53 ± 0.45% at 2% NaOH pretreated SCB. This study claims that lignin components exhibited the highest susceptibility to NaOH pretreatment, which directly affects enzymatic hydrolysis.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"4 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140083752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.46488/nept.2024.v23i01.044
E. Farin, R. R. Sazon, R. A. Sazon, D. V. Rogayan Jr., K. B. Manglicmot, S. G. Mendoza, E. M. Cabal
The Philippines has been listed as the topmost affected country by climate change. One of the sectors affected by this climatic change is the agricultural sector. This study aimed to document the knowledge, attitude, and practices (KAPs) on climate change among rice farmers as a baseline study in disseminating the practices on disaster risk reduction management to rice farmers in Central Luzon to reduce risks and improve the rice yield and income of rice farmers. A total of 969 respondents were randomly sampled from the seven provinces of Central Luzon. A survey questionnaire and an unstructured questionnaire were used as instruments in gathering the needed data. Descriptive and thematic analysis were used in analyzing the data. Results revealed that rice farmers are knowledgeable and have favorable attitudes toward the impact of climate change on farming. They sometimes practice climate-smart agricultural practices. Generally, the farmers are affected by weather and climatic conditions as well as the hazards that cause a reduction in rice yield. Climate change has affected farmers in their social well-being, economic aspect, and rice production. In terms of climate change disaster adaptation measures, the farmers sometimes adopt measures in terms of flood and drought and seldom adopt measures in typhoons, erosion, and volcanic eruptions. The study recommends the conduct of capability training on disaster risk reduction in rice production (such as early planting and planting of high-yielding varieties) based on the specific needs of each province.
{"title":"Knowledge, Attitude, and Practices on Climate Change Among Rice Farmers in Central Luzon, Philippines","authors":"E. Farin, R. R. Sazon, R. A. Sazon, D. V. Rogayan Jr., K. B. Manglicmot, S. G. Mendoza, E. M. Cabal","doi":"10.46488/nept.2024.v23i01.044","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i01.044","url":null,"abstract":"The Philippines has been listed as the topmost affected country by climate change. One of the sectors affected by this climatic change is the agricultural sector. This study aimed to document the knowledge, attitude, and practices (KAPs) on climate change among rice farmers as a baseline study in disseminating the practices on disaster risk reduction management to rice farmers in Central Luzon to reduce risks and improve the rice yield and income of rice farmers. A total of 969 respondents were randomly sampled from the seven provinces of Central Luzon. A survey questionnaire and an unstructured questionnaire were used as instruments in gathering the needed data. Descriptive and thematic analysis were used in analyzing the data. Results revealed that rice farmers are knowledgeable and have favorable attitudes toward the impact of climate change on farming. They sometimes practice climate-smart agricultural practices. Generally, the farmers are affected by weather and climatic conditions as well as the hazards that cause a reduction in rice yield. Climate change has affected farmers in their social well-being, economic aspect, and rice production. In terms of climate change disaster adaptation measures, the farmers sometimes adopt measures in terms of flood and drought and seldom adopt measures in typhoons, erosion, and volcanic eruptions. The study recommends the conduct of capability training on disaster risk reduction in rice production (such as early planting and planting of high-yielding varieties) based on the specific needs of each province.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"30 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140084469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.46488/nept.2024.v23i01.017
J. Techo, S. Techo, A. Palamanit, E. Saniso, A. Chand, P. Prasannaa
In recent years, Electric Vehicles (EVs) are contributing a major share in Thailand and benefit the environment. Most of the EV charging stations are sourced from solar energy as it becomes a carbon-free source of energy production. Secondly, Thailand is rich in solar irradiance, and higher irradiance leads to higher power production. On the other hand, in tropical conditions, solar Photovoltaic (PV) module temperature increases following the solar irradiance due to high ambient temperature, resulting negative impact on the efficiency and lifespan of photovoltaic (PV) modules. Further, to increase PV power production, in this study, different rates of cooling strategies are proposed. The study found that reducing the temperature by 5% to 25% resulted in increased average power outputs of 5947.94W, 6021.43W, 6094.92W, 6168.41W, and 6241W, respectively. Notably, 25% of the cooling rate achieved higher production. However, it is lower than the nominal power production. Following that, economic analysis and environmental impacts are analyzed for Thailand’s EV charging station using a different cooling rate of PV module. Overall, it is concluded that, depending on the economic viability of the EV charging station, cooling technology can be applied, and it will benefit the EV charging station both economically and environmentally. To further enhance the solar PV power production approach for EV charging stations in Thailand, it is imperative to prioritize future endeavors towards optimizing cooling technology, integrating energy storage, and implementing supportive policies.
{"title":"Enhanced Solar Photovoltaic Power Production Approach for Electric Vehicle Charging Station: Economic and Environmental Aspects","authors":"J. Techo, S. Techo, A. Palamanit, E. Saniso, A. Chand, P. Prasannaa","doi":"10.46488/nept.2024.v23i01.017","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i01.017","url":null,"abstract":"In recent years, Electric Vehicles (EVs) are contributing a major share in Thailand and benefit the environment. Most of the EV charging stations are sourced from solar energy as it becomes a carbon-free source of energy production. Secondly, Thailand is rich in solar irradiance, and higher irradiance leads to higher power production. On the other hand, in tropical conditions, solar Photovoltaic (PV) module temperature increases following the solar irradiance due to high ambient temperature, resulting negative impact on the efficiency and lifespan of photovoltaic (PV) modules. Further, to increase PV power production, in this study, different rates of cooling strategies are proposed. The study found that reducing the temperature by 5% to 25% resulted in increased average power outputs of 5947.94W, 6021.43W, 6094.92W, 6168.41W, and 6241W, respectively. Notably, 25% of the cooling rate achieved higher production. However, it is lower than the nominal power production. Following that, economic analysis and environmental impacts are analyzed for Thailand’s EV charging station using a different cooling rate of PV module. Overall, it is concluded that, depending on the economic viability of the EV charging station, cooling technology can be applied, and it will benefit the EV charging station both economically and environmentally. To further enhance the solar PV power production approach for EV charging stations in Thailand, it is imperative to prioritize future endeavors towards optimizing cooling technology, integrating energy storage, and implementing supportive policies.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"117 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140089340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.46488/nept.2024.v23i01.002
L. A. García-Villanueva, V. H. Cuapio-Ortega, I. Y. Henández-Paniagua, G. Fernández-Villagómez, J. Rodrigo-Ilarri, M. Rodrigo-Clavero, G. L. Andraca-Ayala, G. Hernández-Cruz, S. Banda-Santamaría
Glyphosate is a herbicide of a wide spectrum that alters the production of amino acids in plants, leading to their death. Due to its properties, it is used to eliminate weeds that interfere with human activity. The intensive use of this herbicide in the past decades has led to its frequent encounter in the environment as it has been detected in water, animals, and food destined for human consumption. Its impact on human health and the rest of living organisms has not been fully explored, given that many authors enter into contradictions with one another, specifically surrounding the role of surfactants in the commercial presentation of herbicides. The use of pesticides can have significant impacts on ecosystems, threatening bio-cultural diversity due to genetic contamination from transgenic crops. The effectiveness of Glyphosate-based herbicides in weed control is diminishing due to weed tolerance. However, the use of herbicides remains prevalent in large-scale crops due to the challenges of organic food production. In addition, the probable conflict of interest by the agrochemical industry does not bring a full picture with respect to the actions that world governments should take. Banning GLP-based herbicides may lead to the use of other pesticides, in which the long-term impacts will require further studies. The motivation for this research is the review of the latest advances of glyphosate in the world, considering the use and prohibitions of this herbicide, its interaction with water and soil, as well as the effects on both the environment and health. The search for information for this paper was carried out in the Mendeley, Elsevier, and Springer databases by filtering by the suitable keywords.
{"title":"Effects of Glyphosate on the Environment and Human Health","authors":"L. A. García-Villanueva, V. H. Cuapio-Ortega, I. Y. Henández-Paniagua, G. Fernández-Villagómez, J. Rodrigo-Ilarri, M. Rodrigo-Clavero, G. L. Andraca-Ayala, G. Hernández-Cruz, S. Banda-Santamaría","doi":"10.46488/nept.2024.v23i01.002","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i01.002","url":null,"abstract":"Glyphosate is a herbicide of a wide spectrum that alters the production of amino acids in plants, leading to their death. Due to its properties, it is used to eliminate weeds that interfere with human activity. The intensive use of this herbicide in the past decades has led to its frequent encounter in the environment as it has been detected in water, animals, and food destined for human consumption. Its impact on human health and the rest of living organisms has not been fully explored, given that many authors enter into contradictions with one another, specifically surrounding the role of surfactants in the commercial presentation of herbicides. The use of pesticides can have significant impacts on ecosystems, threatening bio-cultural diversity due to genetic contamination from transgenic crops. The effectiveness of Glyphosate-based herbicides in weed control is diminishing due to weed tolerance. However, the use of herbicides remains prevalent in large-scale crops due to the challenges of organic food production. In addition, the probable conflict of interest by the agrochemical industry does not bring a full picture with respect to the actions that world governments should take. Banning GLP-based herbicides may lead to the use of other pesticides, in which the long-term impacts will require further studies. The motivation for this research is the review of the latest advances of glyphosate in the world, considering the use and prohibitions of this herbicide, its interaction with water and soil, as well as the effects on both the environment and health. The search for information for this paper was carried out in the Mendeley, Elsevier, and Springer databases by filtering by the suitable keywords.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":" 896","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140092034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.46488/nept.2024.v23i01.008
Sameen Fatma, Md. Danish
The wetlands are the partially water-submerged environments that are highly productive, and support fauna and flora species in significant numbers that are dependent for their survival on the organic production of wetlands. Kanwar Lake is situated about 22 kilometers to the northwest of Begusarai. The Gandak River, a tributary of the Ganges, meanders across the area, creating the largest oxbow lake in Asia. It is a natural body of water that is significant on many different levels, including ecological, floral, faunal, geomorphological, and zoological. In 1989, the state government of Bihar designated Kanwar as a protected area for avian species. It has been considered a Ramsar site since 1987, but the wetland was not one of the 13 designated sites. In 1984, the lake’s area was 6,786 hectares (ha), but by 2004, it had shrunk to 6,043.825 ha. Only 2,032 hectares remained of the original lake area by 2012. Wealthy farmers and locals have rapidly colonized the lake bed. Lake biodiversity has declined as weeds have grown across the wetland. Widespread deforestation, overgrazing, unsustainable agricultural methods and over-exploitation of biomass for wood, fodder, and timber have stripped the land of its natural vegetative cover and exacerbated erosion. The research deals with the ecological study of the area and how urbanization has caused impacts on it. It focuses on how this has caused the deterioration of the lake and the measures for restoring the lake ecology, safeguarding the trend of urbanization. After analyzing the major key issues and analyzing the issues at the edge of the lake and around the Manjhaul, some of the major findings conclude that there is a need for stormwater management of the whole city, restoration of Kanwar wetland, and industrial control around the lake.
{"title":"Ecological Regeneration of Wetland: Case Study of Kanwar Lake, Begusarai","authors":"Sameen Fatma, Md. Danish","doi":"10.46488/nept.2024.v23i01.008","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i01.008","url":null,"abstract":"The wetlands are the partially water-submerged environments that are highly productive, and support fauna and flora species in significant numbers that are dependent for their survival on the organic production of wetlands. Kanwar Lake is situated about 22 kilometers to the northwest of Begusarai. The Gandak River, a tributary of the Ganges, meanders across the area, creating the largest oxbow lake in Asia. It is a natural body of water that is significant on many different levels, including ecological, floral, faunal, geomorphological, and zoological. In 1989, the state government of Bihar designated Kanwar as a protected area for avian species. It has been considered a Ramsar site since 1987, but the wetland was not one of the 13 designated sites. In 1984, the lake’s area was 6,786 hectares (ha), but by 2004, it had shrunk to 6,043.825 ha. Only 2,032 hectares remained of the original lake area by 2012. Wealthy farmers and locals have rapidly colonized the lake bed. Lake biodiversity has declined as weeds have grown across the wetland. Widespread deforestation, overgrazing, unsustainable agricultural methods and over-exploitation of biomass for wood, fodder, and timber have stripped the land of its natural vegetative cover and exacerbated erosion. The research deals with the ecological study of the area and how urbanization has caused impacts on it. It focuses on how this has caused the deterioration of the lake and the measures for restoring the lake ecology, safeguarding the trend of urbanization. After analyzing the major key issues and analyzing the issues at the edge of the lake and around the Manjhaul, some of the major findings conclude that there is a need for stormwater management of the whole city, restoration of Kanwar wetland, and industrial control around the lake.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":" 874","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140092055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.46488/nept.2024.v23i01.006
B. Yang, Q. H. Xue, C. T. Qu, C. Lu, F. F. Liu, H. Zhang, L. T. Ma, L. Qi, Y. T. Wang
Petroleum hydrocarbon is one of the dangerous substances in the process of petroleum development, refining, processing, transportation, and production. In the related activities of the petroleum industry, the output is large, and improper treatment will cause pollution to the surrounding environment. It is an urgent problem to conduct harmless and resource treatment of petroleum hydrocarbon polluted soil. Plant enrichment, as an environmentally friendly and pollution-free technical means, has the advantages of low cost and small change to the soil environment and effectively solves the problems of excessive heavy metals in petroleum hydrocarbons through plant enrichment. In this paper, the development process of plant enrichment, remediation methods, and plant enrichment of typical heavy metals (Cd, Hg, Zn) in petroleum hydrocarbon-polluted soil were systematically introduced. Through investigation, the mechanism and influencing factors of plant enrichment of heavy metals in the presence of petroleum hydrocarbons were summarized and analyzed, and the possible development direction of plant enrichment technology in the future was prospected.
{"title":"Research Progress on in-situ Remediation of Typical Heavy Metals in Petroleum Hydrocarbon-contaminated Soil Enrichment by Plants","authors":"B. Yang, Q. H. Xue, C. T. Qu, C. Lu, F. F. Liu, H. Zhang, L. T. Ma, L. Qi, Y. T. Wang","doi":"10.46488/nept.2024.v23i01.006","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i01.006","url":null,"abstract":"Petroleum hydrocarbon is one of the dangerous substances in the process of petroleum development, refining, processing, transportation, and production. In the related activities of the petroleum industry, the output is large, and improper treatment will cause pollution to the surrounding environment. It is an urgent problem to conduct harmless and resource treatment of petroleum hydrocarbon polluted soil. Plant enrichment, as an environmentally friendly and pollution-free technical means, has the advantages of low cost and small change to the soil environment and effectively solves the problems of excessive heavy metals in petroleum hydrocarbons through plant enrichment. In this paper, the development process of plant enrichment, remediation methods, and plant enrichment of typical heavy metals (Cd, Hg, Zn) in petroleum hydrocarbon-polluted soil were systematically introduced. Through investigation, the mechanism and influencing factors of plant enrichment of heavy metals in the presence of petroleum hydrocarbons were summarized and analyzed, and the possible development direction of plant enrichment technology in the future was prospected.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"38 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140082546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.46488/nept.2024.v23i01.026
Jerlin Regin, Maria Rajesh Antony, Raya Said Mohammed Al-Zaabiya, May Darwish Ali Al Balushi, Hamdah Ali Ahmed Al Shehhi, Nooralsnaa Abdallah Mohammed Al-Farsi, Athari Khalifa Handi Al-Saadi
The research addressed the effective and sustainable ways to enhance the thermal insulation properties of concrete without compromising its structural integrity. Traditional methods of enhancing thermal insulation in buildings, such as using thick layers of insulation materials, can be costly and may not always be practical in certain settings. Additionally, the disposal of waste materials such as date palm fiber, shopping plastic bags, and thermocol beads presents an environmental challenge. Therefore, this study aims to investigate the potential use of these waste materials as additives in concrete to improve its thermal insulation properties while also providing a sustainable solution for waste disposal. Date palm fiber is a natural material that is widely available in the Gulf region. Plastic bags are a huge waste from the shops every day, and from the packing materials, this thermocol is a huge waste product. We have to recycle it very efficiently to protect the environment. Three types of special materials, such as thermocol beads (30%), date palm fiber (3%) & shopping plastic bag fiber (3%), were tested in this research. Thermocol beads, when used, reduce their strength and increase the thermal resistance of concrete, while date palm fiber and shopping bag waste fiber, when used, increase the strength of concrete and also increase the thermal resistance of concrete, so it is an excellent reinforcing material and thermal barrier for shopping plastic bags fiber and date palm fiber. Based on this research result, when thermocol beads are used, they prevent heat by 42 percent, while when added with date palm fiber and plastic fiber, they also block heat by an average of 30% percent; thus, all three ingredients are considered excellent thermal insulation material. The reduction in thermal conductivity was attributed to the formation of air voids and the low thermal conductivity of the waste materials. The density of the concrete decreased with the addition of the waste materials. The study suggests that the incorporation of date palm fiber, shopping bag waste fiber, and thermocol beads can be an effective way to enhance the thermal insulation properties of concrete while also providing an environmentally sustainable solution for waste disposal. It will boost green energy technology in the construction industry.
{"title":"Effective Utilization of Bio and Industry Wastes to Produce Thermal Insulation Concrete: A Novel Solution for Energy-Saving Buildings","authors":"Jerlin Regin, Maria Rajesh Antony, Raya Said Mohammed Al-Zaabiya, May Darwish Ali Al Balushi, Hamdah Ali Ahmed Al Shehhi, Nooralsnaa Abdallah Mohammed Al-Farsi, Athari Khalifa Handi Al-Saadi","doi":"10.46488/nept.2024.v23i01.026","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i01.026","url":null,"abstract":"The research addressed the effective and sustainable ways to enhance the thermal insulation properties of concrete without compromising its structural integrity. Traditional methods of enhancing thermal insulation in buildings, such as using thick layers of insulation materials, can be costly and may not always be practical in certain settings. Additionally, the disposal of waste materials such as date palm fiber, shopping plastic bags, and thermocol beads presents an environmental challenge. Therefore, this study aims to investigate the potential use of these waste materials as additives in concrete to improve its thermal insulation properties while also providing a sustainable solution for waste disposal. Date palm fiber is a natural material that is widely available in the Gulf region. Plastic bags are a huge waste from the shops every day, and from the packing materials, this thermocol is a huge waste product. We have to recycle it very efficiently to protect the environment. Three types of special materials, such as thermocol beads (30%), date palm fiber (3%) & shopping plastic bag fiber (3%), were tested in this research. Thermocol beads, when used, reduce their strength and increase the thermal resistance of concrete, while date palm fiber and shopping bag waste fiber, when used, increase the strength of concrete and also increase the thermal resistance of concrete, so it is an excellent reinforcing material and thermal barrier for shopping plastic bags fiber and date palm fiber. Based on this research result, when thermocol beads are used, they prevent heat by 42 percent, while when added with date palm fiber and plastic fiber, they also block heat by an average of 30% percent; thus, all three ingredients are considered excellent thermal insulation material. The reduction in thermal conductivity was attributed to the formation of air voids and the low thermal conductivity of the waste materials. The density of the concrete decreased with the addition of the waste materials. The study suggests that the incorporation of date palm fiber, shopping bag waste fiber, and thermocol beads can be an effective way to enhance the thermal insulation properties of concrete while also providing an environmentally sustainable solution for waste disposal. It will boost green energy technology in the construction industry.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"35 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140084314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.46488/nept.2024.v23i01.050
A. O. Khashroum, Y. K. Fawadleh, H. J. Hamad, Sh. A. Saewan, I. Almashagbeh, M. O. Alalawneh, S. M. Daradkeh, Abeer Saqr
This research was conducted to study the effect of adding humic and fulvic acids to the irrigation water on soil properties and germination percentage of two cucurbit plants: zucchini and cucumber. The study was conducted in an open field in Sokhna District in the governorate of Zarqa (Jordan). The field soil was transported to calcareous sandy soil. In the beginning, the weeds and stones were removed, and the land was smoothed and plowed. Effort was made to control weeds and insects at all stages of plant growth. Then, an irrigation network was installed. The fulvic acid-humic acid (FA-HA) biostimulant mixture was incorporated with the irrigation water, and irrigation was practiced three days per week for four weeks. During this period, every irrigation round lasted for two to three hours. A mixture of humic acid (8.0%) and fulvic acid (8.0%) was added to the irrigation water. Three treatments were considered, corresponding to three acid mixture concentrations: 0.50 mL.L-1, 1.00 mL.L-1, and 1.50 mL.L-1. The acid mixtures were added continuously at all stages of plant growth until plant maturity and harvest. Four replicates of the experiment were made. The plant growth variables of interest were germination percentage, number of leaves, date of fruition, size of fruit, and overall mass of fruits. Meanwhile, the soil parameters of interest were soil pH and soil salinity (electric conductivity (EC)) before and after adding the FA-HA mixture. The study found that the 0.5 mL.L-1 acid mixture treatment led to the early growth of the zucchini plant seeds and that fruition took place 12 days after planting. In addition, the results showed an increase in plant germination under the 0.5 mL.L-1 acid mixture treatment in light of the increase in the number of male and female plant flowers, with fruiting taking place on time. In conclusion, the relationship between zucchini growth and yield with FA-HA mixture concentration is non-linear. It is also concluded that the optimum acid mixture concentration and application rate are crop-specific. Hence, for each crop, the most appropriate acid mixture concentration should be determined first before the broad-scale application of amendments to the soil to ensure the contribution of this environmentally friendly practice to sustainable agriculture.
{"title":"Effects of Addition of Humic and Fulvic Acids on Soil Properties and Germination Percentage of Cucurbit Plants (Zucchini and Cucumber)","authors":"A. O. Khashroum, Y. K. Fawadleh, H. J. Hamad, Sh. A. Saewan, I. Almashagbeh, M. O. Alalawneh, S. M. Daradkeh, Abeer Saqr","doi":"10.46488/nept.2024.v23i01.050","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i01.050","url":null,"abstract":"This research was conducted to study the effect of adding humic and fulvic acids to the irrigation water on soil properties and germination percentage of two cucurbit plants: zucchini and cucumber. The study was conducted in an open field in Sokhna District in the governorate of Zarqa (Jordan). The field soil was transported to calcareous sandy soil. In the beginning, the weeds and stones were removed, and the land was smoothed and plowed. Effort was made to control weeds and insects at all stages of plant growth. Then, an irrigation network was installed. The fulvic acid-humic acid (FA-HA) biostimulant mixture was incorporated with the irrigation water, and irrigation was practiced three days per week for four weeks. During this period, every irrigation round lasted for two to three hours. A mixture of humic acid (8.0%) and fulvic acid (8.0%) was added to the irrigation water. Three treatments were considered, corresponding to three acid mixture concentrations: 0.50 mL.L-1, 1.00 mL.L-1, and 1.50 mL.L-1. The acid mixtures were added continuously at all stages of plant growth until plant maturity and harvest. Four replicates of the experiment were made. The plant growth variables of interest were germination percentage, number of leaves, date of fruition, size of fruit, and overall mass of fruits. Meanwhile, the soil parameters of interest were soil pH and soil salinity (electric conductivity (EC)) before and after adding the FA-HA mixture. The study found that the 0.5 mL.L-1 acid mixture treatment led to the early growth of the zucchini plant seeds and that fruition took place 12 days after planting. In addition, the results showed an increase in plant germination under the 0.5 mL.L-1 acid mixture treatment in light of the increase in the number of male and female plant flowers, with fruiting taking place on time. In conclusion, the relationship between zucchini growth and yield with FA-HA mixture concentration is non-linear. It is also concluded that the optimum acid mixture concentration and application rate are crop-specific. Hence, for each crop, the most appropriate acid mixture concentration should be determined first before the broad-scale application of amendments to the soil to ensure the contribution of this environmentally friendly practice to sustainable agriculture.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"36 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140084537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.46488/nept.2024.v23i01.001
Teshager Argaw Endale, Gelana Amente Raba, K. T. Beketie, G. Feyisa
This study focuses on atmospheric aerosols, especially aerosol optical depth (AOD), over Dire Dawa, Ethiopia, from 2009 to 2020. At first, a correlation between the four satellite sensors and AERONET was made for validation purposes and to determine the sensor that best represents Dire Dawa. Intercomparisons were also made among the four satellite sensors. After all statistical tests, annual, seasonal, and decadal trend analyses were made. The validation results indicated that the AOD of MODIS-terra showed the best correlation with AERONET with R2 (0.78), RMSE (0.03), and MBE of 0.02 and represented the area better than the rest. The inter-comparison of AOD retrieved from multi-spectral satellite sensors showed a positive and satisfactory correlation between MODIS-Terra and OMI. Only MODIS-Aqua showed a linearly increasing mean annual AOD with R2 = 0.43. In three seasons (summer, autumn, and spring), AOD showed linear increments over the 12 years, with R2 ranging between 0.3 and 0.5. The three seasons also had nearly identical AODs of 0.23-0.28. However, winter had the lowest value of 0.2. MODIS-terra, out of the four sensors, exhibited increasing decadal tendency over the 2009-2020 period. Monthly analysis revealed that August had the highest AOD (0.265), and January had the lowest (0.14). The value of AOD obtained from this study over Dire Dawa shows a higher value during all seasons except during winter. Thus, this study gives a glimpse into the use of multi-spectral satellite sensors to monitor air quality over a semi-arid urban region.
{"title":"Exploring the Trend of Aerosol Optical Depth and its Implication on Urban Air Quality Using Multi-spectral Satellite Data During the Period from 2009 to 2020 over Dire Dawa, Ethiopia","authors":"Teshager Argaw Endale, Gelana Amente Raba, K. T. Beketie, G. Feyisa","doi":"10.46488/nept.2024.v23i01.001","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i01.001","url":null,"abstract":"This study focuses on atmospheric aerosols, especially aerosol optical depth (AOD), over Dire Dawa, Ethiopia, from 2009 to 2020. At first, a correlation between the four satellite sensors and AERONET was made for validation purposes and to determine the sensor that best represents Dire Dawa. Intercomparisons were also made among the four satellite sensors. After all statistical tests, annual, seasonal, and decadal trend analyses were made. The validation results indicated that the AOD of MODIS-terra showed the best correlation with AERONET with R2 (0.78), RMSE (0.03), and MBE of 0.02 and represented the area better than the rest. The inter-comparison of AOD retrieved from multi-spectral satellite sensors showed a positive and satisfactory correlation between MODIS-Terra and OMI. Only MODIS-Aqua showed a linearly increasing mean annual AOD with R2 = 0.43. In three seasons (summer, autumn, and spring), AOD showed linear increments over the 12 years, with R2 ranging between 0.3 and 0.5. The three seasons also had nearly identical AODs of 0.23-0.28. However, winter had the lowest value of 0.2. MODIS-terra, out of the four sensors, exhibited increasing decadal tendency over the 2009-2020 period. Monthly analysis revealed that August had the highest AOD (0.265), and January had the lowest (0.14). The value of AOD obtained from this study over Dire Dawa shows a higher value during all seasons except during winter. Thus, this study gives a glimpse into the use of multi-spectral satellite sensors to monitor air quality over a semi-arid urban region.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"117 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140088287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.46488/nept.2024.v23i01.023
Prasann Kumar, Shipa Rani Dey, Debjani Choudhury
Heavy metals like cadmium (Cd), mercury (Hg), bismuth (Bi), and arsenic (As) are potent and harmful poisonous sources that cause havoc on health conditions for the population of the world. However, the response of our crop species to these potent heavy metals-related toxicity is still left to be fully understood. It is a matter of great concern, as we are heavily dependent on crop species like rice, wheat, peas, etc. Our study here aims to learn about the defensive mechanism of Pisum sativum L. aided with putrescine and mycorrhiza against the stress created by Cd-related toxicity. We quantified physiological parameters such as the membrane-related injury and stability index. We further measured the total free proline content, lipid peroxidation content, and SOD activity. We executed our quantitative experiments on the stressed pea plants due to the exogenously applied Cd-toxicity in the presence and absence of mycorrhiza and putrescine. Insights of our significant results will improve the understanding of readers of the role of mycorrhiza and putrescine in improvising the tolerance level of a pea plant over Cd-related toxicity.
{"title":"Effectiveness of Cadmium on Biochemical Shift of Pea Plant Treated with Mycorrhiza and Putrescine","authors":"Prasann Kumar, Shipa Rani Dey, Debjani Choudhury","doi":"10.46488/nept.2024.v23i01.023","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i01.023","url":null,"abstract":"Heavy metals like cadmium (Cd), mercury (Hg), bismuth (Bi), and arsenic (As) are potent and harmful poisonous sources that cause havoc on health conditions for the population of the world. However, the response of our crop species to these potent heavy metals-related toxicity is still left to be fully understood. It is a matter of great concern, as we are heavily dependent on crop species like rice, wheat, peas, etc. Our study here aims to learn about the defensive mechanism of Pisum sativum L. aided with putrescine and mycorrhiza against the stress created by Cd-related toxicity. We quantified physiological parameters such as the membrane-related injury and stability index. We further measured the total free proline content, lipid peroxidation content, and SOD activity. We executed our quantitative experiments on the stressed pea plants due to the exogenously applied Cd-toxicity in the presence and absence of mycorrhiza and putrescine. Insights of our significant results will improve the understanding of readers of the role of mycorrhiza and putrescine in improvising the tolerance level of a pea plant over Cd-related toxicity.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":" 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140091671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}