Pub Date : 2024-10-10DOI: 10.1158/1535-7163.MCT-24-0052
Richard Harrop, Daniel G Blount, Naeem Khan, Mayowa Soyombo, Laura Moyce, Mark T Drayson, Jenny Down, Michelle A Lawson, Deirdre O'Connor, Rachael Nimmo, Yatish Lad, Bernard Souberbielle, Kyriacos Mitrophanous, Anna Ettorre
Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome deficits in the ability of the host immune system to detect and eradicate tumours. 5T4 is a tumour-associated antigen expressed on the cell surface of most solid tumours. However, very little is known about its expression in haematological malignancies. Herein, we assess the expression of 5T4 in different types of leukaemias, specifically Acute Myeloid Leukaemia (AML), and normal haematopoietic stem cells (HSCs). We also provide an in vitro assessment of safety and efficacy of 5T4-targeting CAR-T cells against HSCs and AML tumour cell lines. 5T4 expression was seen in about 50% of AML cases, specifically AML with mutated NPM1, AML-MR and NOS. 5T4 CAR-T cells efficiently and specifically killed AML tumour cell lines, including the Leukaemic Stem Cells. Co-culture of 5T4 CAR-T cells with HSCs from healthy donors showed no impact on subsequent colony formation, thus confirming the safety profile of 5T4. A murine model for AML demonstrated that CAR-T cells recognise and kill in vivo 5T4-expressing tumour cells. These results highlight 5T4 as a promising target for immune intervention in AML and that CAR-T cells can be considered a powerful personalised therapeutic approach to treat AML.
{"title":"Targeting the Tumour Antigen 5T4 using CAR-T Cells for the Treatment of Acute Myeloid Leukaemia.","authors":"Richard Harrop, Daniel G Blount, Naeem Khan, Mayowa Soyombo, Laura Moyce, Mark T Drayson, Jenny Down, Michelle A Lawson, Deirdre O'Connor, Rachael Nimmo, Yatish Lad, Bernard Souberbielle, Kyriacos Mitrophanous, Anna Ettorre","doi":"10.1158/1535-7163.MCT-24-0052","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0052","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome deficits in the ability of the host immune system to detect and eradicate tumours. 5T4 is a tumour-associated antigen expressed on the cell surface of most solid tumours. However, very little is known about its expression in haematological malignancies. Herein, we assess the expression of 5T4 in different types of leukaemias, specifically Acute Myeloid Leukaemia (AML), and normal haematopoietic stem cells (HSCs). We also provide an in vitro assessment of safety and efficacy of 5T4-targeting CAR-T cells against HSCs and AML tumour cell lines. 5T4 expression was seen in about 50% of AML cases, specifically AML with mutated NPM1, AML-MR and NOS. 5T4 CAR-T cells efficiently and specifically killed AML tumour cell lines, including the Leukaemic Stem Cells. Co-culture of 5T4 CAR-T cells with HSCs from healthy donors showed no impact on subsequent colony formation, thus confirming the safety profile of 5T4. A murine model for AML demonstrated that CAR-T cells recognise and kill in vivo 5T4-expressing tumour cells. These results highlight 5T4 as a promising target for immune intervention in AML and that CAR-T cells can be considered a powerful personalised therapeutic approach to treat AML.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1158/1535-7163.MCT-23-0830
Yajing Xing, Weikai Guo, Min Wu, Jiuqing Xie, Dongxia Huang, Pan Hu, Miaoran Zhou, Lin Zhang, Yadong Zhong, Mingyao Liu, Yihua Chen, Zhengfang Yi
The B-cell lymphoma 6 (BCL6) transcription factor plays a key role in establishment of germinal center (GC) formation. Diffuse large B cell lymphoma (DLBCL) originates from the GC reaction due to dysregulation of BCL6. Disrupting BCL6 and its corepressors interaction has become the foundation for rationally designing lymphoma therapies. However, BCL6 inhibitors with good activities in vitro and in vivo are rare and there are no clinically approved BCL6 inhibitors. Here, we discovered and developed a novel range of [1,2,4] triazolo[1,5-a] pyrimidine derivatives targeting BCL6/SMRT interaction. The analogue WK692 directly bound BCL6BTB, disrupted BCL6BTB/SMRT interaction and activated the expression of BCL6 downstream genes inside cells, inhibited DLBCL growth and induced apoptosis in vitro, inhibited GC formation, decreased proportion of follicular helper T (Tfh) cells and impaired immunoglobulin affinity maturation. Further studies showed that WK692 inhibited the DLBCL growth without toxic effects in vivo and synergizes with the EZH2 and PRMT5 inhibitors. Our results demonstrated that WK692 as a BCL6 inhibitor may be developed as a novel potential anticancer agent against DLBCL.
{"title":"A small molecule BCL6 inhibitor effectively suppresses diffuse large B cell lymphoma cells growth.","authors":"Yajing Xing, Weikai Guo, Min Wu, Jiuqing Xie, Dongxia Huang, Pan Hu, Miaoran Zhou, Lin Zhang, Yadong Zhong, Mingyao Liu, Yihua Chen, Zhengfang Yi","doi":"10.1158/1535-7163.MCT-23-0830","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-23-0830","url":null,"abstract":"<p><p>The B-cell lymphoma 6 (BCL6) transcription factor plays a key role in establishment of germinal center (GC) formation. Diffuse large B cell lymphoma (DLBCL) originates from the GC reaction due to dysregulation of BCL6. Disrupting BCL6 and its corepressors interaction has become the foundation for rationally designing lymphoma therapies. However, BCL6 inhibitors with good activities in vitro and in vivo are rare and there are no clinically approved BCL6 inhibitors. Here, we discovered and developed a novel range of [1,2,4] triazolo[1,5-a] pyrimidine derivatives targeting BCL6/SMRT interaction. The analogue WK692 directly bound BCL6BTB, disrupted BCL6BTB/SMRT interaction and activated the expression of BCL6 downstream genes inside cells, inhibited DLBCL growth and induced apoptosis in vitro, inhibited GC formation, decreased proportion of follicular helper T (Tfh) cells and impaired immunoglobulin affinity maturation. Further studies showed that WK692 inhibited the DLBCL growth without toxic effects in vivo and synergizes with the EZH2 and PRMT5 inhibitors. Our results demonstrated that WK692 as a BCL6 inhibitor may be developed as a novel potential anticancer agent against DLBCL.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1158/1535-7163.MCT-24-0163
Jordan A Stinson, Allison Sheen, Brianna M Lax, Grace N Yang, Lauren Duhamel, Luciano Santollani, Elizabeth Fink, Joseph Palmeri, K Dane Wittrup
While heightened intratumoral levels of reactive oxygen species (ROS) are typically associated with a suppressive tumor microenvironment, under certain conditions ROS contribute to tumor elimination. Treatment approaches, including some chemotherapy and radiation protocols, increase cancer cell ROS levels that influence their mechanism of cell death and subsequent recognition by the immune system. Furthermore, activated myeloid cells rapidly generate ROS upon encounter with pathogens or infected cells to eliminate disease, and recently, this effector function has been noted in cancer contexts as well. Collectively, ROS-induced cancer cell death may help initiate adaptive anti-tumor immune responses that could synergize with current approved immunotherapies, for improved control of solid tumors. In this work, we explore the use of glucose oxidase, an enzyme which produces hydrogen peroxide, a type of ROS, to therapeutically mimic the endogenous oxidative burst from myeloid cells to promote antigen generation within the tumor microenvironment. We engineer the enzyme to target pan-tumor expressed integrins both as a tumor-agnostic therapeutic approach, but also as a strategy to prolong local enzyme activity following intratumoral administration. We found the targeted enzyme potently induced cancer cell death and enhanced cross-presentation by dendritic cells in vitro, and further combined with interferon alpha for long-term tumor control in murine MC38 tumors in vivo. Optimizing the single-dose administration of this enzyme overcomes limitations with immunogenicity noted for other pro-oxidant enzyme approaches. Overall, our results suggest ROS-induced cell death can be harnessed for tumor control, and highlight the potential use of designed enzyme therapies alongside immunotherapy against cancer.
{"title":"Tumor integrin-targeted glucose oxidase enzyme promotes ROS-mediated cell death that combines with interferon alpha therapy for tumor control.","authors":"Jordan A Stinson, Allison Sheen, Brianna M Lax, Grace N Yang, Lauren Duhamel, Luciano Santollani, Elizabeth Fink, Joseph Palmeri, K Dane Wittrup","doi":"10.1158/1535-7163.MCT-24-0163","DOIUrl":"10.1158/1535-7163.MCT-24-0163","url":null,"abstract":"<p><p>While heightened intratumoral levels of reactive oxygen species (ROS) are typically associated with a suppressive tumor microenvironment, under certain conditions ROS contribute to tumor elimination. Treatment approaches, including some chemotherapy and radiation protocols, increase cancer cell ROS levels that influence their mechanism of cell death and subsequent recognition by the immune system. Furthermore, activated myeloid cells rapidly generate ROS upon encounter with pathogens or infected cells to eliminate disease, and recently, this effector function has been noted in cancer contexts as well. Collectively, ROS-induced cancer cell death may help initiate adaptive anti-tumor immune responses that could synergize with current approved immunotherapies, for improved control of solid tumors. In this work, we explore the use of glucose oxidase, an enzyme which produces hydrogen peroxide, a type of ROS, to therapeutically mimic the endogenous oxidative burst from myeloid cells to promote antigen generation within the tumor microenvironment. We engineer the enzyme to target pan-tumor expressed integrins both as a tumor-agnostic therapeutic approach, but also as a strategy to prolong local enzyme activity following intratumoral administration. We found the targeted enzyme potently induced cancer cell death and enhanced cross-presentation by dendritic cells in vitro, and further combined with interferon alpha for long-term tumor control in murine MC38 tumors in vivo. Optimizing the single-dose administration of this enzyme overcomes limitations with immunogenicity noted for other pro-oxidant enzyme approaches. Overall, our results suggest ROS-induced cell death can be harnessed for tumor control, and highlight the potential use of designed enzyme therapies alongside immunotherapy against cancer.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1158/1535-7163.MCT-24-0307
Jay M Gamma, Qiang Liu, Erwan Beauchamp, Aishwarya Iyer, Megan C Yap, Zoulika Zak, Cassidy Ekstrom, Rony Pain, Morris A Kostiuk, John R Mackey, Joseph Brandwein, Jean Cy Wang, Luc G Berthiaume
Acute myeloid leukemia (AML) is a hematological malignancy with limited treatment options and a high likelihood of recurrence after chemotherapy. We studied N-myristoylation, the myristate modification of proteins linked to survival signaling and metabolism, as a potential therapeutic target for AML. N-myristoylation is catalyzed by two N-myristoyltransferases (NMTs), NMT1 and NMT2, with varying expressions in AML cell lines and patient samples. We identified NMT2 expression as a marker for AML patient survival, and low NMT2 expression was associated with poor outcomes. We used the first-in-class pan-NMT inhibitor, zelenirstat, to investigate the role of N-myristoylation in AML. Zelenirstat effectively inhibits myristoylation in AML cell lines and patient samples, leading to degradation of Src family kinases (SFKs), induction of endoplasmic reticulum (ER) stress, apoptosis, and cell death. Zelenirstat was well tolerated in vivo and reduced the leukemic burden in an ectopic AML cell line and in multiple orthotopic AML patient-derived xenograft models. The leukemia stem cell (LSC)-enriched fractions of the hierarchical OCI-AML22 model were highly sensitive to myristoylation inhibition. Zelenirstat also impairs mitochondrial complex I and oxidative phosphorylation, which are critical for LSC survival. These findings suggest that targeting N-myristoylation with zelenirstat represents a novel therapeutic approach for AML, with promise in patients with currently poor outcomes.
{"title":"Zelenirstat Inhibits N-Myristoyltransferases to Disrupt Src Family Kinase Signalling and Oxidative Phosphorylation Killing Acute Myeloid Leukemia Cells.","authors":"Jay M Gamma, Qiang Liu, Erwan Beauchamp, Aishwarya Iyer, Megan C Yap, Zoulika Zak, Cassidy Ekstrom, Rony Pain, Morris A Kostiuk, John R Mackey, Joseph Brandwein, Jean Cy Wang, Luc G Berthiaume","doi":"10.1158/1535-7163.MCT-24-0307","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0307","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is a hematological malignancy with limited treatment options and a high likelihood of recurrence after chemotherapy. We studied N-myristoylation, the myristate modification of proteins linked to survival signaling and metabolism, as a potential therapeutic target for AML. N-myristoylation is catalyzed by two N-myristoyltransferases (NMTs), NMT1 and NMT2, with varying expressions in AML cell lines and patient samples. We identified NMT2 expression as a marker for AML patient survival, and low NMT2 expression was associated with poor outcomes. We used the first-in-class pan-NMT inhibitor, zelenirstat, to investigate the role of N-myristoylation in AML. Zelenirstat effectively inhibits myristoylation in AML cell lines and patient samples, leading to degradation of Src family kinases (SFKs), induction of endoplasmic reticulum (ER) stress, apoptosis, and cell death. Zelenirstat was well tolerated in vivo and reduced the leukemic burden in an ectopic AML cell line and in multiple orthotopic AML patient-derived xenograft models. The leukemia stem cell (LSC)-enriched fractions of the hierarchical OCI-AML22 model were highly sensitive to myristoylation inhibition. Zelenirstat also impairs mitochondrial complex I and oxidative phosphorylation, which are critical for LSC survival. These findings suggest that targeting N-myristoylation with zelenirstat represents a novel therapeutic approach for AML, with promise in patients with currently poor outcomes.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1158/1535-7163.MCT-23-0809
Annali M Yurkevicz, Yanfeng Liu, Samuel G Katz, Peter M Glazer
Identifying an optimal antigen for targeted cancer therapy is challenging as the antigen landscape on cancerous tissues mimics that of healthy tissues, with few unique tumor-specific antigens identified in individual patients. pH low insertion peptides (pHLIPs) act as a unique delivery platform that can specifically target the acidic microenvironment of tumors, sparing healthy tissue in the process. We developed a pHLIP-peptide conjugate to deliver the SIINFEKL peptide, an immunogenic fragment of ovalbumin, to tumor cells in vivo. When processed intracellularly, SIINFEKL is presented for immune recognition through the major histocompatibility complex (MHC) class I pathway. We observed selective delivery of pHLIP-SIINFEKL both in vitro and in vivo using fluorescently labeled constructs. In vitro, treatment of melanoma tumor cells with pHLIP-SIINFEKL resulted in recognition by SIINFEKL-specific T cells (OT1), leading to T cell activation and effector function. Mechanistically, we show that this recognition by OT1 cells was abrogated by siRNA/shRNA knockdown of multiple components within the MHC class I pathway in the target tumor cells, indicating that an intact antigen processing pathway in the cancer cells is necessary to mediate the effect of pHLIP-directed SIINFEKL delivery. In vivo, pHLIP-SIINFEKL treatment of tumor-bearing mice resulted in recruitment of OT1 T cells and suppression of tumor growth in two syngeneic tumor models in immunocompetent mice, with no effect when mutating either the pHLIP or SIINFEKL components of the conjugate. These results suggest that pHLIP-mediated peptide delivery can be used to deliver novel artificial antigens that can be targeted by cell-based therapies.
为癌症靶向治疗确定最佳抗原具有挑战性,因为癌症组织上的抗原结构与健康组织的抗原结构相似,在患者个体中几乎没有发现独特的肿瘤特异性抗原。pH低插入肽(pHLIPs)是一种独特的递送平台,可特异性地靶向肿瘤的酸性微环境,在此过程中不会损伤健康组织。我们开发了一种pHLIP-肽共轭物,用于在体内向肿瘤细胞递送卵清蛋白的免疫原性片段SIINFEKL肽。SIINFEKL在细胞内经过处理后,可通过主要组织相容性复合体(MHC)I类途径进行免疫识别。我们使用荧光标记的构建体观察到了 pHLIP-SIINFEKL 在体外和体内的选择性递送。在体外,用pHLIP-SIINFEKL处理黑色素瘤肿瘤细胞会导致SIINFEKL特异性T细胞(OT1)的识别,从而导致T细胞的活化和效应功能。从机理上讲,我们的研究表明,靶肿瘤细胞中 MHC I 类通路中的多种成分被 siRNA/shRNA 敲除后,OT1 细胞的这种识别作用就会减弱,这表明癌细胞中完整的抗原处理通路是 pHLIP 引导的 SIINFEKL 递送产生作用的必要条件。在体内,pHLIP-SIINFEKL 对携带肿瘤的小鼠进行处理后,可招募 OT1 T 细胞,并抑制免疫功能正常小鼠的两种合成肿瘤模型中的肿瘤生长。这些结果表明,pHLIP 介导的多肽递送可用于递送新型人工抗原,细胞疗法可将其作为靶标。
{"title":"Tumor-specific antigen delivery for T-cell therapy via a pH-sensitive peptide conjugate.","authors":"Annali M Yurkevicz, Yanfeng Liu, Samuel G Katz, Peter M Glazer","doi":"10.1158/1535-7163.MCT-23-0809","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-23-0809","url":null,"abstract":"<p><p>Identifying an optimal antigen for targeted cancer therapy is challenging as the antigen landscape on cancerous tissues mimics that of healthy tissues, with few unique tumor-specific antigens identified in individual patients. pH low insertion peptides (pHLIPs) act as a unique delivery platform that can specifically target the acidic microenvironment of tumors, sparing healthy tissue in the process. We developed a pHLIP-peptide conjugate to deliver the SIINFEKL peptide, an immunogenic fragment of ovalbumin, to tumor cells in vivo. When processed intracellularly, SIINFEKL is presented for immune recognition through the major histocompatibility complex (MHC) class I pathway. We observed selective delivery of pHLIP-SIINFEKL both in vitro and in vivo using fluorescently labeled constructs. In vitro, treatment of melanoma tumor cells with pHLIP-SIINFEKL resulted in recognition by SIINFEKL-specific T cells (OT1), leading to T cell activation and effector function. Mechanistically, we show that this recognition by OT1 cells was abrogated by siRNA/shRNA knockdown of multiple components within the MHC class I pathway in the target tumor cells, indicating that an intact antigen processing pathway in the cancer cells is necessary to mediate the effect of pHLIP-directed SIINFEKL delivery. In vivo, pHLIP-SIINFEKL treatment of tumor-bearing mice resulted in recruitment of OT1 T cells and suppression of tumor growth in two syngeneic tumor models in immunocompetent mice, with no effect when mutating either the pHLIP or SIINFEKL components of the conjugate. These results suggest that pHLIP-mediated peptide delivery can be used to deliver novel artificial antigens that can be targeted by cell-based therapies.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1158/1535-7163.MCT-24-0289
Beiyuan Liang, Misbah Khan, Hayden Storts, Evan H Zhang, Xinru Zheng, Xuanxuan Xing, Hazel Claybon, Jenna Wilson, Chunjie Li, Ning Jin, Richard Fishel, Wayne O Miles, Jing J Wang
Colorectal cancer is the second leading cause of cancer mortality in the US. Although immune checkpoint blockade therapies including anti-PD-1/PD-L1 have been successful in treating a subset of colorectal cancer patients, response rates remain low. We have found that riluzole, a well-tolerated FDA-approved oral medicine for treating amyotrophic lateral sclerosis, increased intratumoral CD8+ T cells and suppressed tumor growth of colon cancer cells in syngeneic immune competent mice. Riluzole-mediated tumor suppression was dependent on the presence of CD8+ T cells. Riluzole activates the cytosolic DNA sensing cGAS/STING pathway in colon cancer cells, resulting in increased expression of interferon β (IFNβ) and IFNβ-regulated genes including CXCL10. Inhibition of ATM, but not ATR, resulted in a synergistic increase in IFNβ expression, suggesting that riluzole induces ATM-mediated damage response that contribute to cGAS/STING activation. Depletion of cGAS or STING significantly attenuated riluzole-induced expression of IFNβ and CXCL10 as well as increase of intratumoral CD8+ T cells and suppression of tumor growth. These results indicate that riluzole-mediated tumor infiltration of CD8+ T cells and attenuation of tumor growth is dependent on tumor cell intrinsic STING activation. To determine whether riluzole treatment primes the tumor microenvironment for immune checkpoint modulation, riluzole was combined with anti-PD-1 treatment. This combination showed greater efficacy than either single agent, and strongly suppressed tumor growth in vivo. Taken together, our studies indicate that riluzole activates cGAS/STING-mediated innate immune responses, which might be exploited to sensitize colorectal tumors to anti-PD-1/PD-L1 therapies. .
结直肠癌是美国癌症死亡的第二大原因。尽管包括抗PD-1/PD-L1在内的免疫检查点阻断疗法已成功治疗了一部分结直肠癌患者,但反应率仍然很低。我们发现,经 FDA 批准用于治疗肌萎缩侧索硬化症的利鲁唑是一种耐受性良好的口服药物,它能增加瘤内 CD8+ T 细胞,抑制合成免疫小鼠结肠癌细胞的肿瘤生长。利鲁唑介导的肿瘤抑制依赖于 CD8+ T 细胞的存在。利鲁唑可激活结肠癌细胞中的细胞DNA感应cGAS/STING通路,导致干扰素β(IFNβ)和IFNβ调控基因(包括CXCL10)的表达增加。抑制ATM(而非ATR)会导致IFNβ表达的协同增加,这表明利鲁唑诱导了ATM介导的损伤反应,从而促进了cGAS/STING的激活。cGAS 或 STING 的耗竭可显著降低利鲁唑诱导的 IFNβ 和 CXCL10 的表达以及瘤内 CD8+ T 细胞的增加和肿瘤生长的抑制。这些结果表明,利鲁唑介导的 CD8+ T 细胞肿瘤浸润和肿瘤生长抑制依赖于肿瘤细胞内在的 STING 激活。为了确定利鲁唑治疗是否为免疫检查点调控提供了肿瘤微环境,利鲁唑与抗PD-1治疗相结合。这种联合疗法的疗效优于任何一种单药,并能强烈抑制体内肿瘤的生长。总之,我们的研究表明,利鲁唑能激活 cGAS/STING 介导的先天性免疫反应,可以利用这种反应使结直肠肿瘤对抗 PD-1/PD-L1 疗法敏感。.
{"title":"Riluzole Enhancing anti-PD-1 Efficacy by Activating cGAS/STING Signaling in Colorectal Cancer.","authors":"Beiyuan Liang, Misbah Khan, Hayden Storts, Evan H Zhang, Xinru Zheng, Xuanxuan Xing, Hazel Claybon, Jenna Wilson, Chunjie Li, Ning Jin, Richard Fishel, Wayne O Miles, Jing J Wang","doi":"10.1158/1535-7163.MCT-24-0289","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0289","url":null,"abstract":"<p><p>Colorectal cancer is the second leading cause of cancer mortality in the US. Although immune checkpoint blockade therapies including anti-PD-1/PD-L1 have been successful in treating a subset of colorectal cancer patients, response rates remain low. We have found that riluzole, a well-tolerated FDA-approved oral medicine for treating amyotrophic lateral sclerosis, increased intratumoral CD8+ T cells and suppressed tumor growth of colon cancer cells in syngeneic immune competent mice. Riluzole-mediated tumor suppression was dependent on the presence of CD8+ T cells. Riluzole activates the cytosolic DNA sensing cGAS/STING pathway in colon cancer cells, resulting in increased expression of interferon β (IFNβ) and IFNβ-regulated genes including CXCL10. Inhibition of ATM, but not ATR, resulted in a synergistic increase in IFNβ expression, suggesting that riluzole induces ATM-mediated damage response that contribute to cGAS/STING activation. Depletion of cGAS or STING significantly attenuated riluzole-induced expression of IFNβ and CXCL10 as well as increase of intratumoral CD8+ T cells and suppression of tumor growth. These results indicate that riluzole-mediated tumor infiltration of CD8+ T cells and attenuation of tumor growth is dependent on tumor cell intrinsic STING activation. To determine whether riluzole treatment primes the tumor microenvironment for immune checkpoint modulation, riluzole was combined with anti-PD-1 treatment. This combination showed greater efficacy than either single agent, and strongly suppressed tumor growth in vivo. Taken together, our studies indicate that riluzole activates cGAS/STING-mediated innate immune responses, which might be exploited to sensitize colorectal tumors to anti-PD-1/PD-L1 therapies. .</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1158/1535-7163.MCT-23-0726
Jieun Kim, Ekihiro Seki
Over the past two decades, the "hallmarks of cancer" have revolutionized cancer research and highlighted the crucial roles of inflammation and immunity. Pro-tumorigenic inflammation promotes cancer development along with inhibition of anti-tumor immunity, shaping the tumor microenvironment (TME) towards a tumor-permissive state and further enhancing the malignant potential of cancer cells. This immunosuppressive TME allows tumors to evade immunosurveillance. Thus, understanding the complex interplay between tumors and the immune system within the TME has become pivotal, especially with the advent of immunotherapy. Although immunotherapy has achieved notable success in many malignancies, primary liver cancer, particularly hepatocellular carcinoma (HCC), presents unique challenges. The hepatic immunosuppressive environment poses obstacles to the effectiveness of immunotherapy, along with high mortality rates and limited treatment options for patients with liver cancer. In this review, we discuss current understanding of the complex immune-mediated mechanisms underlying liver neoplasms, focusing on HCC and liver metastases. We describe the molecular and cellular heterogeneity within the TME, highlighting how this presents unique challenges and opportunities for immunotherapy in liver cancers. By unraveling the immune landscape of liver neoplasms, this review aims to contribute to the development of more effective therapeutic interventions, ultimately improving clinical outcomes for patients with liver cancer.
{"title":"Inflammation and Immunity in Liver Neoplasms: Implications for Future Therapeutic Strategies.","authors":"Jieun Kim, Ekihiro Seki","doi":"10.1158/1535-7163.MCT-23-0726","DOIUrl":"10.1158/1535-7163.MCT-23-0726","url":null,"abstract":"<p><p>Over the past two decades, the \"hallmarks of cancer\" have revolutionized cancer research and highlighted the crucial roles of inflammation and immunity. Pro-tumorigenic inflammation promotes cancer development along with inhibition of anti-tumor immunity, shaping the tumor microenvironment (TME) towards a tumor-permissive state and further enhancing the malignant potential of cancer cells. This immunosuppressive TME allows tumors to evade immunosurveillance. Thus, understanding the complex interplay between tumors and the immune system within the TME has become pivotal, especially with the advent of immunotherapy. Although immunotherapy has achieved notable success in many malignancies, primary liver cancer, particularly hepatocellular carcinoma (HCC), presents unique challenges. The hepatic immunosuppressive environment poses obstacles to the effectiveness of immunotherapy, along with high mortality rates and limited treatment options for patients with liver cancer. In this review, we discuss current understanding of the complex immune-mediated mechanisms underlying liver neoplasms, focusing on HCC and liver metastases. We describe the molecular and cellular heterogeneity within the TME, highlighting how this presents unique challenges and opportunities for immunotherapy in liver cancers. By unraveling the immune landscape of liver neoplasms, this review aims to contribute to the development of more effective therapeutic interventions, ultimately improving clinical outcomes for patients with liver cancer.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1158/1535-7163.MCT-24-0367
Peter C Jones, Daniel D Von Hoff
The liver is an immune tolerant organ, allowing for organ transplantation with less immune suppression compared to other organs. It also provides fertile soil for tumor metastases, which tend to be more resistant to checkpoint blockade immunotherapy than metastases in other organs. This resistance may result from the sum of incremental evolutionary adaptions in various cell types to prevent overaction to antigens absorbed from the gut into the portal circulation or it might involve a central mechanism. Here we propose that metabolism of vitamin A, which is highly concentrated in the liver, is a root source of tolerance and resistance of hepatic metastases to checkpoint blockade. Suppression of retinoic acid synthesis from vitamin A with disulfiram may mitigate tolerance and produce enhanced immunotherapy treatment results for patients with liver metastases.
肝脏是一个免疫耐受器官,与其他器官相比,它可以在较少免疫抑制的情况下进行器官移植。肝脏也为肿瘤转移提供了肥沃的土壤,与其他器官的肿瘤转移相比,肝脏往往对检查点阻断免疫疗法更具抵抗力。这种抗药性可能是各类细胞为防止对从肠道吸收到门静脉循环的抗原产生过度反应而逐步进化适应的结果,也可能涉及一种中心机制。在此,我们提出,高度集中于肝脏的维生素 A 代谢是肝转移瘤对检查点阻断耐受性和抗性的根源。用双硫仑抑制维生素 A 合成维甲酸可能会减轻肝转移患者的耐受性,并提高免疫疗法的治疗效果。
{"title":"Vitamin A Metabolism and Resistance of Hepatic Metastases to Immunotherapy.","authors":"Peter C Jones, Daniel D Von Hoff","doi":"10.1158/1535-7163.MCT-24-0367","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0367","url":null,"abstract":"<p><p>The liver is an immune tolerant organ, allowing for organ transplantation with less immune suppression compared to other organs. It also provides fertile soil for tumor metastases, which tend to be more resistant to checkpoint blockade immunotherapy than metastases in other organs. This resistance may result from the sum of incremental evolutionary adaptions in various cell types to prevent overaction to antigens absorbed from the gut into the portal circulation or it might involve a central mechanism. Here we propose that metabolism of vitamin A, which is highly concentrated in the liver, is a root source of tolerance and resistance of hepatic metastases to checkpoint blockade. Suppression of retinoic acid synthesis from vitamin A with disulfiram may mitigate tolerance and produce enhanced immunotherapy treatment results for patients with liver metastases.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1158/1535-7163.MCT-23-0564
Anran Chen, Beom-Jun Kim, Aparna Mitra, Craig T Vollert, Jonathan T Lei, Diana Fandino, Meenakshi Anurag, Matthew V Holt, Xuxu Gou, Jacob B Pilcher, Matthew P Goetz, Donald W Northfelt, Susan G Hilsenbeck, C Gary Marshall, Marc L Hyer, Robert Papp, Shou-Yun Yin, Carmine De Angelis, Rachel Schiff, Suzanne A W Fuqua, Cynthia X Ma, Charles E Foulds, Matthew J Ellis
Endocrine therapies (ET) with cyclin-dependent kinase 4/6 (CDK4/6) inhibition are the standard treatment for estrogen receptor-α-positive (ER+) breast cancer, however drug resistance is common. In this study, proteogenomic analyses of patient-derived xenografts (PDXs) from patients with 22 ER+ breast cancer demonstrated that protein kinase, membrane-associated tyrosine/threonine one (PKMYT1), a WEE1 homolog, is estradiol (E2) regulated in E2-dependent PDXs and constitutively expressed when growth is E2-independent. In clinical samples, high PKMYT1 mRNA levels associated with resistance to both ET and CDK4/6 inhibition. The PKMYT1 inhibitor lunresertib (RP-6306) with gemcitabine selectively and synergistically reduced the viability of ET and palbociclib-resistant ER+ breast cancer cells without functional p53. In vitro the combination increased DNA damage and apoptosis. In palbociclib-resistant, TP53 mutant PDX-derived organoids and PDXs, RP-6306 with low-dose gemcitabine induced greater tumor volume reduction compared to treatment with either single agent. Our study demonstrates the clinical potential of RP-6306 in combination with gemcitabine for ET and CDK4/6 inhibitor resistant TP53 mutant ER+ breast cancer.
抑制CDK4/6的内分泌疗法(ET)是治疗雌激素受体α阳性(ER+)乳腺癌的标准疗法,但耐药性很常见。在这项研究中,对22个ER+乳腺癌患者衍生异种移植物(PDXs)进行的蛋白质基因组学分析表明,WEE1同源物PKMYT1在依赖雌激素(E2)的PDXs中受雌二醇(E2)调控,而在不依赖E2生长的PDXs中则呈组成型表达。在临床样本中,高水平的 PKMYT1 mRNA 与对 ET 和 CDK4/6 抑制的耐受性有关。PKMYT1 抑制剂 lunresertib(RP-6306)与吉西他滨可选择性地协同降低对 ET 和帕博西尼耐药的无功能 p53 的 ER+ 乳腺癌细胞的活力。在体外,该组合可增加 DNA 损伤和细胞凋亡。在palbociclib耐药、TP53突变的PDX器官组织和异种移植物中,RP-6306与低剂量吉西他滨联合用药与单药治疗相比,能诱导更大的肿瘤体积缩小。我们的研究证明了RP-6306与吉西他滨联合治疗ET和CDK4/6抑制剂耐药的TP53突变ER+乳腺癌的临床潜力。
{"title":"PKMYT1 Is a Marker of Treatment Response and a Therapeutic Target for CDK4/6 Inhibitor-Resistance in ER+ Breast Cancer.","authors":"Anran Chen, Beom-Jun Kim, Aparna Mitra, Craig T Vollert, Jonathan T Lei, Diana Fandino, Meenakshi Anurag, Matthew V Holt, Xuxu Gou, Jacob B Pilcher, Matthew P Goetz, Donald W Northfelt, Susan G Hilsenbeck, C Gary Marshall, Marc L Hyer, Robert Papp, Shou-Yun Yin, Carmine De Angelis, Rachel Schiff, Suzanne A W Fuqua, Cynthia X Ma, Charles E Foulds, Matthew J Ellis","doi":"10.1158/1535-7163.MCT-23-0564","DOIUrl":"10.1158/1535-7163.MCT-23-0564","url":null,"abstract":"<p><p>Endocrine therapies (ET) with cyclin-dependent kinase 4/6 (CDK4/6) inhibition are the standard treatment for estrogen receptor-α-positive (ER+) breast cancer, however drug resistance is common. In this study, proteogenomic analyses of patient-derived xenografts (PDXs) from patients with 22 ER+ breast cancer demonstrated that protein kinase, membrane-associated tyrosine/threonine one (PKMYT1), a WEE1 homolog, is estradiol (E2) regulated in E2-dependent PDXs and constitutively expressed when growth is E2-independent. In clinical samples, high PKMYT1 mRNA levels associated with resistance to both ET and CDK4/6 inhibition. The PKMYT1 inhibitor lunresertib (RP-6306) with gemcitabine selectively and synergistically reduced the viability of ET and palbociclib-resistant ER+ breast cancer cells without functional p53. In vitro the combination increased DNA damage and apoptosis. In palbociclib-resistant, TP53 mutant PDX-derived organoids and PDXs, RP-6306 with low-dose gemcitabine induced greater tumor volume reduction compared to treatment with either single agent. Our study demonstrates the clinical potential of RP-6306 in combination with gemcitabine for ET and CDK4/6 inhibitor resistant TP53 mutant ER+ breast cancer.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1494-1510"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1158/1535-7163.MCT-23-0519
Minh T Than, Mark O'Hara, Ben Z Stanger, Kim A Reiss
Pancreatic ductal adenocarcinoma (PDAC) is associated with significant morbidity and mortality and is projected to be the second leading cause of cancer-related deaths by 2030. Mutations in KRAS are found in the vast majority of PDAC cases and plays an important role in the development of the disease. KRAS drives tumor cell proliferation and survival through activating the MAPK pathway to drive cell cycle progression and to lead to MYC-driven cellular programs. Moreover, activated KRAS promotes a protumorigenic microenvironment through forming a desmoplastic stroma and by impairing antitumor immunity. Secretion of granulocyte-macrophage colony-stimulating factor and recruitment of myeloid-derived suppressor cells and protumorigenic macrophages results in an immunosuppressive environment while secretion of secrete sonic hedgehog and TGFβ drive fibroblastic features characteristic of PDAC. Recent development of several small molecules to directly target KRAS marks an important milestone in precision medicine. Many molecules show promise in preclinical models of PDAC and in early phase clinical trials. In this review, we discuss the underlying cell intrinsic and extrinsic roles of KRAS in PDAC tumorigenesis, the pharmacologic development of KRAS inhibition, and therapeutic strategies to target KRAS in PDAC.
{"title":"KRAS-Driven Tumorigenesis and KRAS-Driven Therapy in Pancreatic Adenocarcinoma.","authors":"Minh T Than, Mark O'Hara, Ben Z Stanger, Kim A Reiss","doi":"10.1158/1535-7163.MCT-23-0519","DOIUrl":"10.1158/1535-7163.MCT-23-0519","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is associated with significant morbidity and mortality and is projected to be the second leading cause of cancer-related deaths by 2030. Mutations in KRAS are found in the vast majority of PDAC cases and plays an important role in the development of the disease. KRAS drives tumor cell proliferation and survival through activating the MAPK pathway to drive cell cycle progression and to lead to MYC-driven cellular programs. Moreover, activated KRAS promotes a protumorigenic microenvironment through forming a desmoplastic stroma and by impairing antitumor immunity. Secretion of granulocyte-macrophage colony-stimulating factor and recruitment of myeloid-derived suppressor cells and protumorigenic macrophages results in an immunosuppressive environment while secretion of secrete sonic hedgehog and TGFβ drive fibroblastic features characteristic of PDAC. Recent development of several small molecules to directly target KRAS marks an important milestone in precision medicine. Many molecules show promise in preclinical models of PDAC and in early phase clinical trials. In this review, we discuss the underlying cell intrinsic and extrinsic roles of KRAS in PDAC tumorigenesis, the pharmacologic development of KRAS inhibition, and therapeutic strategies to target KRAS in PDAC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1378-1388"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444872/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}