Pub Date : 2024-11-04DOI: 10.1158/1535-7163.MCT-24-0187
Foram Dave, Poonam Vaghela, Bryony Heath, Zuzana Dunster, Elena Dubinina, Dhruma Thakker, Katie Mann, Joe Chadwick, Gaëlle Cane, Bubacarr G Kaira, Omar J Mohammed, Ruhul Choudhury, Samantha Paston, Tina Parsons, Mireille Vankemmelbeke, Lindy Durrant
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Fucosyl-GM1 (FucGM1) is a glycolipid overexpressed in the majority of SCLC tumors but virtually absent from normal healthy tissues. In this study, we validate a FucGM1-targeting T cell-redirecting bispecific (TCB) antibody for the treatment of SCLC. More than 80% of patient-derived xenograft tissues of SCLC expressed FucGM1, whereas only three normal human tissues: pituitary, thymus, and skin expressed low and focal FucGM1. A FucGM1-targeting TCB (SC134-TCB), based on the Fc-silenced humanized SC134 antibody, exhibited nanomolar efficiency in FucGM1 glycolipid and SCLC cell surface binding. SC134-TCB showed potent ex vivo killing of SCLC cell lines with donor-dependent EC50 ranging from 7.2 pmol/L up to 211.0 pmol/L, effectively activating T cells, with picomolar efficiency, coinciding with target-dependent cytokine production such as IFNγ, IL2, and TNFα and robust proliferation of both CD4 and CD8 T cells. The ex vivo SC134-TCB tumor controlling activity translated into an effective in vivo anti-DMS79 tumor therapy, resulting in 100% tumor-free survival in a human peripheral blood mononuclear cell admixed setting and 40% overall survival (55% tumor growth inhibition) with systemically administered human peripheral blood mononuclear cells. Combination treatment with atezolizumab further enhanced survival and tumor growth inhibition (up to 73%). A 10-fold SC134-TCB dose reduction maintained the strong in vivo antitumor impact, translating into 70% overall survival (P < 0.0001). Whole-blood incubation with SC134-TCB, as well as healthy human primary cells analysis, revealed no target-independent cytokine production. SC134-TCB presents an attractive candidate to deliver an effective immunotherapy treatment option for patients with SCLC.
{"title":"SC134-TCB Targeting Fucosyl-GM1, a T Cell-Engaging Antibody with Potent Antitumor Activity in Preclinical Small Cell Lung Cancer Models.","authors":"Foram Dave, Poonam Vaghela, Bryony Heath, Zuzana Dunster, Elena Dubinina, Dhruma Thakker, Katie Mann, Joe Chadwick, Gaëlle Cane, Bubacarr G Kaira, Omar J Mohammed, Ruhul Choudhury, Samantha Paston, Tina Parsons, Mireille Vankemmelbeke, Lindy Durrant","doi":"10.1158/1535-7163.MCT-24-0187","DOIUrl":"10.1158/1535-7163.MCT-24-0187","url":null,"abstract":"<p><p>Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Fucosyl-GM1 (FucGM1) is a glycolipid overexpressed in the majority of SCLC tumors but virtually absent from normal healthy tissues. In this study, we validate a FucGM1-targeting T cell-redirecting bispecific (TCB) antibody for the treatment of SCLC. More than 80% of patient-derived xenograft tissues of SCLC expressed FucGM1, whereas only three normal human tissues: pituitary, thymus, and skin expressed low and focal FucGM1. A FucGM1-targeting TCB (SC134-TCB), based on the Fc-silenced humanized SC134 antibody, exhibited nanomolar efficiency in FucGM1 glycolipid and SCLC cell surface binding. SC134-TCB showed potent ex vivo killing of SCLC cell lines with donor-dependent EC50 ranging from 7.2 pmol/L up to 211.0 pmol/L, effectively activating T cells, with picomolar efficiency, coinciding with target-dependent cytokine production such as IFNγ, IL2, and TNFα and robust proliferation of both CD4 and CD8 T cells. The ex vivo SC134-TCB tumor controlling activity translated into an effective in vivo anti-DMS79 tumor therapy, resulting in 100% tumor-free survival in a human peripheral blood mononuclear cell admixed setting and 40% overall survival (55% tumor growth inhibition) with systemically administered human peripheral blood mononuclear cells. Combination treatment with atezolizumab further enhanced survival and tumor growth inhibition (up to 73%). A 10-fold SC134-TCB dose reduction maintained the strong in vivo antitumor impact, translating into 70% overall survival (P < 0.0001). Whole-blood incubation with SC134-TCB, as well as healthy human primary cells analysis, revealed no target-independent cytokine production. SC134-TCB presents an attractive candidate to deliver an effective immunotherapy treatment option for patients with SCLC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1626-1638"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1158/1535-7163.MCT-23-0632
Yifan Lv, Yuxuan Deng, Jie Feng, Jinqiu Liu, Mingxu Yang, Zhuonan Pu, Shaodong Zhang, Zhen Wu, Nan Ji, Deric M Park, Shuyu Hao
Surgical resection followed by radiotherapy (RT) is recommended for malignant meningioma, but poor outcome is unavoidable. To improve the efficacy of RT in malignant meningioma, a targeted radiosensitizer can be added. Nicotinamide phosphoribosyltransferase (NAMPT), highly expressed in high-grade meningiomas, may play a role in determining the radioresponse. Herein, we evaluated the impact of NAMPT inhibition on radiosensitivity in malignant meningioma in vivo and in vitro. IOMM-Lee and TTMM705 cells were treated with NAMPT inhibition (FK866 or shRNA NAMPT) before irradiation. The subsequent clonogenic assay demonstrated significantly increased radiosensitivity. Combination treatment with FK866 and irradiation significantly increased the number of G2/M-phase cells, percentage of apoptotic cells, and γ-H2A.X level compared with FK866 or RT alone. We examined the effect of NAMPT inhibition on NMI and p53 expression in IOMM-Lee and TTMM705 cells. NAMPT inhibition by FK866 and shRNA treatment increased NMI, p53, CDKN1A and BAX expression. Additionally, we assessed the efficacy of FK866/RT combination treatment in vivo. The combination treatment exhibited increased antitumor efficacy compared with either treatment alone. The Ki67 level was significantly lower, and the p53 and γ-H2A.X levels were significantly higher in the combination treatment group than in the other three groups. In conclusion, these results indicate that FK866 improves radiosensitivity in malignant meningioma, an effect that may be attributed to the increase in p53 expression.
{"title":"NAD+ Metabolic Enzyme Inhibitor as Radiosensitizer for Malignant Meningioma and its Modulation of P53 Expression.","authors":"Yifan Lv, Yuxuan Deng, Jie Feng, Jinqiu Liu, Mingxu Yang, Zhuonan Pu, Shaodong Zhang, Zhen Wu, Nan Ji, Deric M Park, Shuyu Hao","doi":"10.1158/1535-7163.MCT-23-0632","DOIUrl":"10.1158/1535-7163.MCT-23-0632","url":null,"abstract":"<p><p>Surgical resection followed by radiotherapy (RT) is recommended for malignant meningioma, but poor outcome is unavoidable. To improve the efficacy of RT in malignant meningioma, a targeted radiosensitizer can be added. Nicotinamide phosphoribosyltransferase (NAMPT), highly expressed in high-grade meningiomas, may play a role in determining the radioresponse. Herein, we evaluated the impact of NAMPT inhibition on radiosensitivity in malignant meningioma in vivo and in vitro. IOMM-Lee and TTMM705 cells were treated with NAMPT inhibition (FK866 or shRNA NAMPT) before irradiation. The subsequent clonogenic assay demonstrated significantly increased radiosensitivity. Combination treatment with FK866 and irradiation significantly increased the number of G2/M-phase cells, percentage of apoptotic cells, and γ-H2A.X level compared with FK866 or RT alone. We examined the effect of NAMPT inhibition on NMI and p53 expression in IOMM-Lee and TTMM705 cells. NAMPT inhibition by FK866 and shRNA treatment increased NMI, p53, CDKN1A and BAX expression. Additionally, we assessed the efficacy of FK866/RT combination treatment in vivo. The combination treatment exhibited increased antitumor efficacy compared with either treatment alone. The Ki67 level was significantly lower, and the p53 and γ-H2A.X levels were significantly higher in the combination treatment group than in the other three groups. In conclusion, these results indicate that FK866 improves radiosensitivity in malignant meningioma, an effect that may be attributed to the increase in p53 expression.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1586-1596"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1158/1535-7163.MCT-23-0725
Dedipya Bhamidipati, Alison M Schram
Advances in tumor molecular profiling have uncovered shared genomic and proteomic alterations across tumor types that can be exploited therapeutically. A biomarker-driven, disease-agnostic approach to oncology drug development can maximize the reach of novel therapeutics. To date, eight drug-biomarker pairs have been approved for the treatment of patients with advanced solid tumors with specific molecular profiles. Emerging biomarkers with the potential for clinical actionability across tumor types include gene fusions involving NRG1, FGFR1/2/3, BRAF, and ALK and mutations in TP53 Y220C, KRAS G12C, FGFR2/3, and BRAF non-V600 (class II). We explore the growing evidence for clinical actionability of these biomarkers in patients with advanced solid tumors.
{"title":"Emerging Tumor-Agnostic Molecular Targets.","authors":"Dedipya Bhamidipati, Alison M Schram","doi":"10.1158/1535-7163.MCT-23-0725","DOIUrl":"10.1158/1535-7163.MCT-23-0725","url":null,"abstract":"<p><p>Advances in tumor molecular profiling have uncovered shared genomic and proteomic alterations across tumor types that can be exploited therapeutically. A biomarker-driven, disease-agnostic approach to oncology drug development can maximize the reach of novel therapeutics. To date, eight drug-biomarker pairs have been approved for the treatment of patients with advanced solid tumors with specific molecular profiles. Emerging biomarkers with the potential for clinical actionability across tumor types include gene fusions involving NRG1, FGFR1/2/3, BRAF, and ALK and mutations in TP53 Y220C, KRAS G12C, FGFR2/3, and BRAF non-V600 (class II). We explore the growing evidence for clinical actionability of these biomarkers in patients with advanced solid tumors.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1544-1554"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The emergence of trastuzumab deruxtecan (T-DXd), a new-generation antibody-drug conjugate (ADC), has profoundly altered the therapeutic paradigm for HER2-positive solid tumors, demonstrating remarkable clinical benefits. However, the combined outcomes of T-DXd with immunotherapy agents remain ambiguous. In this study, we introduce Tras-DXd-MTL1, an innovative HER2 targeting ADC that integrates the topoisomerase inhibitor DXd and a toll like receptor 7 (TLR7) agonist MTT5, linked to trastuzumab via a GGFG tetrapeptide linker. Mechanistically, Tras-DXd-MTL1 retains the DNA-damaging and cell-killing properties of topoisomerase inhibitors while simultaneously enhancing the immune response within the tumor microenvironment. This is achieved by promoting immune cell infiltration and activating dendritic cells and CD8+T cells via MTT5. In vivo evaluation of Tras-DXd-MTL1's antitumor potency revealed a notably superior performance compared with the T-DXd (Tras-DXd) or Tras-MTL1 in immunocompetent mice with trastuzumab-resistant EMT6-HER2 tumor and immunodeficient mice with JIMT-1 tumor. This improved efficacy is primarily attributed to its dual functions of immune stimulation and cytotoxicity. Our findings highlight the potential of incorporating immunostimulatory agents into ADC design to potentiate antitumor effects and establish durable immune memory, thereby reducing tumor recurrence risks. Therefore, our study offers a novel strategy for the design of immune-activating ADCs and provides a potential approach for targeting solid tumors with different levels of HER2 expression.
{"title":"A DXd/TLR7-Agonist Dual-Conjugate Anti-HER2 ADC Exerts Robust Antitumor Activity Through Tumor Cell Killing and Immune Activation.","authors":"Hangtian Yue, Hui Xu, Lanping Ma, Xiyuan Li, Biyu Yang, Xiyuan Wang, Qingzhong Zeng, Han Li, Deqiang Zhang, Meiyu Geng, Tao Meng, Zuoquan Xie","doi":"10.1158/1535-7163.MCT-24-0078","DOIUrl":"10.1158/1535-7163.MCT-24-0078","url":null,"abstract":"<p><p>The emergence of trastuzumab deruxtecan (T-DXd), a new-generation antibody-drug conjugate (ADC), has profoundly altered the therapeutic paradigm for HER2-positive solid tumors, demonstrating remarkable clinical benefits. However, the combined outcomes of T-DXd with immunotherapy agents remain ambiguous. In this study, we introduce Tras-DXd-MTL1, an innovative HER2 targeting ADC that integrates the topoisomerase inhibitor DXd and a toll like receptor 7 (TLR7) agonist MTT5, linked to trastuzumab via a GGFG tetrapeptide linker. Mechanistically, Tras-DXd-MTL1 retains the DNA-damaging and cell-killing properties of topoisomerase inhibitors while simultaneously enhancing the immune response within the tumor microenvironment. This is achieved by promoting immune cell infiltration and activating dendritic cells and CD8+T cells via MTT5. In vivo evaluation of Tras-DXd-MTL1's antitumor potency revealed a notably superior performance compared with the T-DXd (Tras-DXd) or Tras-MTL1 in immunocompetent mice with trastuzumab-resistant EMT6-HER2 tumor and immunodeficient mice with JIMT-1 tumor. This improved efficacy is primarily attributed to its dual functions of immune stimulation and cytotoxicity. Our findings highlight the potential of incorporating immunostimulatory agents into ADC design to potentiate antitumor effects and establish durable immune memory, thereby reducing tumor recurrence risks. Therefore, our study offers a novel strategy for the design of immune-activating ADCs and provides a potential approach for targeting solid tumors with different levels of HER2 expression.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1639-1651"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1158/1535-7163.MCT-23-0803
Ailed M Cruz-Collazo, Olga Katsara, Nilmary Grafals-Ruiz, Jessica Colon Gonzalez, Stephanie Dorta-Estremera, Victor P Carlo, Nataliya Chorna, Robert J Schneider, Suranganie Dharmawardhane
Triple negative breast cancer (TNBC) represents a therapeutic challenge in which standard chemotherapy is limited to paclitaxel. MBQ167, a clinical stage small molecule inhibitor that targets Rac and Cdc42, inhibits tumor growth and metastasis in mouse models of TNBC. Herein, we investigated the efficacy of MBQ167 in combination with paclitaxel in TNBC preclinical models, as a prelude to safety trials of this combination in patients with advanced breast cancer. Individual MBQ167 or combination therapy with paclitaxel was more effective at reducing TNBC cell viability and increasing apoptosis compared with paclitaxel alone. In orthotopic mouse models of human TNBC (MDA-MB231 and MDA-MB468), individual MBQ167, paclitaxel, or the combination reduced mammary tumor growth with similar efficacy, with no apparent liver toxicity. However, paclitaxel single agent treatment significantly increased lung metastasis, whereas MBQ167, single or combined, reduced lung metastasis. In the syngeneic 4T1/BALB/c model, combined MBQ167 and paclitaxel decreased established lung metastases by ∼80%. To determine the molecular basis for the improved efficacy of the combined treatment on metastasis, 4T1 tumor extracts from BALB/c mice treated with MBQ167, paclitaxel, or the combination were subjected to transcriptomic analysis. Gene set enrichment identified specific downregulation of central carbon metabolic pathways by the combination of MBQ167 and paclitaxel but not individual compounds. Biochemical validation, by immunoblotting and metabolic Seahorse analysis, shows that combined MBQ167 and paclitaxel reduces glycolysis. This study provides a strong rationale for the clinical testing of MBQ167 in combination with paclitaxel as a potential therapeutic for TNBC and identifies a unique mechanism of action.
{"title":"Novel Inhibition of Central Carbon Metabolism Pathways by Rac and CDC42 inhibitor MBQ167 and Paclitaxel.","authors":"Ailed M Cruz-Collazo, Olga Katsara, Nilmary Grafals-Ruiz, Jessica Colon Gonzalez, Stephanie Dorta-Estremera, Victor P Carlo, Nataliya Chorna, Robert J Schneider, Suranganie Dharmawardhane","doi":"10.1158/1535-7163.MCT-23-0803","DOIUrl":"10.1158/1535-7163.MCT-23-0803","url":null,"abstract":"<p><p>Triple negative breast cancer (TNBC) represents a therapeutic challenge in which standard chemotherapy is limited to paclitaxel. MBQ167, a clinical stage small molecule inhibitor that targets Rac and Cdc42, inhibits tumor growth and metastasis in mouse models of TNBC. Herein, we investigated the efficacy of MBQ167 in combination with paclitaxel in TNBC preclinical models, as a prelude to safety trials of this combination in patients with advanced breast cancer. Individual MBQ167 or combination therapy with paclitaxel was more effective at reducing TNBC cell viability and increasing apoptosis compared with paclitaxel alone. In orthotopic mouse models of human TNBC (MDA-MB231 and MDA-MB468), individual MBQ167, paclitaxel, or the combination reduced mammary tumor growth with similar efficacy, with no apparent liver toxicity. However, paclitaxel single agent treatment significantly increased lung metastasis, whereas MBQ167, single or combined, reduced lung metastasis. In the syngeneic 4T1/BALB/c model, combined MBQ167 and paclitaxel decreased established lung metastases by ∼80%. To determine the molecular basis for the improved efficacy of the combined treatment on metastasis, 4T1 tumor extracts from BALB/c mice treated with MBQ167, paclitaxel, or the combination were subjected to transcriptomic analysis. Gene set enrichment identified specific downregulation of central carbon metabolic pathways by the combination of MBQ167 and paclitaxel but not individual compounds. Biochemical validation, by immunoblotting and metabolic Seahorse analysis, shows that combined MBQ167 and paclitaxel reduces glycolysis. This study provides a strong rationale for the clinical testing of MBQ167 in combination with paclitaxel as a potential therapeutic for TNBC and identifies a unique mechanism of action.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1613-1625"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1158/1535-7163.MCT-24-0002
Seema Kantak, Raffaella Faggioni, Allen G Cai, Maryam M Bhatti, Jing Li, Inna Vainshtein, Jackie Cheng, Brian A Mendelsohn, Jacques Gaudreault, Thi-Sau Migone, Jan-Willem Theunissen
Tissue factor (TF) is overexpressed in various cancers, where its expression is generally associated with poor disease outcomes. XB002 is an anti-TF antibody-drug conjugate designed to deliver a cytotoxic payload to TF-expressing tumors while minimizing adverse events related to disruption of TF function, notably bleeding. XB002 is composed of a zovodotin linker-payload conjugated to a monoclonal antibody (clone 25A3) that binds to TF with high affinity (KD = 0.86 nM). In vitro coagulation studies indicated that 25A3 did not interfere with the clotting cascade; at a 100 nM concentration, 25A3 had no effect on activation of coagulation factor X or thrombin generation. XB002 was internalized in TF-expressing cancer cell lines and displayed potent cytotoxic activity at sub-nanomolar concentrations. When evaluated in the HPAF-II xenograft model, XB002 (1.5 mg/kg, IV) given once weekly for 2 weeks induced complete regression with no tumor growth even at 5 weeks after the second dose. In murine patient-derived xenograft models, a single dose of XB002 (10 mg/kg, IV) inhibited tumor growth across multiple cancer models including bladder, cervical, gastric, head and neck squamous cell carcinoma (HNSCC), and non-small cell lung cancer. Further, complete tumor regression was observed in both the cervical and HNSCC models by 30 days post-treatment. In non-human primate models, XB002 showed exposure in the desired range and no evidence of bleeding or neutropenia. Taken together, these data demonstrate potential anti-tumor activity across a spectrum of oncology indications and strongly support its clinical development.
{"title":"Preclinical characterization of XB002, an anti-tissue factor antibody-drug conjugate for the treatment of solid tumors.","authors":"Seema Kantak, Raffaella Faggioni, Allen G Cai, Maryam M Bhatti, Jing Li, Inna Vainshtein, Jackie Cheng, Brian A Mendelsohn, Jacques Gaudreault, Thi-Sau Migone, Jan-Willem Theunissen","doi":"10.1158/1535-7163.MCT-24-0002","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0002","url":null,"abstract":"<p><p>Tissue factor (TF) is overexpressed in various cancers, where its expression is generally associated with poor disease outcomes. XB002 is an anti-TF antibody-drug conjugate designed to deliver a cytotoxic payload to TF-expressing tumors while minimizing adverse events related to disruption of TF function, notably bleeding. XB002 is composed of a zovodotin linker-payload conjugated to a monoclonal antibody (clone 25A3) that binds to TF with high affinity (KD = 0.86 nM). In vitro coagulation studies indicated that 25A3 did not interfere with the clotting cascade; at a 100 nM concentration, 25A3 had no effect on activation of coagulation factor X or thrombin generation. XB002 was internalized in TF-expressing cancer cell lines and displayed potent cytotoxic activity at sub-nanomolar concentrations. When evaluated in the HPAF-II xenograft model, XB002 (1.5 mg/kg, IV) given once weekly for 2 weeks induced complete regression with no tumor growth even at 5 weeks after the second dose. In murine patient-derived xenograft models, a single dose of XB002 (10 mg/kg, IV) inhibited tumor growth across multiple cancer models including bladder, cervical, gastric, head and neck squamous cell carcinoma (HNSCC), and non-small cell lung cancer. Further, complete tumor regression was observed in both the cervical and HNSCC models by 30 days post-treatment. In non-human primate models, XB002 showed exposure in the desired range and no evidence of bleeding or neutropenia. Taken together, these data demonstrate potential anti-tumor activity across a spectrum of oncology indications and strongly support its clinical development.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1158/1535-7163.MCT-24-0802
Hae-June Lee, Changhwan Yoon, Benjamin Schmidt, Do Joong Park, Alexia Y Zhang, Hayriye V Erkizan, Jeffrey A Toretsky, David G Kirsch, Sam S Yoon
{"title":"Retraction: Combining PARP-1 Inhibition and Radiation in Ewing Sarcoma Results in Lethal DNA Damage.","authors":"Hae-June Lee, Changhwan Yoon, Benjamin Schmidt, Do Joong Park, Alexia Y Zhang, Hayriye V Erkizan, Jeffrey A Toretsky, David G Kirsch, Sam S Yoon","doi":"10.1158/1535-7163.MCT-24-0802","DOIUrl":"10.1158/1535-7163.MCT-24-0802","url":null,"abstract":"","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":"23 11","pages":"1680"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577241/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1158/1535-7163.MCT-23-0904
Shengyan Xiang, Kendall C Craig, Xingju Luo, Darcy L Welch, Renan B Ferreira, Harshani R Lawrence, Nicholas J Lawrence, Damon R Reed, Mark G Alexandrow
The human CMG helicase (Cdc45-MCM-GINS) is a novel target for anticancer therapy. Tumor-specific weaknesses in the CMG are caused by oncogene-driven changes that adversely affect CMG function, and CMG activity is required for recovery from replicative stresses such as chemotherapy. Herein, we developed an orthogonal biochemical screening approach and identified CMG inhibitors (CMGi) that inhibit ATPase and helicase activities in an ATP-competitive manner at low micromolar concentrations. Structure-activity information, in silico docking, and testing with synthetic chemical compounds indicate that CMGi require specific chemical elements and occupy ATP-binding sites and channels within minichromosome maintenance (MCM) subunits leading to the ATP clefts, which are likely used for ATP/ADP ingress or egress. CMGi are therefore MCM complex inhibitors (MCMi). Biologic testing shows that CMGi/MCMi inhibit cell growth and DNA replication using multiple molecular mechanisms distinct from other chemotherapy agents. CMGi/MCMi block helicase assembly steps that require ATP binding/hydrolysis by the MCM complex, specifically MCM ring assembly on DNA and GINS recruitment to DNA-loaded MCM hexamers. During the S-phase, inhibition of MCM ATP binding/hydrolysis by CMGi/MCMi causes a "reverse allosteric" dissociation of Cdc45/GINS from the CMG that destabilizes replisome components Ctf4, Mcm10, and DNA polymerase-α, -δ, and -ε, resulting in DNA damage. CMGi/MCMi display selective toxicity toward multiple solid tumor cell types with K-Ras mutations, targeting the CMG and inducing DNA damage, Parp cleavage, and loss of viability. This new class of CMGi/MCMi provides a basis for small chemical development of CMG helicase-targeted anticancer compounds with distinct mechanisms of action.
人类 CMG 螺旋酶(Cdc45-MCM-GINS)是抗癌疗法的一个新靶点。肿瘤特异性的CMG弱点是由癌基因驱动的变化造成的,这些变化对CMG的功能产生了不利影响,而且在从化疗等复制压力中恢复时需要CMG的活性。在这里,我们开发了一种正交生化筛选方法,并确定了 CMG 抑制剂(CMGi),这些抑制剂能在低微摩浓度下以 ATP 竞争方式抑制 ATP 酶和螺旋酶的活性。结构-活性信息、硅学对接和合成化合物测试表明,CMGi 需要特定的化学元素,并占据 ATP 结合位点和 MCM 亚基内通向 ATP 裂隙的通道,而 ATP/ADP 裂隙可能用于 ATP/ADP 的进入或排出。因此,CMGi 也是 MCM 复合物抑制剂(MCMi)。生物测试表明,CMGi/MCMi 利用不同于其他化疗药物的多种分子机制抑制细胞生长和 DNA 复制。CMGi/MCMi 可阻断需要 MCM 复合物与 ATP 结合/水解的螺旋酶组装步骤,特别是 MCM 环在 DNA 上的组装和 GINS 招募到 DNA 加载的 MCM 六聚体上。在 S 期,CMGi/MCMi 对 MCM ATP 结合/水解的抑制会导致 Cdc45/GINS 与 CMG 的 "反向异构 "解离,从而破坏复制体成分 Ctf4、Mcm10 和 DNA 聚合酶-a、-d、-e 的稳定性,造成 DNA 损伤。CMGi/MCMi 对带有 K-Ras 突变的多种实体瘤细胞具有选择性毒性,以 CMG 为靶点,诱导 DNA 损伤、Parp 断裂和活力丧失。这一类新型 CMGi/MCMi 为开发具有独特作用机制的 CMG 螺旋酶靶向抗癌化合物的小型化学研究奠定了基础。
{"title":"Identification of ATP-Competitive Human CMG Helicase Inhibitors for Cancer Intervention that Disrupt CMG-Replisome Function.","authors":"Shengyan Xiang, Kendall C Craig, Xingju Luo, Darcy L Welch, Renan B Ferreira, Harshani R Lawrence, Nicholas J Lawrence, Damon R Reed, Mark G Alexandrow","doi":"10.1158/1535-7163.MCT-23-0904","DOIUrl":"10.1158/1535-7163.MCT-23-0904","url":null,"abstract":"<p><p>The human CMG helicase (Cdc45-MCM-GINS) is a novel target for anticancer therapy. Tumor-specific weaknesses in the CMG are caused by oncogene-driven changes that adversely affect CMG function, and CMG activity is required for recovery from replicative stresses such as chemotherapy. Herein, we developed an orthogonal biochemical screening approach and identified CMG inhibitors (CMGi) that inhibit ATPase and helicase activities in an ATP-competitive manner at low micromolar concentrations. Structure-activity information, in silico docking, and testing with synthetic chemical compounds indicate that CMGi require specific chemical elements and occupy ATP-binding sites and channels within minichromosome maintenance (MCM) subunits leading to the ATP clefts, which are likely used for ATP/ADP ingress or egress. CMGi are therefore MCM complex inhibitors (MCMi). Biologic testing shows that CMGi/MCMi inhibit cell growth and DNA replication using multiple molecular mechanisms distinct from other chemotherapy agents. CMGi/MCMi block helicase assembly steps that require ATP binding/hydrolysis by the MCM complex, specifically MCM ring assembly on DNA and GINS recruitment to DNA-loaded MCM hexamers. During the S-phase, inhibition of MCM ATP binding/hydrolysis by CMGi/MCMi causes a \"reverse allosteric\" dissociation of Cdc45/GINS from the CMG that destabilizes replisome components Ctf4, Mcm10, and DNA polymerase-α, -δ, and -ε, resulting in DNA damage. CMGi/MCMi display selective toxicity toward multiple solid tumor cell types with K-Ras mutations, targeting the CMG and inducing DNA damage, Parp cleavage, and loss of viability. This new class of CMGi/MCMi provides a basis for small chemical development of CMG helicase-targeted anticancer compounds with distinct mechanisms of action.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1568-1585"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532780/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1158/1535-7163.MCT-23-0314
Weini Wang, Yanchi Zhou, Ji Wang, Shu Zhang, Ali Ozes, Hongyu Gao, Fang Fang, Yue Wang, Xiaona Chu, Yunlong Liu, Jun Wan, Anirban K Mitra, Heather M O'Hagan, Kenneth P Nephew
The persistence of cancer stem cells (CSC) is believed to contribute to resistance to platinum-based chemotherapy and disease relapse in ovarian cancer, the fifth leading cause of cancer-related death among US women. HOXC transcript antisense RNA (HOTAIR) is a long, noncoding RNA (lncRNA) overexpressed in high-grade serous ovarian cancer and linked to chemoresistance. However, HOTAIR impacts chromatin dynamics in ovarian CSCs. Oncogenic lncRNA's contributions to drug-resistant disease are incompletely understood. Here, we generated HOTAIR knockout (KO) high-grade serous ovarian cancer cell lines using paired CRISPR guide RNA design to investigate the function of HOTAIR. We show the loss of HOTAIR function resensitized ovarian cancer cells to platinum treatment and decreased the population of ovarian CSCs. Furthermore, HOTAIR KO inhibited the development of stemness-related phenotypes, including spheroid formation ability and expression of key stemness-associated genes ALDH1A1, NOTCH3, SOX9, and PROM1. HOTAIR KO altered the cellular transcriptome and chromatin accessibility landscape of multiple oncogenic-associated genes and pathways, including the NF-kB pathway. HOTAIR functions as an oncogene by recruiting enhancer of zeste homolog 2 (EZH2) to catalyze H3K27 trimethylation to suppress downstream tumor suppressor genes, and it was of interest to inhibit both HOTAIR and EZH2. In vivo, combining a HOTAIR inhibitor with an EZH2 inhibitor and platinum chemotherapy decreased tumor formation and increased survival. These results suggest a key role for HOTAIR in ovarian CSCs and malignant potential. Targeting HOTAIR in combination with epigenetic therapies may represent a therapeutic strategy to ameliorate ovarian cancer progression and resistance to platinum-based chemotherapy.
{"title":"Targeting Ovarian Cancer Stem Cells by Dual Inhibition of the Long Noncoding RNA HOTAIR and Lysine Methyltransferase EZH2.","authors":"Weini Wang, Yanchi Zhou, Ji Wang, Shu Zhang, Ali Ozes, Hongyu Gao, Fang Fang, Yue Wang, Xiaona Chu, Yunlong Liu, Jun Wan, Anirban K Mitra, Heather M O'Hagan, Kenneth P Nephew","doi":"10.1158/1535-7163.MCT-23-0314","DOIUrl":"10.1158/1535-7163.MCT-23-0314","url":null,"abstract":"<p><p>The persistence of cancer stem cells (CSC) is believed to contribute to resistance to platinum-based chemotherapy and disease relapse in ovarian cancer, the fifth leading cause of cancer-related death among US women. HOXC transcript antisense RNA (HOTAIR) is a long, noncoding RNA (lncRNA) overexpressed in high-grade serous ovarian cancer and linked to chemoresistance. However, HOTAIR impacts chromatin dynamics in ovarian CSCs. Oncogenic lncRNA's contributions to drug-resistant disease are incompletely understood. Here, we generated HOTAIR knockout (KO) high-grade serous ovarian cancer cell lines using paired CRISPR guide RNA design to investigate the function of HOTAIR. We show the loss of HOTAIR function resensitized ovarian cancer cells to platinum treatment and decreased the population of ovarian CSCs. Furthermore, HOTAIR KO inhibited the development of stemness-related phenotypes, including spheroid formation ability and expression of key stemness-associated genes ALDH1A1, NOTCH3, SOX9, and PROM1. HOTAIR KO altered the cellular transcriptome and chromatin accessibility landscape of multiple oncogenic-associated genes and pathways, including the NF-kB pathway. HOTAIR functions as an oncogene by recruiting enhancer of zeste homolog 2 (EZH2) to catalyze H3K27 trimethylation to suppress downstream tumor suppressor genes, and it was of interest to inhibit both HOTAIR and EZH2. In vivo, combining a HOTAIR inhibitor with an EZH2 inhibitor and platinum chemotherapy decreased tumor formation and increased survival. These results suggest a key role for HOTAIR in ovarian CSCs and malignant potential. Targeting HOTAIR in combination with epigenetic therapies may represent a therapeutic strategy to ameliorate ovarian cancer progression and resistance to platinum-based chemotherapy.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1666-1679"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}