首页 > 最新文献

Molecular Cancer Therapeutics最新文献

英文 中文
Radiation and Chemo-Sensitizing Effects of DNA-PK Inhibitors Are Proportional in Tumors and Normal Tissues. 在肿瘤和正常组织中,DNA-PK 抑制剂的辐射和化疗增敏作用是成比例的。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-09-04 DOI: 10.1158/1535-7163.MCT-23-0681
Jennifer H E Baker, Alastair H Kyle, Nannan A Liu, Taixiang Wang, Xinhe Liu, Sevin Teymori, Judit P Banáth, Andrew I Minchinton

Inhibitors of DNA-dependent protein kinase (PRKDC; DNA-PK) sensitize cancers to radiotherapy and DNA-damaging chemotherapies, with candidates in clinical trials. However, the degree to which DNA-PK inhibitors also sensitize normal tissues remains poorly characterized. In this study, we compare tumor growth control and normal tissue sensitization following DNA-PK inhibitors in combination with radiation and etoposide. FaDu tumor xenografts implanted in mice were treated with 10 to 15 Gy irradiation ± 3 to 100 mg/kg AZD7648. A dose-dependent increase in time to tumor volume doubling following AZD7648 was proportional to an increase in toxicity scores of the overlying skin. Similar effects were seen in the intestinal jejunum, tongue, and FaDu tumor xenografts of mice assessed for proliferation rates at 3.5 days after treatment with etoposide or 5 Gy whole body irradiation ± DNA-PK inhibitors AZD7648 or peposertib (M3814). Additional organs were examined for sensitivity to DNA-PK inhibitor activity in ATM-deficient mice, where DNA-PK activity is indicated by surrogate marker γH2AX. Inhibition was observed in the heart, brain, pancreas, thymus, tongue, and salivary glands of ATM-deficient mice treated with the DNA-PK inhibitors relative to radiation alone. Similar reductions are also seen in ATM-deficient FaDu tumor xenografts where both pDNA-PK and γH2AX staining could be performed. DNA-PK inhibitor-mediated sensitization to radiation and DNA-damaging chemotherapy are not only limited to tumor tissues, but also extends to normal tissues sustaining DNA damage. These data are useful for interpretation of the sensitizing effects of DNA damage repair inhibitors, where a therapeutic index showing greater cell-killing effects on cancer cells is crucial for optimal clinical translation.

DNA-PK 抑制剂可使癌症对放疗和 DNA 损伤化疗敏感,目前已有候选药物进入临床试验阶段。然而,DNA-PK抑制剂在多大程度上也会使正常组织增敏,目前还不清楚。在这项研究中,我们比较了 DNA-PK 抑制剂与放疗和依托泊苷联合使用后对肿瘤生长的控制和对正常组织的增敏作用。植入小鼠体内的 FaDu 肿瘤异种移植物接受 10 - 15Gy 照射和 3 - 100 mg/kg AZD7648 治疗。使用 AZD7648 后,肿瘤体积增大一倍的时间呈剂量依赖性增加,这与上覆皮肤毒性评分的增加成正比。小鼠肠空肠、舌和 FaDu 肿瘤异种移植物在接受依托泊苷或 5Gy 全身照射(± DNA-PK 抑制剂 AZD7648 或 peposertib (M3814))治疗 3.5 天后的增殖率评估中也出现了类似的效应。对ATM缺陷小鼠的其他器官进行了检测,以确定其对DNA-PK抑制剂活性的敏感性,DNA-PK活性用替代标记物γH2AX来表示。与单独使用辐射相比,使用DNA-PK抑制剂治疗的ATM缺陷小鼠的心脏、大脑、胰腺、胸腺、舌头和唾液腺都出现了抑制作用。在可以进行 pDNA-PK 和 γH2AX 染色的 ATM 基因缺陷 FaDu 肿瘤异种移植中也发现了类似的抑制作用。结论DNA-PK抑制剂介导的对辐射和DNA损伤化疗的敏感性不仅限于肿瘤组织,还可延伸至遭受DNA损伤的正常组织。这些数据有助于解释 DNA 损伤修复抑制剂的增敏作用,其中显示对癌细胞有更大细胞杀伤作用的治疗指数对最佳临床转化至关重要。
{"title":"Radiation and Chemo-Sensitizing Effects of DNA-PK Inhibitors Are Proportional in Tumors and Normal Tissues.","authors":"Jennifer H E Baker, Alastair H Kyle, Nannan A Liu, Taixiang Wang, Xinhe Liu, Sevin Teymori, Judit P Banáth, Andrew I Minchinton","doi":"10.1158/1535-7163.MCT-23-0681","DOIUrl":"10.1158/1535-7163.MCT-23-0681","url":null,"abstract":"<p><p>Inhibitors of DNA-dependent protein kinase (PRKDC; DNA-PK) sensitize cancers to radiotherapy and DNA-damaging chemotherapies, with candidates in clinical trials. However, the degree to which DNA-PK inhibitors also sensitize normal tissues remains poorly characterized. In this study, we compare tumor growth control and normal tissue sensitization following DNA-PK inhibitors in combination with radiation and etoposide. FaDu tumor xenografts implanted in mice were treated with 10 to 15 Gy irradiation ± 3 to 100 mg/kg AZD7648. A dose-dependent increase in time to tumor volume doubling following AZD7648 was proportional to an increase in toxicity scores of the overlying skin. Similar effects were seen in the intestinal jejunum, tongue, and FaDu tumor xenografts of mice assessed for proliferation rates at 3.5 days after treatment with etoposide or 5 Gy whole body irradiation ± DNA-PK inhibitors AZD7648 or peposertib (M3814). Additional organs were examined for sensitivity to DNA-PK inhibitor activity in ATM-deficient mice, where DNA-PK activity is indicated by surrogate marker γH2AX. Inhibition was observed in the heart, brain, pancreas, thymus, tongue, and salivary glands of ATM-deficient mice treated with the DNA-PK inhibitors relative to radiation alone. Similar reductions are also seen in ATM-deficient FaDu tumor xenografts where both pDNA-PK and γH2AX staining could be performed. DNA-PK inhibitor-mediated sensitization to radiation and DNA-damaging chemotherapy are not only limited to tumor tissues, but also extends to normal tissues sustaining DNA damage. These data are useful for interpretation of the sensitizing effects of DNA damage repair inhibitors, where a therapeutic index showing greater cell-killing effects on cancer cells is crucial for optimal clinical translation.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1230-1240"},"PeriodicalIF":5.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prognostic Significance of SASP-Related Gene Signature of Radiation Therapy in Head and Neck Squamous Cell Carcinoma. 头颈部鳞状细胞癌放疗 SASP 相关基因特征的预后意义
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-09-04 DOI: 10.1158/1535-7163.MCT-23-0738
Min Kyeong Lee, Seon Rang Woo, Joo Kyung Noh, Soonki Min, Moonkyoo Kong, Young Chan Lee, Seong-Gyu Ko, Young-Gyu Eun

In this study, we developed and validated the clinical significance of senescence-associated secretory phenotype (SASP)-related gene signature and explored its association with radiation therapy (RT) in patients with head and neck squamous cell carcinoma (HNSCC). First, we searched the three published review literature associated with SASP and selected all 81 genes to develop SASP-related gene signature. Then, 81 SASP-related genes were adapted to gene expression dataset from The Cancer Genome Atlas (TCGA). Patients with HNSCC of TCGA were classified into clusters 1 and 2 via unsupervised clustering according to SASP-related gene signature. Kaplan-Meier plot survival analysis showed that cluster 1 had a poorer prognosis than cluster 2 in 5-year overall survival and recurrence-free survival. Similarly, cluster 1 showed a worse prognosis than cluster 2 in three validation cohorts (E-MTAB-8588, FHCRC, and KHU). Cox proportional hazards regression observed that the SASP-related signature was an independent prognostic factor for patients with HNSCC. We also established a nomogram using a relevant clinical parameter and a risk score. Time-dependent receiver operating characteristic analysis was carried out to assess the accuracy of the prognostic risk model and nomogram. Senescence SASP-related gene signature was associated with the response to RT. Therefore, subsequent, in vitro experiments further validated the association between SASP-related gene signature and RT in HNSCC. In conclusion, we developed a SASP-related gene signature, which could predict survival of patients with HNSCC, and this gene signature provides new clinical evidence for the accurate diagnosis and targeted RT of HNSCC.

在这项研究中,我们建立并验证了衰老SASP相关基因特征的临床意义,并探讨了其与头颈部鳞状细胞癌(HNSCC)患者放疗(RT)的关系。首先,我们检索了三篇已发表的与衰老相关分泌表型(SASP)有关的综述文献,并筛选出所有 81 个基因来建立 SASP 相关基因特征。然后,将 81 个 SASP 相关基因与 TCGA 的基因表达数据集进行适配。根据SASP相关基因特征,通过无监督聚类将TCGA中的HNSCC患者分为群1和群2。Kaplan-Meier图生存分析表明,在5年总生存期和无复发生存期方面,群组1的预后比群组2差。同样,在三个验证队列中,群组1的预后也比群组2差。(E-MTAB-8588、FHCRC 和 KHU)。Cox 比例危险回归观察到,衰老 SASP 相关特征是 HNSCC 患者的一个独立预后因素。我们还利用相关临床参数和风险评分建立了一个提名图。我们进行了时间依赖性接收器操作特征(ROC)分析,以评估预后风险模型和提名图的准确性。衰老 SASP 相关基因特征与对 RT 的反应相关。因此,随后的体外实验进一步验证了 HNSCC 中衰老 SASP 相关基因特征与 RT 之间的关联。总之,我们建立的衰老 SASP 相关基因特征可以预测 HNSCC 患者的生存率,该基因特征为 HNSCC 的准确诊断和靶向 RT 提供了新的临床证据。
{"title":"Prognostic Significance of SASP-Related Gene Signature of Radiation Therapy in Head and Neck Squamous Cell Carcinoma.","authors":"Min Kyeong Lee, Seon Rang Woo, Joo Kyung Noh, Soonki Min, Moonkyoo Kong, Young Chan Lee, Seong-Gyu Ko, Young-Gyu Eun","doi":"10.1158/1535-7163.MCT-23-0738","DOIUrl":"10.1158/1535-7163.MCT-23-0738","url":null,"abstract":"<p><p>In this study, we developed and validated the clinical significance of senescence-associated secretory phenotype (SASP)-related gene signature and explored its association with radiation therapy (RT) in patients with head and neck squamous cell carcinoma (HNSCC). First, we searched the three published review literature associated with SASP and selected all 81 genes to develop SASP-related gene signature. Then, 81 SASP-related genes were adapted to gene expression dataset from The Cancer Genome Atlas (TCGA). Patients with HNSCC of TCGA were classified into clusters 1 and 2 via unsupervised clustering according to SASP-related gene signature. Kaplan-Meier plot survival analysis showed that cluster 1 had a poorer prognosis than cluster 2 in 5-year overall survival and recurrence-free survival. Similarly, cluster 1 showed a worse prognosis than cluster 2 in three validation cohorts (E-MTAB-8588, FHCRC, and KHU). Cox proportional hazards regression observed that the SASP-related signature was an independent prognostic factor for patients with HNSCC. We also established a nomogram using a relevant clinical parameter and a risk score. Time-dependent receiver operating characteristic analysis was carried out to assess the accuracy of the prognostic risk model and nomogram. Senescence SASP-related gene signature was associated with the response to RT. Therefore, subsequent, in vitro experiments further validated the association between SASP-related gene signature and RT in HNSCC. In conclusion, we developed a SASP-related gene signature, which could predict survival of patients with HNSCC, and this gene signature provides new clinical evidence for the accurate diagnosis and targeted RT of HNSCC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1348-1359"},"PeriodicalIF":5.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunoproteasome activation expands the MHC class I immunopeptidome, unmasks neoantigens and enhances T-cell antimyeloma activity. 免疫蛋白酶体激活可扩展 MHC I 类免疫肽组,揭示新抗原并增强 T 细胞的抗骨髓瘤活性。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-08-30 DOI: 10.1158/1535-7163.MCT-23-0931
Priyanka S Rana, James J Ignatz-Hoover, Chunna Guo, Amber L Mosley, Ehsan Malek, Yuriy Fedorov, Drew J Adams, James J Driscoll

Proteasomes generate antigenic peptides that are presented on the tumor surface to cytotoxic T-lymphocytes (CTLs). Immunoproteasomes are highly-specialized proteasome variants that are expressed at higher levels in antigen-presenting cells and contain replacements of the three constitutive proteasome catalytic subunits to generate peptides with a hydrophobic C-terminus that fit within the groove of MHC class I (MHC-I) molecules. A hallmark of cancer is the ability to evade immunosurveillance by disrupting the antigen presentation machinery and downregulating MHC-I antigen presentation. High-throughput screening was performed to identify Compound A, a novel molecule that selectively increased immunoproteasome activity and expanded the number and diversity of MHC-I-bound peptides presented on multiple myeloma (MM) cells. Compound A increased the presentation of individual MHC-I-bound peptides >100-fold and unmasked tumor-specific neoantigens on myeloma cells. Global proteomic integral stability assays determined that Compound A binds the proteasome structural subunit PSMA1 and promotes association of the proteasome activator PA28α/β (PSME1/PSME2) with immunoproteasomes. CRISPR/Cas9 silencing of PSMA1, PSME1, or PSME2 as well as treatment with immunoproteasome-specific suicide inhibitors abolished the effects of Compound A on antigen presentation. Treatment of MM cell lines and patient bone marrow-derived CD138+ cells with Compound A increased the antimyeloma activity of allogenic and autologous T-cells. Compound A was well-tolerated in vivo and co-treatment with allogeneic T-cells reduced the growth of myeloma xenotransplants in NSG mice. Taken together, our results demonstrate the paradigm-shifting impact of immunoproteasome activators to diversify the antigenic landscape, expand the immunopeptidome, potentiate T-cell-directed therapy, and reveal actionable neoantigens for personalized T-cell immunotherapy.

蛋白酶体产生抗原肽,并在肿瘤表面呈现给细胞毒性 T 淋巴细胞(CTL)。免疫蛋白酶体是高度特化的蛋白酶体变体,在抗原递呈细胞中的表达量较高,包含三个组成型蛋白酶体催化亚基的替代物,生成的肽具有疏水性 C 端,适合 MHC I 类(MHC-I)分子的沟槽。癌症的一个特征是能够通过破坏抗原递呈机制和下调 MHC-I 抗原递呈来逃避免疫监视。高通量筛选确定了化合物 A,这是一种新型分子,可选择性地提高免疫蛋白酶体的活性,并增加多发性骨髓瘤(MM)细胞上呈递的 MHC-I 结合肽的数量和多样性。化合物 A 能使单个 MHC-I 结合肽的呈现率提高 100 倍以上,并能揭示骨髓瘤细胞上的肿瘤特异性新抗原。全局蛋白质组整体稳定性测定确定,化合物 A 能与蛋白酶体结构亚基 PSMA1 结合,并促进蛋白酶体激活剂 PA28α/β (PSME1/PSME2)与免疫蛋白酶体的结合。CRISPR/Cas9沉默PSMA1、PSME1或PSME2以及用免疫蛋白酶体特异性自杀抑制剂处理可消除化合物A对抗原呈递的影响。用化合物 A 处理 MM 细胞系和患者骨髓来源的 CD138+ 细胞可提高异体和自体 T 细胞的抗骨髓瘤活性。化合物 A 在体内耐受性良好,与异体 T 细胞联合处理可减少骨髓瘤异种移植在 NSG 小鼠体内的生长。综上所述,我们的研究结果表明了免疫蛋白酶体激活剂在使抗原景观多样化、扩大免疫肽体、增强T细胞导向疗法以及揭示可用于个性化T细胞免疫疗法的新抗原等方面的范式转换影响。
{"title":"Immunoproteasome activation expands the MHC class I immunopeptidome, unmasks neoantigens and enhances T-cell antimyeloma activity.","authors":"Priyanka S Rana, James J Ignatz-Hoover, Chunna Guo, Amber L Mosley, Ehsan Malek, Yuriy Fedorov, Drew J Adams, James J Driscoll","doi":"10.1158/1535-7163.MCT-23-0931","DOIUrl":"10.1158/1535-7163.MCT-23-0931","url":null,"abstract":"<p><p>Proteasomes generate antigenic peptides that are presented on the tumor surface to cytotoxic T-lymphocytes (CTLs). Immunoproteasomes are highly-specialized proteasome variants that are expressed at higher levels in antigen-presenting cells and contain replacements of the three constitutive proteasome catalytic subunits to generate peptides with a hydrophobic C-terminus that fit within the groove of MHC class I (MHC-I) molecules. A hallmark of cancer is the ability to evade immunosurveillance by disrupting the antigen presentation machinery and downregulating MHC-I antigen presentation. High-throughput screening was performed to identify Compound A, a novel molecule that selectively increased immunoproteasome activity and expanded the number and diversity of MHC-I-bound peptides presented on multiple myeloma (MM) cells. Compound A increased the presentation of individual MHC-I-bound peptides >100-fold and unmasked tumor-specific neoantigens on myeloma cells. Global proteomic integral stability assays determined that Compound A binds the proteasome structural subunit PSMA1 and promotes association of the proteasome activator PA28α/β (PSME1/PSME2) with immunoproteasomes. CRISPR/Cas9 silencing of PSMA1, PSME1, or PSME2 as well as treatment with immunoproteasome-specific suicide inhibitors abolished the effects of Compound A on antigen presentation. Treatment of MM cell lines and patient bone marrow-derived CD138+ cells with Compound A increased the antimyeloma activity of allogenic and autologous T-cells. Compound A was well-tolerated in vivo and co-treatment with allogeneic T-cells reduced the growth of myeloma xenotransplants in NSG mice. Taken together, our results demonstrate the paradigm-shifting impact of immunoproteasome activators to diversify the antigenic landscape, expand the immunopeptidome, potentiate T-cell-directed therapy, and reveal actionable neoantigens for personalized T-cell immunotherapy.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatty acid derivatization and cyclization of the immunomodulatory peptide RP-182 targeting CD206high macrophages improves anti-tumor activity. 针对 CD206 高巨噬细胞的免疫调节肽 RP-182 的脂肪酸衍生化和环化提高了抗肿瘤活性。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-08-30 DOI: 10.1158/1535-7163.MCT-23-0790
Sitanshu S Singh, Raul Calvo, Anju Kumari, Rushikesh V Sable, Yuhong Fang, Dingyin Tao, Xin Hu, Sarah Gray Castle, Saifun Nahar, Dandan Li, Emily Major, Tino W Sanchez, Rintaro Kato, Xin Xu, Jian Zhou, Liang Liu, Christopher A LeClair, Anton Simeonov, Bolormaa Baljinnyam, Mark J Henderson, Juan Marugan, Udo Rudloff

As tumor-associated macrophages (TAMs) exercise a plethora of pro-tumor and immune evasive functions, novel strategies targeting TAMs to inhibit tumor progression have emerged within the current arena of cancer immunotherapy. Activation of the mannose receptor 1 (Mrc1; CD206) is a recent approach that recognizes immune suppressive CD206high M2-like TAMs as a drug target. Ligation of CD206 both induces reprogramming of CD206high TAMs towards a pro-inflammatory phenotype and selectively triggers apoptosis in these cells. CD206-activating therapeutics are currently limited to the linear, 10mer peptide RP-182, 1, which is not a drug candidate. Here we sought to identify a better suitable candidate for future clinical development by synthesizing and evaluating a series of RP-182 analogues. Surprisingly, fatty acid derivative 1a (RP-182-PEG3-K(palmitic acid)) not only showed improved stability but also increased affinity to the CD206 receptor through enhanced interaction with a hydrophobic binding motif of CD206. Peptide 1a showed superior in vitro activity in cell-based assays of macrophage activation which was restricted to CD206high M2-polarized macrophages. Improvement of responses was disproportionally skewed towards improved induction of phagocytosis including cancer cell phagocytosis. 1a reprogrammed the immune landscape in genetically engineered murine KPC pancreatic tumors towards increased innate immune surveillance and improved tumor control, and effectively suppressed tumor growth of murine B16 melanoma allografts.

由于肿瘤相关巨噬细胞(TAMs)具有大量的促肿瘤和免疫回避功能,因此在当前的癌症免疫疗法领域出现了以 TAMs 为靶点抑制肿瘤进展的新策略。激活甘露糖受体 1(Mrc1;CD206)是最近一种将免疫抑制性 CD206 高 M2 样 TAMs 识别为药物靶点的方法。对 CD206 的连接既能诱导 CD206 高的 TAMs 重编程,使其趋向于促炎表型,又能选择性地触发这些细胞的凋亡。CD206 激活疗法目前仅限于线性 10 聚体肽 RP-182,1,它还不是候选药物。在此,我们试图通过合成和评估一系列 RP-182 类似物,为未来的临床开发找到更合适的候选药物。令人惊讶的是,脂肪酸衍生物 1a(RP-182-PEG3-K(棕榈酸))不仅提高了稳定性,还通过增强与 CD206 的疏水结合基团的相互作用提高了与 CD206 受体的亲和力。在基于细胞的巨噬细胞活化测试中,肽 1a 显示出更高的体外活性,这种活化仅限于 CD206 高的 M2 极化巨噬细胞。反应的改善不成比例地偏向于诱导吞噬功能的改善,包括癌细胞的吞噬功能。1a 重编程了基因工程小鼠 KPC 胰腺肿瘤的免疫格局,使其先天免疫监视增强,肿瘤控制得到改善,并有效抑制了小鼠 B16 黑色素瘤异种移植的肿瘤生长。
{"title":"Fatty acid derivatization and cyclization of the immunomodulatory peptide RP-182 targeting CD206high macrophages improves anti-tumor activity.","authors":"Sitanshu S Singh, Raul Calvo, Anju Kumari, Rushikesh V Sable, Yuhong Fang, Dingyin Tao, Xin Hu, Sarah Gray Castle, Saifun Nahar, Dandan Li, Emily Major, Tino W Sanchez, Rintaro Kato, Xin Xu, Jian Zhou, Liang Liu, Christopher A LeClair, Anton Simeonov, Bolormaa Baljinnyam, Mark J Henderson, Juan Marugan, Udo Rudloff","doi":"10.1158/1535-7163.MCT-23-0790","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-23-0790","url":null,"abstract":"<p><p>As tumor-associated macrophages (TAMs) exercise a plethora of pro-tumor and immune evasive functions, novel strategies targeting TAMs to inhibit tumor progression have emerged within the current arena of cancer immunotherapy. Activation of the mannose receptor 1 (Mrc1; CD206) is a recent approach that recognizes immune suppressive CD206high M2-like TAMs as a drug target. Ligation of CD206 both induces reprogramming of CD206high TAMs towards a pro-inflammatory phenotype and selectively triggers apoptosis in these cells. CD206-activating therapeutics are currently limited to the linear, 10mer peptide RP-182, 1, which is not a drug candidate. Here we sought to identify a better suitable candidate for future clinical development by synthesizing and evaluating a series of RP-182 analogues. Surprisingly, fatty acid derivative 1a (RP-182-PEG3-K(palmitic acid)) not only showed improved stability but also increased affinity to the CD206 receptor through enhanced interaction with a hydrophobic binding motif of CD206. Peptide 1a showed superior in vitro activity in cell-based assays of macrophage activation which was restricted to CD206high M2-polarized macrophages. Improvement of responses was disproportionally skewed towards improved induction of phagocytosis including cancer cell phagocytosis. 1a reprogrammed the immune landscape in genetically engineered murine KPC pancreatic tumors towards increased innate immune surveillance and improved tumor control, and effectively suppressed tumor growth of murine B16 melanoma allografts.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preclinical Characterization of ARX517, a Site-specific Stable PSMA-Targeted Antibody Drug Conjugate for Treatment of Metastatic Castration-Resistant Prostate Cancer. 用于治疗转移性钙化抗性前列腺癌的特异性稳定 PSMA 靶向抗体药物共轭物 ARX517 的临床前特征。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-08-22 DOI: 10.1158/1535-7163.MCT-23-0927
Lillian K Skidmore, David Mills, Ji Young Kim, Nick A Knudsen, Jay D Nelson, Manoj Pal, Jianing Wang, Kedar Gc, Michael J Gray, Wisam Barkho, Prathap Nagaraja Shastri, Mysore P Ramprasad, Feng Tian, Daniel O'Connor, Ying J Buechler, Shawn Shao-Hui Zhang

Metastatic castration-resistant prostate cancer (mCRPC) is an advanced disease in which patients ultimately fail standard of care androgen-deprivation therapies and exhibit poor survival rates. The prostate-specific membrane antigen (PSMA) has been validated as a mCRPC tumor antigen with over-expression in tumors and low expression in healthy tissues. Using our proprietary technology for incorporating synthetic amino acids (SAAs) into proteins at selected sites, we have developed ARX517, an antibody drug conjugate (ADC) which is composed of a humanized anti-PSMA antibody site-specifically conjugated to a tubulin inhibitor at a drug-to-antibody ratio of 2. After binding PSMA, ARX517 is internalized and catabolized, leading to cytotoxic payload delivery and apoptosis. To minimize premature payload release and maximize delivery to tumor cells, ARX517 employs a non-cleavable PEG linker and stable oxime conjugation enabled via SAA protein incorporation to ensure its overall stability. In vitro studies demonstrate that ARX517 selectively induces cytotoxicity of PSMA-expressing tumor cell lines. ARX517 exhibited a long terminal half-life and high serum exposure in mice, and dose-dependent anti-tumor activity in both enzalutamide-sensitive and -resistant CDX and PDX prostate cancer models. Repeat dose toxicokinetic studies in non-human primates demonstrated ARX517 was tolerated at exposures well above therapeutic exposures in mouse pharmacology studies, indicating a wide therapeutic index. In summary, ARX517 inhibited tumor growth in diverse mCRPC models, demonstrated a tolerable safety profile in monkeys, and had a wide therapeutic index based on preclinical exposure data. Based on the encouraging preclinical data, ARX517 is currently being evaluated in a Phase 1 clinical trial ([NCT04662580]).

转移性抗性前列腺癌(mCRPC)是一种晚期疾病,患者最终无法接受标准的雄激素剥夺疗法,生存率很低。前列腺特异性膜抗原(PSMA)已被证实是一种在肿瘤中过度表达而在健康组织中低表达的 mCRPC 肿瘤抗原。利用我们在选定位点将合成氨基酸 (SAAs) 加入蛋白质的专有技术,我们开发出了抗体药物共轭物 (ADC)--ARX517,它由人源化的抗 PSMA 抗体位点特异性地与微管蛋白抑制剂结合而成,药物与抗体的比例为 2。为了最大限度地减少有效载荷的过早释放并最大限度地向肿瘤细胞递送,ARX517 采用了不易破碎的 PEG 连接体,并通过 SAA 蛋白结合实现稳定的肟连接,以确保其整体稳定性。体外研究表明,ARX517 可选择性地诱导表达 PSMA 的肿瘤细胞株产生细胞毒性。ARX517 在小鼠体内具有较长的终末半衰期和较高的血清暴露量,在对恩扎鲁胺敏感和耐药的 CDX 和 PDX 前列腺癌模型中均表现出剂量依赖性抗肿瘤活性。在非人灵长类动物中进行的重复剂量毒物动力学研究表明,ARX517 的耐受暴露量远高于小鼠药理学研究中的治疗暴露量,这表明它具有广泛的治疗指数。总之,ARX517 可抑制多种 mCRPC 模型中的肿瘤生长,在猴子体内表现出可耐受的安全性,并且根据临床前暴露数据,具有广泛的治疗指数。基于令人鼓舞的临床前数据,ARX517 目前正接受 1 期临床试验([NCT04662580])的评估。
{"title":"Preclinical Characterization of ARX517, a Site-specific Stable PSMA-Targeted Antibody Drug Conjugate for Treatment of Metastatic Castration-Resistant Prostate Cancer.","authors":"Lillian K Skidmore, David Mills, Ji Young Kim, Nick A Knudsen, Jay D Nelson, Manoj Pal, Jianing Wang, Kedar Gc, Michael J Gray, Wisam Barkho, Prathap Nagaraja Shastri, Mysore P Ramprasad, Feng Tian, Daniel O'Connor, Ying J Buechler, Shawn Shao-Hui Zhang","doi":"10.1158/1535-7163.MCT-23-0927","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-23-0927","url":null,"abstract":"<p><p>Metastatic castration-resistant prostate cancer (mCRPC) is an advanced disease in which patients ultimately fail standard of care androgen-deprivation therapies and exhibit poor survival rates. The prostate-specific membrane antigen (PSMA) has been validated as a mCRPC tumor antigen with over-expression in tumors and low expression in healthy tissues. Using our proprietary technology for incorporating synthetic amino acids (SAAs) into proteins at selected sites, we have developed ARX517, an antibody drug conjugate (ADC) which is composed of a humanized anti-PSMA antibody site-specifically conjugated to a tubulin inhibitor at a drug-to-antibody ratio of 2. After binding PSMA, ARX517 is internalized and catabolized, leading to cytotoxic payload delivery and apoptosis. To minimize premature payload release and maximize delivery to tumor cells, ARX517 employs a non-cleavable PEG linker and stable oxime conjugation enabled via SAA protein incorporation to ensure its overall stability. In vitro studies demonstrate that ARX517 selectively induces cytotoxicity of PSMA-expressing tumor cell lines. ARX517 exhibited a long terminal half-life and high serum exposure in mice, and dose-dependent anti-tumor activity in both enzalutamide-sensitive and -resistant CDX and PDX prostate cancer models. Repeat dose toxicokinetic studies in non-human primates demonstrated ARX517 was tolerated at exposures well above therapeutic exposures in mouse pharmacology studies, indicating a wide therapeutic index. In summary, ARX517 inhibited tumor growth in diverse mCRPC models, demonstrated a tolerable safety profile in monkeys, and had a wide therapeutic index based on preclinical exposure data. Based on the encouraging preclinical data, ARX517 is currently being evaluated in a Phase 1 clinical trial ([NCT04662580]).</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trametinib potentiates anti-PD-1 efficacy in tumors established from chemotherapy-primed pancreatic cancer cells. 曲美替尼可增强化疗诱导的胰腺癌细胞形成的肿瘤的抗PD-1疗效。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-08-20 DOI: 10.1158/1535-7163.MCT-23-0833
Thao D Pham, Anastasia E Metropulos, Nida Mubin, Jeffrey H Becker, Dhavan Shah, Christina Spaulding, Mario A Shields, David J Bentrem, Hidayatullah G Munshi

Despite advances in immune checkpoint inhibitors (ICIs), chemotherapy remains the standard therapy for patients with pancreatic ductal adenocarcinoma (PDAC). As the combinations of chemotherapy, including the FOLFIRINOX (5-fluorouracil (5FU), irinotecan, and oxaliplatin) regimen, and ICIs have failed to demonstrate clinical benefit in patients with metastatic PDAC tumors, there is increasing interest in identifying therapeutic approaches to potentiate ICI efficacy in PDAC patients. In this study, we report that neoadjuvant FOLFRINOX-treated human PDAC tumors exhibit increased MEK/ERK activation. We also show elevated MEK/ERK signaling in ex vivo PDAC slice cultures and cell lines treated with a combination of 5FU (F), irinotecan (I), and oxaliplatin (O) (FIO). In addition, we find that the KPC-FIO cells, established from repeated treatment of mouse PDAC cell lines with 6-8 cycles of FIO, display enhanced ERK phosphorylation and demonstrate increased sensitivity to MEK inhibition in vitro and in vivo. Significantly, the KPC-FIO cells develop tumors with a pro-inflammatory immune profile similar to human PDAC tumors following neoadjuvant FOLFIRINOX treatment. Furthermore, we found that the MEK inhibitor Trametinib enables additional infiltration of highly functional CD8+ T cells into the KPC-FIO tumors and potentiates the efficacy of anti-PD-1 antibody in syngeneic mouse models. Our findings provide a rationale for combining Trametinib and anti-PD-1 antibodies in PDAC patients following neoadjuvant or short-term FOLFIRINOX treatment to achieve effective anti-tumor responses.

尽管免疫检查点抑制剂(ICIs)取得了进展,但化疗仍是胰腺导管腺癌(PDAC)患者的标准疗法。由于化疗(包括 FOLFIRINOX(5-氟尿嘧啶(5FU)、伊立替康和奥沙利铂)方案)和 ICIs 的联合治疗未能在转移性 PDAC 肿瘤患者中显示出临床疗效,因此人们越来越关注寻找治疗方法来增强 ICI 在 PDAC 患者中的疗效。在本研究中,我们报告了新辅助 FOLFRINOX 治疗的人类 PDAC 肿瘤表现出 MEK/ERK 激活增加。我们还发现,在体内外用 5FU(F)、伊立替康(I)和奥沙利铂(O)(FIO)联合治疗的 PDAC 切片培养物和细胞系中,MEK/ERK 信号增强。此外,我们还发现,小鼠 PDAC 细胞系经 6-8 个周期的 FIO 反复处理后建立的 KPC-FIO 细胞显示出增强的 ERK 磷酸化,并在体外和体内显示出对 MEK 抑制剂更高的敏感性。值得注意的是,KPC-FIO 细胞在新辅助 FOLFIRINOX 治疗后,肿瘤发生了与人类 PDAC 肿瘤相似的促炎免疫特征。此外,我们还发现,MEK 抑制剂曲美替尼可使更多高功能 CD8+ T 细胞渗入 KPC-FIO 肿瘤,并增强抗 PD-1 抗体在合成小鼠模型中的疗效。我们的研究结果为新辅助治疗或短期FOLFIRINOX治疗后的PDAC患者联合使用Trametinib和抗PD-1抗体以实现有效的抗肿瘤反应提供了理论依据。
{"title":"Trametinib potentiates anti-PD-1 efficacy in tumors established from chemotherapy-primed pancreatic cancer cells.","authors":"Thao D Pham, Anastasia E Metropulos, Nida Mubin, Jeffrey H Becker, Dhavan Shah, Christina Spaulding, Mario A Shields, David J Bentrem, Hidayatullah G Munshi","doi":"10.1158/1535-7163.MCT-23-0833","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-23-0833","url":null,"abstract":"<p><p>Despite advances in immune checkpoint inhibitors (ICIs), chemotherapy remains the standard therapy for patients with pancreatic ductal adenocarcinoma (PDAC). As the combinations of chemotherapy, including the FOLFIRINOX (5-fluorouracil (5FU), irinotecan, and oxaliplatin) regimen, and ICIs have failed to demonstrate clinical benefit in patients with metastatic PDAC tumors, there is increasing interest in identifying therapeutic approaches to potentiate ICI efficacy in PDAC patients. In this study, we report that neoadjuvant FOLFRINOX-treated human PDAC tumors exhibit increased MEK/ERK activation. We also show elevated MEK/ERK signaling in ex vivo PDAC slice cultures and cell lines treated with a combination of 5FU (F), irinotecan (I), and oxaliplatin (O) (FIO). In addition, we find that the KPC-FIO cells, established from repeated treatment of mouse PDAC cell lines with 6-8 cycles of FIO, display enhanced ERK phosphorylation and demonstrate increased sensitivity to MEK inhibition in vitro and in vivo. Significantly, the KPC-FIO cells develop tumors with a pro-inflammatory immune profile similar to human PDAC tumors following neoadjuvant FOLFIRINOX treatment. Furthermore, we found that the MEK inhibitor Trametinib enables additional infiltration of highly functional CD8+ T cells into the KPC-FIO tumors and potentiates the efficacy of anti-PD-1 antibody in syngeneic mouse models. Our findings provide a rationale for combining Trametinib and anti-PD-1 antibodies in PDAC patients following neoadjuvant or short-term FOLFIRINOX treatment to achieve effective anti-tumor responses.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting PDHK1 by DCA to restore NK cell function in hepatocellular carcinoma. 通过 DCA 靶向 PDHK1 恢复肝细胞癌中 NK 细胞的功能
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-08-20 DOI: 10.1158/1535-7163.MCT-24-0222
Xinyi Yang, Yuanyuan Liu, Peng Wang, Min Li, Tong Xiang, Songzuo Xie, Minxing Li, Yan Wang, Desheng Weng, Jingjing Zhao

Pyruvate dehydrogenase complex is a crucial enzyme involved in the oxidation of glucose. It is regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase. Studies have demonstrated that pyruvate dehydrogenase kinase 1 (PDHK1), a key enzyme in glucose metabolism, behaves like oncogenes. It is highly expressed in tumors and is associated with poor patient prognosis. However, there is limited research on how PDHK1 affects immune cell function. We have established a model of natural killer (NK) cell exhaustion to investigate the impact of dichloroacetate (DCA) on NK cell function. The production of Granzyme B, IFN-γ, TNF-α, and CD107a by NK cells was explored by flow cytometry. The real-time live cell imaging system was used to monitor the ability of NK cells against tumor cells. The Seahorse analyzer was utilized to measure the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of NK cells. The mouse model was used to investigate the potential of combining DCA with adjuvant NK cell infusion. Our study demonstrated that the hepatocellular carcinoma (HCC) microenvironment mediated NK cellular exhaustion, high expression of PDHK1 and reduced cytokine secretion. We discovered that the PDHK1 inhibitor DCA enhances the activity and function of exhausted NK cells infiltrating the tumor microenvironment. Furthermore, in a subcutaneous HCC mouse model, DCA combined with NK cell treatment resulted in retarding cancer progression. This study indicates the potential of DCA in rescuing NK cell exhaustion and eliciting anti-tumor immunity.

丙酮酸脱氢酶复合物是参与葡萄糖氧化的一种重要酶。它受丙酮酸脱氢酶激酶和丙酮酸脱氢酶磷酸酶的调控。研究表明,丙酮酸脱氢酶激酶 1(PDHK1)是葡萄糖代谢中的一个关键酶,其行为类似于癌基因。它在肿瘤中高表达,与患者预后不良有关。然而,关于 PDHK1 如何影响免疫细胞功能的研究还很有限。我们建立了一个自然杀伤(NK)细胞衰竭模型,研究二氯乙酸(DCA)对NK细胞功能的影响。我们用流式细胞仪检测了 NK 细胞产生的 Granzyme B、IFN-γ、TNF-α 和 CD107a。实时活细胞成像系统用于监测 NK 细胞对抗肿瘤细胞的能力。海马分析仪用于测量 NK 细胞的耗氧率(OCR)和细胞外酸化率(ECAR)。我们利用小鼠模型研究了DCA与NK细胞辅助输注相结合的潜力。我们的研究表明,肝细胞癌(HCC)微环境介导了 NK 细胞衰竭、PDHK1 高表达和细胞因子分泌减少。我们发现,PDHK1 抑制剂 DCA 能增强浸润肿瘤微环境的衰竭 NK 细胞的活性和功能。此外,在皮下 HCC 小鼠模型中,DCA 与 NK 细胞联合治疗可延缓癌症进展。这项研究表明,DCA 在挽救 NK 细胞衰竭和激发抗肿瘤免疫方面具有潜力。
{"title":"Targeting PDHK1 by DCA to restore NK cell function in hepatocellular carcinoma.","authors":"Xinyi Yang, Yuanyuan Liu, Peng Wang, Min Li, Tong Xiang, Songzuo Xie, Minxing Li, Yan Wang, Desheng Weng, Jingjing Zhao","doi":"10.1158/1535-7163.MCT-24-0222","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0222","url":null,"abstract":"<p><p>Pyruvate dehydrogenase complex is a crucial enzyme involved in the oxidation of glucose. It is regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase. Studies have demonstrated that pyruvate dehydrogenase kinase 1 (PDHK1), a key enzyme in glucose metabolism, behaves like oncogenes. It is highly expressed in tumors and is associated with poor patient prognosis. However, there is limited research on how PDHK1 affects immune cell function. We have established a model of natural killer (NK) cell exhaustion to investigate the impact of dichloroacetate (DCA) on NK cell function. The production of Granzyme B, IFN-γ, TNF-α, and CD107a by NK cells was explored by flow cytometry. The real-time live cell imaging system was used to monitor the ability of NK cells against tumor cells. The Seahorse analyzer was utilized to measure the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of NK cells. The mouse model was used to investigate the potential of combining DCA with adjuvant NK cell infusion. Our study demonstrated that the hepatocellular carcinoma (HCC) microenvironment mediated NK cellular exhaustion, high expression of PDHK1 and reduced cytokine secretion. We discovered that the PDHK1 inhibitor DCA enhances the activity and function of exhausted NK cells infiltrating the tumor microenvironment. Furthermore, in a subcutaneous HCC mouse model, DCA combined with NK cell treatment resulted in retarding cancer progression. This study indicates the potential of DCA in rescuing NK cell exhaustion and eliciting anti-tumor immunity.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separable cell cycle arrest and immune response elicited through pharmacological CDK4/6 and MEK inhibition in RASmut disease models. 在 RASmut 疾病模型中通过药理 CDK4/6 和 MEK 抑制引起可分离的细胞周期停滞和免疫反应。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-08-16 DOI: 10.1158/1535-7163.MCT-24-0369
Jin Wu, Jianxin Wang, Thomas N O'Connor, Stephanie L Tzetzo, Katerina V Gurova, Erik S Knudsen, Agnieszka K Witkiewicz

The combination of CDK4/6 and MEK inhibition as a therapeutic strategy has shown promise in various cancer models, particularly in those harboring RAS mutations. An initial high-throughput drug screen identified a high synergy between the CDK4/6 inhibitor palbociclib and the MEK inhibitor trametinib when used in combination in soft tissue sarcomas. In RAS mutant models, combination treatment with palbociclib and trametinib induced significant G1 cell cycle arrest, resulting in a marked reduction in cell proliferation and growth. CRISPR-mediated RB1 depletion resulted in a decreased response to CDK4/6 and MEK inhibition, which was validated in both cell culture and xenograft models. Beyond its cell cycle inhibitory effects, pathway enrichment analysis revealed the robust activation of interferon pathways upon CDK4/6 and MEK inhibition. This induction of gene expression was associated with the upregulation of retroviral elements. The TBK1(TANK-binding kinase 1) inhibitor GSK8612 selectively blocked the induction of interferon-related genes induced by palbociclib and trametinib treatment, and highlighted the separable epigenetic responses elicited by combined CDK4/6 and MEK inhibition. Together, these findings provide key mechanistic insights into the therapeutic potential of CDK4/6 and MEK inhibition in soft tissue sarcoma.

CDK4/6和MEK抑制剂联合作为一种治疗策略已在各种癌症模型中显示出前景,尤其是在携带RAS突变的癌症模型中。最初的高通量药物筛选发现,CDK4/6抑制剂palbociclib和MEK抑制剂曲美替尼联用治疗软组织肉瘤具有高度协同作用。在RAS突变模型中,palbociclib和曲美替尼的联合治疗可诱导G1细胞周期显著停滞,从而明显减少细胞的增殖和生长。CRISPR 介导的 RB1 缺失导致对 CDK4/6 和 MEK 抑制的反应减弱,这在细胞培养和异种移植模型中都得到了验证。除了细胞周期抑制作用外,通路富集分析还显示,CDK4/6和MEK抑制可显著激活干扰素通路。这种基因表达的诱导与逆转录病毒元件的上调有关。TBK1(TANK结合激酶1)抑制剂GSK8612选择性地阻断了palbociclib和曲美替尼治疗诱导的干扰素相关基因的诱导,并强调了CDK4/6和MEK联合抑制引起的可分离的表观遗传学反应。总之,这些发现为CDK4/6和MEK抑制在软组织肉瘤中的治疗潜力提供了重要的机理启示。
{"title":"Separable cell cycle arrest and immune response elicited through pharmacological CDK4/6 and MEK inhibition in RASmut disease models.","authors":"Jin Wu, Jianxin Wang, Thomas N O'Connor, Stephanie L Tzetzo, Katerina V Gurova, Erik S Knudsen, Agnieszka K Witkiewicz","doi":"10.1158/1535-7163.MCT-24-0369","DOIUrl":"10.1158/1535-7163.MCT-24-0369","url":null,"abstract":"<p><p>The combination of CDK4/6 and MEK inhibition as a therapeutic strategy has shown promise in various cancer models, particularly in those harboring RAS mutations. An initial high-throughput drug screen identified a high synergy between the CDK4/6 inhibitor palbociclib and the MEK inhibitor trametinib when used in combination in soft tissue sarcomas. In RAS mutant models, combination treatment with palbociclib and trametinib induced significant G1 cell cycle arrest, resulting in a marked reduction in cell proliferation and growth. CRISPR-mediated RB1 depletion resulted in a decreased response to CDK4/6 and MEK inhibition, which was validated in both cell culture and xenograft models. Beyond its cell cycle inhibitory effects, pathway enrichment analysis revealed the robust activation of interferon pathways upon CDK4/6 and MEK inhibition. This induction of gene expression was associated with the upregulation of retroviral elements. The TBK1(TANK-binding kinase 1) inhibitor GSK8612 selectively blocked the induction of interferon-related genes induced by palbociclib and trametinib treatment, and highlighted the separable epigenetic responses elicited by combined CDK4/6 and MEK inhibition. Together, these findings provide key mechanistic insights into the therapeutic potential of CDK4/6 and MEK inhibition in soft tissue sarcoma.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing the Potential of FAP-IL-12mut TMEkine™ for Targeted and Enhanced Anti-tumor Responses. 利用 FAP-IL-12mut TMEkine™ 的潜力,有针对性地增强抗肿瘤反应。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-08-16 DOI: 10.1158/1535-7163.MCT-24-0125
Dahea Lee, Dongsu Kim, Donggeon Kim, Jisu Kang, Kiram Lee, Hyunji Lee, Yujin Yoon, Youngin Lee, Nahmju Kim, Byoung Chul Cho, Jihoon Chang, Byoung Chul Lee

While cancer immunotherapy has yielded encouraging outcomes in hematological malignancies, it has faced challenges in achieving the same level of effectiveness in numerous solid tumors, primarily because of the presence of immune-suppressive tumor microenvironments (TMEs). The immunosuppressive qualities of the TME have generated considerable interest, making it a focal point for treatments aimed at enhancing immune responses and inhibiting tumor progression. Fibroblast activation protein (FAP), an attractive candidate for targeted immunotherapy, is prominently expressed in the TME of various solid tumors. Interleukin-12 (IL-12), recognized as a key mediator of immune responses, has been explored as a potential candidate for cancer treatment. Nevertheless, initial efforts to administer IL-12 systemically demonstrated limited efficacy and notable side effects, emphasizing the necessity for innovation. To address these concerns, our molecules incorporated specific IL-12 mutations, called IL-12mut, which reduced toxicity. This study explored the therapeutic potential of the FAP-IL-12mut TMEkine™-a novel immunotherapeutic agent selectively engineered to target FAP-expressing cells in preclinical cancer models. Our preclinical results, conducted across diverse murine cancer models, demonstrated that FAP-IL-12mut significantly inhibits tumor growth, enhances immune cell infiltration, and promotes a shift toward a cytotoxic immune activation profile. These findings suggest that FAP-IL-12mut could offer effective cancer treatment strategies.

虽然癌症免疫疗法在血液恶性肿瘤中取得了令人鼓舞的成果,但在众多实体瘤中取得同样的疗效却面临着挑战,这主要是因为存在免疫抑制性肿瘤微环境(TME)。肿瘤微环境的免疫抑制特性引起了人们的极大兴趣,使其成为旨在增强免疫反应和抑制肿瘤进展的治疗方法的焦点。成纤维细胞活化蛋白(FAP)是一种有吸引力的候选靶向免疫疗法,在各种实体瘤的 TME 中都有显著表达。白细胞介素-12(IL-12)被认为是免疫反应的关键介质,一直被视为癌症治疗的潜在候选药物。然而,最初对 IL-12 进行系统给药的努力显示出有限的疗效和显著的副作用,这强调了创新的必要性。为了解决这些问题,我们的分子加入了特定的 IL-12 突变,称为 IL-12mut,从而降低了毒性。本研究探索了 FAP-IL-12mut TMEkine™ 的治疗潜力--这是一种新型免疫治疗剂,经过选择性设计,可在临床前癌症模型中靶向 FAP 表达细胞。我们在各种小鼠癌症模型中进行的临床前研究结果表明,FAP-IL-12mut 能显著抑制肿瘤生长,增强免疫细胞浸润,并促进向细胞毒性免疫激活模式转变。这些研究结果表明,FAP-IL-12mut 可提供有效的癌症治疗策略。
{"title":"Harnessing the Potential of FAP-IL-12mut TMEkine™ for Targeted and Enhanced Anti-tumor Responses.","authors":"Dahea Lee, Dongsu Kim, Donggeon Kim, Jisu Kang, Kiram Lee, Hyunji Lee, Yujin Yoon, Youngin Lee, Nahmju Kim, Byoung Chul Cho, Jihoon Chang, Byoung Chul Lee","doi":"10.1158/1535-7163.MCT-24-0125","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0125","url":null,"abstract":"<p><p>While cancer immunotherapy has yielded encouraging outcomes in hematological malignancies, it has faced challenges in achieving the same level of effectiveness in numerous solid tumors, primarily because of the presence of immune-suppressive tumor microenvironments (TMEs). The immunosuppressive qualities of the TME have generated considerable interest, making it a focal point for treatments aimed at enhancing immune responses and inhibiting tumor progression. Fibroblast activation protein (FAP), an attractive candidate for targeted immunotherapy, is prominently expressed in the TME of various solid tumors. Interleukin-12 (IL-12), recognized as a key mediator of immune responses, has been explored as a potential candidate for cancer treatment. Nevertheless, initial efforts to administer IL-12 systemically demonstrated limited efficacy and notable side effects, emphasizing the necessity for innovation. To address these concerns, our molecules incorporated specific IL-12 mutations, called IL-12mut, which reduced toxicity. This study explored the therapeutic potential of the FAP-IL-12mut TMEkine™-a novel immunotherapeutic agent selectively engineered to target FAP-expressing cells in preclinical cancer models. Our preclinical results, conducted across diverse murine cancer models, demonstrated that FAP-IL-12mut significantly inhibits tumor growth, enhances immune cell infiltration, and promotes a shift toward a cytotoxic immune activation profile. These findings suggest that FAP-IL-12mut could offer effective cancer treatment strategies.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting CD33+ Acute Myeloid Leukemia with GLK-33, a Lintuzumab-Auristatin Conjugate with a Wide Therapeutic Window. 用GLK-33靶向CD33+急性髓性白血病,GLK-33是一种具有宽治疗窗口期的林妥珠单抗-阿瑞斯汀共轭物。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-08-01 DOI: 10.1158/1535-7163.MCT-23-0720
Tero Satomaa, Henna Pynnönen, Olli Aitio, Jukka O Hiltunen, Virve Pitkänen, Tuula Lähteenmäki, Titta Kotiranta, Annamari Heiskanen, Anna-Liisa Hänninen, Ritva Niemelä, Jari Helin, Heikki Kuusanmäki, Ida Vänttinen, Ramji Rathod, Anni I Nieminen, Emrah Yatkin, Caroline A Heckman, Mika Kontro, Juhani Saarinen

CD33 (Siglec-3) is a cell surface receptor expressed in approximately 90% of acute myeloid leukemia (AML) blasts, making it an attractive target for therapy of AML. Although previous CD33-targeting antibody-drug conjugates (ADC) like gemtuzumab ozogamicin (GO, Mylotarg) have shown efficacy in AML treatment, they have suffered from toxicity and narrow therapeutic window. This study aimed to develop a novelADCwith improved tolerability and a wider therapeutic window. GLK-33 consists of the anti-CD33 antibody lintuzumab and eight mavg-MMAU auristatin linkerpayloads per antibody. The experimental methods included testing in cell cultures, patient-derived samples, mouse xenograft models, and rat toxicology studies. GLK-33 exhibited remarkable efficacy in reducing cell viability within CD33-positive leukemia cell lines and primary AML samples. Notably, GLK-33 demonstrated antitumor activity at single dose as low as 300 mg/kg in mice, while maintaining tolerability at single dose of 20 to 30 mg/kg in rats. In contrast with both GO and lintuzumab vedotin, GLK-33 exhibited a wide therapeutic window and activity against multidrug-resistant cells. The development of GLK-33 addresses the limitations of previous ADCs, offering a wider therapeutic window, improved tolerability, and activity against drug-resistant leukemia cells. These findings encourage further exploration of GLK-33 in AML through clinical trials.

CD33(Siglec-3)是一种细胞表面受体,在大约 90% 的急性髓性白血病(AML)血块中都有表达,因此成为治疗急性髓性白血病(AML)的一个极具吸引力的靶点。虽然之前的CD33靶向抗体-药物共轭物(ADCs),如吉妥珠单抗-奥佐米星(GO,Mylotarg)在急性髓性白血病治疗中显示出了疗效,但它们也存在毒性和治疗窗口狭窄的问题。这项研究旨在开发一种耐受性更好、治疗窗口期更宽的新型 ADC。GLK-33 由抗 CD33 抗体林妥珠单抗和每个抗体的 8 个 mavg-MMAU auristatin 连接子负载组成。实验方法包括在细胞培养物、患者样本、小鼠异种移植模型和大鼠毒理学研究中进行测试。GLK-33 在降低 CD33 阳性白血病细胞系和原发性急性髓细胞白血病样本中的细胞活力方面表现出显著的功效。值得注意的是,GLK-33 在小鼠体内的单次剂量低至 300 微克/千克时就表现出抗肿瘤活性,而在大鼠体内的单次剂量为 20-30 毫克/千克时也能保持耐受性。与 GO 和 Lintuzumab vedotin 相比,GLK-33 的治疗窗口期较宽,而且对耐多药细胞具有活性。GLK-33 的开发解决了以往 ADC 的局限性,提供了更宽的治疗窗口期、更好的耐受性以及对耐药白血病细胞的活性。这些发现鼓励人们通过临床试验进一步探索 GLK-33 在急性髓细胞白血病中的应用。
{"title":"Targeting CD33+ Acute Myeloid Leukemia with GLK-33, a Lintuzumab-Auristatin Conjugate with a Wide Therapeutic Window.","authors":"Tero Satomaa, Henna Pynnönen, Olli Aitio, Jukka O Hiltunen, Virve Pitkänen, Tuula Lähteenmäki, Titta Kotiranta, Annamari Heiskanen, Anna-Liisa Hänninen, Ritva Niemelä, Jari Helin, Heikki Kuusanmäki, Ida Vänttinen, Ramji Rathod, Anni I Nieminen, Emrah Yatkin, Caroline A Heckman, Mika Kontro, Juhani Saarinen","doi":"10.1158/1535-7163.MCT-23-0720","DOIUrl":"10.1158/1535-7163.MCT-23-0720","url":null,"abstract":"<p><p>CD33 (Siglec-3) is a cell surface receptor expressed in approximately 90% of acute myeloid leukemia (AML) blasts, making it an attractive target for therapy of AML. Although previous CD33-targeting antibody-drug conjugates (ADC) like gemtuzumab ozogamicin (GO, Mylotarg) have shown efficacy in AML treatment, they have suffered from toxicity and narrow therapeutic window. This study aimed to develop a novelADCwith improved tolerability and a wider therapeutic window. GLK-33 consists of the anti-CD33 antibody lintuzumab and eight mavg-MMAU auristatin linkerpayloads per antibody. The experimental methods included testing in cell cultures, patient-derived samples, mouse xenograft models, and rat toxicology studies. GLK-33 exhibited remarkable efficacy in reducing cell viability within CD33-positive leukemia cell lines and primary AML samples. Notably, GLK-33 demonstrated antitumor activity at single dose as low as 300 mg/kg in mice, while maintaining tolerability at single dose of 20 to 30 mg/kg in rats. In contrast with both GO and lintuzumab vedotin, GLK-33 exhibited a wide therapeutic window and activity against multidrug-resistant cells. The development of GLK-33 addresses the limitations of previous ADCs, offering a wider therapeutic window, improved tolerability, and activity against drug-resistant leukemia cells. These findings encourage further exploration of GLK-33 in AML through clinical trials.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1073-1083"},"PeriodicalIF":5.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140336249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cancer Therapeutics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1