首页 > 最新文献

Molecular Cancer Therapeutics最新文献

英文 中文
Pretargeted Radioimmunotherapy with the Novel Anti-oxMIF/HSG Bispecific Antibody ON105 Results in Significant Tumor Regression in Murine Models of Cancer. 新型抗oxMIF/HSG双特异性抗体ON105的预靶向放射免疫疗法可使小鼠癌症模型中的肿瘤显著消退
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-04 DOI: 10.1158/1535-7163.MCT-24-0083
Alejandro A Puchol Tarazona, Alexander Schinagl, Irina Mirkina, Gregor Rossmueller, Randolf J Kerschbaumer, Friedmund Bachmann, Michael Thiele

Radioimmunotherapy (RIT) uses monoclonal antibodies to deliver radionuclides to cancer cells or the tumor microenvironment and has shown promise in treating localized and diffuse tumors. Although RIT agents have gained FDA/EMA approval for certain hematologic malignancies, effectiveness of RIT in treating solid tumors remains limited. In this study, we present PreTarg-it®, a novel approach for pretargeted RIT, providing optimized delivery of payloads in a two-step regimen. The effectiveness of PreTarg-it® is demonstrated by a powerful combination of ON105, a novel bispecific antibody against both oxidized macrophage migration inhibitory factor (oxMIF) and the histamine-succinyl-glycyl (HSG) hapten, as the first component and the radioactively labeled DOTA-di-HSG peptide as the second component in murine models of cancer. Mice bearing either subcutaneous mouse colorectal CT26 or human pancreatic CFPAC-1 tumors received an i.v. injection of ON105. After ON105 had accumulated in the tumor and cleared from circulation to approximately 1% to 3% of its peak concentration, 177Lu-DOTA-di-HSG peptide was administered. A single PreTarg-it® treatment cycle resulted in tumor regression when mice bearing CT26 tumors were given the highest treatment dose with a pretargeting delay of 3 days. Administered with a 5-day interval, the highest dose arrested tumor growth in both CT26 syngrafts and CFPAC-1 xenografts. In all cases, the highest treatment dose resulted in 100% survival at the study endpoint, whereas the control cohorts showed 0% and 60% survival in the CT26 and CFPAC-1 models, respectively. Therefore, PreTarg-it® holds potential as a novel and potent therapy for patients with hard-to-treat solid tumors, such as pancreatic cancer, as well as those with late-stage malignancies.

放射免疫疗法(RIT)使用单克隆抗体向癌细胞或肿瘤微环境释放放射性核素,在治疗局部和弥漫性肿瘤方面前景看好。虽然 RIT 药剂已获得 FDA/EMA 批准用于治疗某些血液系统恶性肿瘤,但 RIT 治疗实体瘤的效果仍然有限。在本研究中,我们介绍了一种用于预靶向 RIT 的新方法 PreTarg-it®,它通过两步疗法优化了有效载荷的递送。在小鼠癌症模型中,以 ON105(一种针对氧化巨噬细胞迁移抑制因子(oxMIF)和组胺-琥珀酰-甘氨酰(HSG)合肽的新型双特异性抗体)为第一成分,以放射性标记的 DOTA-di-HSG 肽为第二成分的强效组合证明了 PreTarg-it® 的有效性。皮下注射ON105给携带小鼠结直肠CT26肿瘤或人胰腺CFPAC-1肿瘤的小鼠。ON105在肿瘤中蓄积并从血液循环中清除至其峰值浓度的约1%至3%后,再注射177Lu-DOTA-di-HSG肽。对携带 CT26 肿瘤的小鼠施用最高剂量的 PreTarg-it® 并延迟 3 天进行预靶向治疗,一个 PreTarg-it® 治疗周期就能使肿瘤消退。在间隔 5 天的情况下,最高剂量可阻止 CT26 系统移植物和 CFPAC-1 异种移植物的肿瘤生长。在所有情况下,最高治疗剂量都能使研究终点的存活率达到 100%,而 CT26 和 CFPAC-1 模型的对照组存活率分别为 0% 和 60%。因此,PreTarg-it®有望成为胰腺癌等难以治疗的实体瘤患者以及晚期恶性肿瘤患者的一种新型强效疗法。
{"title":"Pretargeted Radioimmunotherapy with the Novel Anti-oxMIF/HSG Bispecific Antibody ON105 Results in Significant Tumor Regression in Murine Models of Cancer.","authors":"Alejandro A Puchol Tarazona, Alexander Schinagl, Irina Mirkina, Gregor Rossmueller, Randolf J Kerschbaumer, Friedmund Bachmann, Michael Thiele","doi":"10.1158/1535-7163.MCT-24-0083","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0083","url":null,"abstract":"<p><p>Radioimmunotherapy (RIT) uses monoclonal antibodies to deliver radionuclides to cancer cells or the tumor microenvironment and has shown promise in treating localized and diffuse tumors. Although RIT agents have gained FDA/EMA approval for certain hematologic malignancies, effectiveness of RIT in treating solid tumors remains limited. In this study, we present PreTarg-it®, a novel approach for pretargeted RIT, providing optimized delivery of payloads in a two-step regimen. The effectiveness of PreTarg-it® is demonstrated by a powerful combination of ON105, a novel bispecific antibody against both oxidized macrophage migration inhibitory factor (oxMIF) and the histamine-succinyl-glycyl (HSG) hapten, as the first component and the radioactively labeled DOTA-di-HSG peptide as the second component in murine models of cancer. Mice bearing either subcutaneous mouse colorectal CT26 or human pancreatic CFPAC-1 tumors received an i.v. injection of ON105. After ON105 had accumulated in the tumor and cleared from circulation to approximately 1% to 3% of its peak concentration, 177Lu-DOTA-di-HSG peptide was administered. A single PreTarg-it® treatment cycle resulted in tumor regression when mice bearing CT26 tumors were given the highest treatment dose with a pretargeting delay of 3 days. Administered with a 5-day interval, the highest dose arrested tumor growth in both CT26 syngrafts and CFPAC-1 xenografts. In all cases, the highest treatment dose resulted in 100% survival at the study endpoint, whereas the control cohorts showed 0% and 60% survival in the CT26 and CFPAC-1 models, respectively. Therefore, PreTarg-it® holds potential as a novel and potent therapy for patients with hard-to-treat solid tumors, such as pancreatic cancer, as well as those with late-stage malignancies.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
YAP1 suppression by ZDHHC7 is associated with ferroptosis resistance and poor prognosis in ovarian clear cell carcinoma. ZDHHC7对YAP1的抑制与卵巢透明细胞癌的抗铁性和不良预后有关。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-03 DOI: 10.1158/1535-7163.MCT-24-0145
Yoko Furutake, Ken Yamaguchi, Koji Yamanoi, Sachiko Kitamura, Shiro Takamatsu, Mana Taki, Masayo Ukita, Yuko Hosoe, Ryusuke Murakami, Kaoru Abiko, Akihito Horie, Junzo Hamanishi, Tsukasa Baba, Noriomi Matsumura, Masaki Mandai

Ovarian clear cell carcinoma (OCCC), which has unique clinical characteristics, arises from benign endometriotic cysts, forming an oxidative stress environment due to excess iron accumulation, and exhibits poor prognosis, particularly in advanced stages owing to resistance to conventional therapeutics. Ferroptosis is an iron-dependent form of programmed cell death induced by lipid peroxidation and controlled by Hippo signaling. We hypothesized that overcoming ferroptosis resistance is an attractive strategy because OCCC acquires oxidative stress resistance during its development and exhibits chemoresistant features indicative of ferroptosis resistance. This study aimed to determine whether OCCC is resistant to ferroptosis and clarify the mechanism underlying resistance. Unlike ovarian high-grade serous carcinoma cells, OCCC cells were exposed to oxidative stress. However, OCCC cells remained unaffected by lipid peroxidation. Cell viability assays revealed that OCCC cells exhibited resistance to the ferroptosis inducer erastin. Moreover, Samroc analysis showed that the Hippo signaling pathway was enriched in OCCC cell lines and clinical samples. Furthermore, patients with low expression of nuclear Yes-associated protein 1(YAP1) exhibited a significantly poor prognosis of OCCC. Moreover, YAP1 activation enhanced ferroptosis in OCCC cell lines. Furthermore, suppression of zinc finger DHHC-type palmitoyltransferase 7 (ZDHHC7) enhanced ferroptosis by activating YAP1 in OCCC cell lines. Mouse xenograft models demonstrated that ZDHHC7 inhibition suppressed tumor growth via YAP1 activation by erastin treatment. In conclusion, YAP1 activation regulated by ZDHHC7 enhanced ferroptosis in OCCC. Thus, overcoming ferroptosis resistance is a potential therapeutic strategy for OCCC.

卵巢透明细胞癌(OCCC)具有独特的临床特征,它产生于良性子宫内膜异位囊肿,由于铁积累过多而形成氧化应激环境,预后较差,尤其是在晚期,因为对传统疗法具有抗药性。铁凋亡是由脂质过氧化诱导的一种铁依赖性细胞程序性死亡形式,由希波信号传导控制。我们推测,由于 OCCC 在其发展过程中获得了氧化应激抗性,并表现出表明铁氧化抗性的化疗抗性特征,因此克服铁氧化抗性是一种有吸引力的策略。本研究旨在确定 OCCC 是否对铁蛋白沉积产生耐药性,并阐明耐药性的机制。与卵巢高级别浆液性癌细胞不同,OCCC细胞暴露于氧化应激。然而,OCCC细胞不受脂质过氧化的影响。细胞活力测定显示,OCCC细胞对铁突变诱导剂麦拉宁(erastin)具有抗性。此外,Samroc分析表明,OCCC细胞系和临床样本中富含Hippo信号通路。此外,核Yes相关蛋白1(YAP1)低表达的患者预后明显较差。此外,YAP1的激活增强了OCCC细胞系中的铁突变。此外,抑制锌指DHHC型棕榈酰基转移酶7(ZDHHC7)可通过激活YAP1增强OCCC细胞株的铁变态反应。小鼠异种移植模型表明,抑制 ZDHHC7 可通过依拉斯汀治疗激活 YAP1 来抑制肿瘤生长。总之,ZDHHC7调节的YAP1活化增强了OCCC细胞的铁突变。因此,克服铁突变耐药性是治疗 OCCC 的一种潜在策略。
{"title":"YAP1 suppression by ZDHHC7 is associated with ferroptosis resistance and poor prognosis in ovarian clear cell carcinoma.","authors":"Yoko Furutake, Ken Yamaguchi, Koji Yamanoi, Sachiko Kitamura, Shiro Takamatsu, Mana Taki, Masayo Ukita, Yuko Hosoe, Ryusuke Murakami, Kaoru Abiko, Akihito Horie, Junzo Hamanishi, Tsukasa Baba, Noriomi Matsumura, Masaki Mandai","doi":"10.1158/1535-7163.MCT-24-0145","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0145","url":null,"abstract":"<p><p>Ovarian clear cell carcinoma (OCCC), which has unique clinical characteristics, arises from benign endometriotic cysts, forming an oxidative stress environment due to excess iron accumulation, and exhibits poor prognosis, particularly in advanced stages owing to resistance to conventional therapeutics. Ferroptosis is an iron-dependent form of programmed cell death induced by lipid peroxidation and controlled by Hippo signaling. We hypothesized that overcoming ferroptosis resistance is an attractive strategy because OCCC acquires oxidative stress resistance during its development and exhibits chemoresistant features indicative of ferroptosis resistance. This study aimed to determine whether OCCC is resistant to ferroptosis and clarify the mechanism underlying resistance. Unlike ovarian high-grade serous carcinoma cells, OCCC cells were exposed to oxidative stress. However, OCCC cells remained unaffected by lipid peroxidation. Cell viability assays revealed that OCCC cells exhibited resistance to the ferroptosis inducer erastin. Moreover, Samroc analysis showed that the Hippo signaling pathway was enriched in OCCC cell lines and clinical samples. Furthermore, patients with low expression of nuclear Yes-associated protein 1(YAP1) exhibited a significantly poor prognosis of OCCC. Moreover, YAP1 activation enhanced ferroptosis in OCCC cell lines. Furthermore, suppression of zinc finger DHHC-type palmitoyltransferase 7 (ZDHHC7) enhanced ferroptosis by activating YAP1 in OCCC cell lines. Mouse xenograft models demonstrated that ZDHHC7 inhibition suppressed tumor growth via YAP1 activation by erastin treatment. In conclusion, YAP1 activation regulated by ZDHHC7 enhanced ferroptosis in OCCC. Thus, overcoming ferroptosis resistance is a potential therapeutic strategy for OCCC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasensitive Response Explains the Benefit of Combination Chemotherapy Despite Drug Antagonism. 超敏反应解释了联合化疗在药物拮抗作用下仍能获益的原因。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-02 DOI: 10.1158/1535-7163.MCT-23-0642
Sarah C Patterson, Amy E Pomeroy, Adam C Palmer

Most aggressive lymphomas are treated with combination chemotherapy, commonly as multiple cycles of concurrent drug administration. Concurrent administration is in theory optimal when combination therapies have synergistic (more than additive) drug interactions. We investigated pharmacodynamic interactions in the standard 4-drug "CHOP" regimen in peripheral T-cell lymphoma (PTCL) cell lines and found that CHOP consistently exhibits antagonism and not synergy. We tested whether staggered treatment schedules could improve tumor cell kill by avoiding antagonism, using in vitro models of concurrent or staggered treatments. Surprisingly, we observed that tumor cell kill is maximized by concurrent drug administration despite antagonistic drug-drug interactions. We propose that an ultrasensitive dose response, as described in radiology by the linear-quadratic (LQ) model, can reconcile these seemingly contradictory experimental observations. The LQ model describes the relationship between cell survival and dose, and in radiology has identified scenarios favoring hypofractionated radiotherapy-the administration of fewer large doses rather than multiple smaller doses. Specifically, hypofractionated treatment can be favored when cells require an accumulation of DNA damage, rather than a "single hit," to die. By adapting the LQ model to combination chemotherapy and accounting for tumor heterogeneity, we find that tumor cell kill is maximized by concurrent administration of multiple drugs, even when chemotherapies have antagonistic interactions. Thus, our study identifies a new mechanism by which combination chemotherapy can be clinically beneficial that is not contingent on positive drug-drug interactions.

大多数侵袭性淋巴瘤都采用联合化疗,通常是多个周期同时用药。理论上,当联合疗法具有协同(大于相加)的药物相互作用时,同时给药是最佳选择。我们研究了外周 T 细胞淋巴瘤(PTCL)细胞系中标准四药 "CHOP "方案的药效学相互作用,发现 CHOP 始终表现出拮抗作用而非协同作用。我们利用同时或交错治疗的体外模型,测试了交错治疗计划是否能避免拮抗作用,从而提高对肿瘤细胞的杀伤力。令人惊讶的是,我们观察到,尽管药物与药物之间存在拮抗作用,但同时给药能最大限度地杀伤肿瘤细胞。我们提出,放射学中的线性-四次方(LQ)模型所描述的超灵敏剂量反应可以调和这些看似矛盾的实验观察结果。LQ 模型描述了细胞存活与剂量之间的关系,并在放射学中确定了有利于低分次放射治疗的方案--施用较少的大剂量而不是多个较小剂量。具体来说,当细胞需要DNA损伤的累积而不是 "单次打击 "才能死亡时,低分次治疗就会受到青睐。通过将 LQ 模型应用于联合化疗并考虑肿瘤的异质性,我们发现,即使化疗药物之间存在拮抗作用,同时使用多种药物也能最大限度地杀死肿瘤细胞。因此,我们的研究发现了联合化疗对临床有益的新机制,而这种机制并不取决于药物间的正相互作用。
{"title":"Ultrasensitive Response Explains the Benefit of Combination Chemotherapy Despite Drug Antagonism.","authors":"Sarah C Patterson, Amy E Pomeroy, Adam C Palmer","doi":"10.1158/1535-7163.MCT-23-0642","DOIUrl":"10.1158/1535-7163.MCT-23-0642","url":null,"abstract":"<p><p>Most aggressive lymphomas are treated with combination chemotherapy, commonly as multiple cycles of concurrent drug administration. Concurrent administration is in theory optimal when combination therapies have synergistic (more than additive) drug interactions. We investigated pharmacodynamic interactions in the standard 4-drug \"CHOP\" regimen in peripheral T-cell lymphoma (PTCL) cell lines and found that CHOP consistently exhibits antagonism and not synergy. We tested whether staggered treatment schedules could improve tumor cell kill by avoiding antagonism, using in vitro models of concurrent or staggered treatments. Surprisingly, we observed that tumor cell kill is maximized by concurrent drug administration despite antagonistic drug-drug interactions. We propose that an ultrasensitive dose response, as described in radiology by the linear-quadratic (LQ) model, can reconcile these seemingly contradictory experimental observations. The LQ model describes the relationship between cell survival and dose, and in radiology has identified scenarios favoring hypofractionated radiotherapy-the administration of fewer large doses rather than multiple smaller doses. Specifically, hypofractionated treatment can be favored when cells require an accumulation of DNA damage, rather than a \"single hit,\" to die. By adapting the LQ model to combination chemotherapy and accounting for tumor heterogeneity, we find that tumor cell kill is maximized by concurrent administration of multiple drugs, even when chemotherapies have antagonistic interactions. Thus, our study identifies a new mechanism by which combination chemotherapy can be clinically beneficial that is not contingent on positive drug-drug interactions.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of MALT1 and BCL2 Induces Synergistic Antitumor Activity in Models of B-Cell Lymphoma. 在 B 细胞淋巴瘤模型中抑制 MALT1 和 BCL2 可诱导协同抗肿瘤活性。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-02 DOI: 10.1158/1535-7163.MCT-23-0518
Joshua P Plotnik, Adam E Richardson, Haopeng Yang, Estela Rojas, Velitchka Bontcheva, Colleen Dowell, Sydney Parsons, Ashley Wilson, Vida Ravanmehr, Christine Will, Paul Jung, Haizhong Zhu, Sarathy Karunan Partha, Sanjay C Panchal, Raghuveer Singh Mali, Frederick J Kohlhapp, Ryan A McClure, Cyril Y Ramathal, Mariam D George, Manisha Jhala, Nathaniel L Elsen, Wei Qiu, Russell A Judge, Chin Pan, Anthony Mastracchio, Jared Henderson, Jonathan A Meulbroek, Michael R Green, William N Pappano

The activated B cell (ABC) subset of diffuse large B-cell lymphoma (DLBCL) is characterized by chronic B-cell receptor signaling and associated with poor outcomes when treated with standard therapy. In ABC-DLBCL, MALT1 is a core enzyme that is constitutively activated by stimulation of the B-cell receptor or gain-of-function mutations in upstream components of the signaling pathway, making it an attractive therapeutic target. We discovered a novel small-molecule inhibitor, ABBV-MALT1, that potently shuts down B-cell signaling selectively in ABC-DLBCL preclinical models leading to potent cell growth and xenograft inhibition. We also identified a rational combination partner for ABBV-MALT1 in the BCL2 inhibitor, venetoclax, which when combined significantly synergizes to elicit deep and durable responses in preclinical models. This work highlights the potential of ABBV-MALT1 monotherapy and combination with venetoclax as effective treatment options for patients with ABC-DLBCL.

弥漫大B细胞淋巴瘤(DLBCL)的活化B细胞(ABC)亚群以慢性B细胞受体信号传导为特征,接受标准疗法治疗后疗效不佳。在ABC-DLBCL中,MALT1是一种核心酶,会因B细胞受体的刺激或信号通路上游成分的功能增益突变而被持续激活,使其成为一个有吸引力的治疗靶点。我们发现了一种新型小分子抑制剂 ABBV-MALT1,它能在 ABC-DLBCL 临床前模型中选择性地有效关闭 B 细胞信号传导,从而有效抑制细胞生长和异种移植。我们还发现了ABBV-MALT1与BCL2抑制剂venetoclax的合理联用伙伴,两者联用可显著增效,在临床前模型中激发深入持久的反应。这项工作凸显了ABBV-MALT1单药治疗和与venetoclax联用作为ABC-DLBCL患者有效治疗方案的潜力。
{"title":"Inhibition of MALT1 and BCL2 Induces Synergistic Antitumor Activity in Models of B-Cell Lymphoma.","authors":"Joshua P Plotnik, Adam E Richardson, Haopeng Yang, Estela Rojas, Velitchka Bontcheva, Colleen Dowell, Sydney Parsons, Ashley Wilson, Vida Ravanmehr, Christine Will, Paul Jung, Haizhong Zhu, Sarathy Karunan Partha, Sanjay C Panchal, Raghuveer Singh Mali, Frederick J Kohlhapp, Ryan A McClure, Cyril Y Ramathal, Mariam D George, Manisha Jhala, Nathaniel L Elsen, Wei Qiu, Russell A Judge, Chin Pan, Anthony Mastracchio, Jared Henderson, Jonathan A Meulbroek, Michael R Green, William N Pappano","doi":"10.1158/1535-7163.MCT-23-0518","DOIUrl":"10.1158/1535-7163.MCT-23-0518","url":null,"abstract":"<p><p>The activated B cell (ABC) subset of diffuse large B-cell lymphoma (DLBCL) is characterized by chronic B-cell receptor signaling and associated with poor outcomes when treated with standard therapy. In ABC-DLBCL, MALT1 is a core enzyme that is constitutively activated by stimulation of the B-cell receptor or gain-of-function mutations in upstream components of the signaling pathway, making it an attractive therapeutic target. We discovered a novel small-molecule inhibitor, ABBV-MALT1, that potently shuts down B-cell signaling selectively in ABC-DLBCL preclinical models leading to potent cell growth and xenograft inhibition. We also identified a rational combination partner for ABBV-MALT1 in the BCL2 inhibitor, venetoclax, which when combined significantly synergizes to elicit deep and durable responses in preclinical models. This work highlights the potential of ABBV-MALT1 monotherapy and combination with venetoclax as effective treatment options for patients with ABC-DLBCL.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Novel ATR Inhibitor M1774 Induces Replication Protein Overexpression and Broad Synergy with DNA-targeted Anticancer Drugs. 新型 ATR 抑制剂 M1774 可诱导复制蛋白过表达,并与 DNA 靶向抗癌药物产生广泛的协同作用。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-02 DOI: 10.1158/1535-7163.MCT-23-0402
Ukhyun Jo, Yasuhiro Arakawa, Astrid Zimmermann, Daiki Taniyama, Makito Mizunuma, Lisa M Jenkins, Tapan Maity, Suresh Kumar, Frank T Zenke, Naoko Takebe, Yves Pommier

Ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase inhibitors are in clinical trials. Here we explored the molecular pharmacology and therapeutic combination strategies of the oral ATR inhibitor M1774 (Tuvusertib) with DNA-damaging agents (DDA). As single agent, M1774 suppressed cancer cell viability at nanomolar concentrations, showing greater activity than ceralasertib and berzosertib, but less potency than gartisertib and elimusertib in the small cell lung cancer H146, H82, and DMS114 cell lines. M1774 also efficiently blocked the activation of the ATR-CHK1 checkpoint pathway caused by replication stress induced by TOP1 inhibitors. Combination with non-toxic dose of M1774 enhanced TOP1 inhibitor-induced cancer cell death by enabling unscheduled replication upon replicative damage, thereby increasing genome instability. Tandem mass tag-based quantitative proteomics uncovered that M1774, in the presence of DDA, forces the expression of proteins activating replication (CDC45) and G2-M progression (PLK1 and CCNB1). In particular, the fork protection complex proteins (TIMELESS and TIPIN) were enriched. Low dose of M1774 was found highly synergistic with a broad spectrum of clinical DDAs including TOP1 inhibitors (SN-38/irinotecan, topotecan, exatecan, and exatecan), the TOP2 inhibitor etoposide, cisplatin, the RNA polymerase II inhibitor lurbinectedin, and the PARP inhibitor talazoparib in various models including cancer cell lines, patient-derived organoids, and mouse xenograft models. Furthermore, we demonstrate that M1774 reverses chemoresistance to anticancer DDAs in cancer cells lacking SLFN11 expression, suggesting that SLFN11 can be utilized for patient selection in upcoming clinical trials.

共济失调性端粒增生症和Rad3相关(ATR)检查点激酶抑制剂正处于临床试验阶段。在这里,我们探索了口服ATR抑制剂M1774(Tuvusertib)与DNA损伤剂(DDAs)的分子药理学和治疗组合策略。在小细胞肺癌 H146、H82 和 DMS114 细胞系中,作为单药,M1774 在纳摩尔浓度下抑制癌细胞活力,其活性高于 ceralasertib 和 berzosertib,但低于 gartisertib 和 elimusertib。M1774 还能有效阻断 TOP1 抑制剂诱导的复制压力引起的 ATR-CHK1 检查点通路的激活。与无毒性剂量的 M1774 结合使用,可以在复制损伤时实现非计划复制,从而增加基因组的不稳定性,从而增强 TOP1 抑制剂诱导的癌细胞死亡。基于串联质量标签(TMT)的定量蛋白质组学发现,M1774 在 DDA 存在的情况下,会迫使激活复制(CDC45)和 G2/M 进展(PLK1 和 CCNB1)的蛋白质表达。叉保护复合体蛋白(TIMELESS 和 TIPIN)的表达尤其丰富。在各种模型(包括癌细胞系、患者衍生的器官组织和小鼠异种移植模型)中,低剂量 M1774 与多种临床 DDAs(包括 TOP1 抑制剂(SN-38/irinotecan、topotecan、exatecan 和 exatecan)、TOP2 抑制剂依托泊苷、顺铂、RNA 聚合酶 II 抑制剂 lurbinectedin 和 PARP 抑制剂 talazoparib)具有高度协同作用。此外,我们还证明 M1774 可逆转缺乏 SLFN11 表达的癌细胞对抗癌 DDAs 的化疗耐药性,这表明 SLFN11 可用于即将开展的临床试验中的患者选择。
{"title":"The Novel ATR Inhibitor M1774 Induces Replication Protein Overexpression and Broad Synergy with DNA-targeted Anticancer Drugs.","authors":"Ukhyun Jo, Yasuhiro Arakawa, Astrid Zimmermann, Daiki Taniyama, Makito Mizunuma, Lisa M Jenkins, Tapan Maity, Suresh Kumar, Frank T Zenke, Naoko Takebe, Yves Pommier","doi":"10.1158/1535-7163.MCT-23-0402","DOIUrl":"10.1158/1535-7163.MCT-23-0402","url":null,"abstract":"<p><p>Ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase inhibitors are in clinical trials. Here we explored the molecular pharmacology and therapeutic combination strategies of the oral ATR inhibitor M1774 (Tuvusertib) with DNA-damaging agents (DDA). As single agent, M1774 suppressed cancer cell viability at nanomolar concentrations, showing greater activity than ceralasertib and berzosertib, but less potency than gartisertib and elimusertib in the small cell lung cancer H146, H82, and DMS114 cell lines. M1774 also efficiently blocked the activation of the ATR-CHK1 checkpoint pathway caused by replication stress induced by TOP1 inhibitors. Combination with non-toxic dose of M1774 enhanced TOP1 inhibitor-induced cancer cell death by enabling unscheduled replication upon replicative damage, thereby increasing genome instability. Tandem mass tag-based quantitative proteomics uncovered that M1774, in the presence of DDA, forces the expression of proteins activating replication (CDC45) and G2-M progression (PLK1 and CCNB1). In particular, the fork protection complex proteins (TIMELESS and TIPIN) were enriched. Low dose of M1774 was found highly synergistic with a broad spectrum of clinical DDAs including TOP1 inhibitors (SN-38/irinotecan, topotecan, exatecan, and exatecan), the TOP2 inhibitor etoposide, cisplatin, the RNA polymerase II inhibitor lurbinectedin, and the PARP inhibitor talazoparib in various models including cancer cell lines, patient-derived organoids, and mouse xenograft models. Furthermore, we demonstrate that M1774 reverses chemoresistance to anticancer DDAs in cancer cells lacking SLFN11 expression, suggesting that SLFN11 can be utilized for patient selection in upcoming clinical trials.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of Carcinoembryonic Antigen-Related Cell Adhesion Molecules and Their Relationship to Cancer. 癌胚抗原相关细胞粘附分子的特征及其与癌症的关系。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-02 DOI: 10.1158/1535-7163.MCT-23-0461
Ru-Xue Ma, Jian-Rui Wei, Yan-Wei Hu

Carcinoembryonic antigen-related cell adhesion molecules (CEACAM), such as carcinoembryonic antigen (CEA) and the oncofetal glycoprotein family, are tumor markers. The CEACAMs consist of 12 different human CEACAMs and 5 different murine CEACAMs. The CEACAM family of proteins participates in multiple biological processes that include the immune response, angiogenesis, and cancer. CEACAMs play a significant role in cancer initiation and development. Increasing evidence suggests that family members may be new cancer biomarkers and targets in that CEACEAMs tend to be aberrantly expressed and therefore may have potential diagnostic and therapeutic importance. This review systematically summarizes the biogenesis, biological properties, and functions of CEACAMs, with a focus on their relationship with cancer and potential clinical application. As our knowledge of the relationships among CEACAMs and cancer increases, and as our understanding of the involved molecular mechanisms improves, new therapeutic strategies will evolve for cancer prevention and treatment of patients with cancer.

癌胚抗原相关细胞粘附分子(CEACAMs),如癌胚抗原(CEA)和胎盘糖蛋白家族,是肿瘤标志物。CEACAM 包括 12 种不同的人类 CEACAM 和 5 种不同的鼠类 CEACAM。CEACAM 蛋白家族参与多种生物过程,包括免疫反应、血管生成和癌症。CEACAM 在癌症的诱发和发展过程中发挥着重要作用。越来越多的证据表明,该家族成员可能是新的癌症生物标志物和靶标,因为 CEACEAMs 往往表达异常,因此可能具有潜在的诊断和治疗意义。本综述系统地总结了 CEACAMs 的生物发生、生物特性和功能,重点关注它们与癌症的关系以及潜在的临床应用。随着我们对 CEACAMs 与癌症之间关系的认识不断加深,以及对相关分子机制的理解不断提高,新的治疗策略将在癌症预防和癌症患者治疗方面得到发展。
{"title":"Characteristics of Carcinoembryonic Antigen-Related Cell Adhesion Molecules and Their Relationship to Cancer.","authors":"Ru-Xue Ma, Jian-Rui Wei, Yan-Wei Hu","doi":"10.1158/1535-7163.MCT-23-0461","DOIUrl":"10.1158/1535-7163.MCT-23-0461","url":null,"abstract":"<p><p>Carcinoembryonic antigen-related cell adhesion molecules (CEACAM), such as carcinoembryonic antigen (CEA) and the oncofetal glycoprotein family, are tumor markers. The CEACAMs consist of 12 different human CEACAMs and 5 different murine CEACAMs. The CEACAM family of proteins participates in multiple biological processes that include the immune response, angiogenesis, and cancer. CEACAMs play a significant role in cancer initiation and development. Increasing evidence suggests that family members may be new cancer biomarkers and targets in that CEACEAMs tend to be aberrantly expressed and therefore may have potential diagnostic and therapeutic importance. This review systematically summarizes the biogenesis, biological properties, and functions of CEACAMs, with a focus on their relationship with cancer and potential clinical application. As our knowledge of the relationships among CEACAMs and cancer increases, and as our understanding of the involved molecular mechanisms improves, new therapeutic strategies will evolve for cancer prevention and treatment of patients with cancer.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140137034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Compound That Inhibits Glycolysis in Prostate Cancer Controls Growth of Advanced Prostate Cancer. 抑制前列腺癌糖酵解的化合物可控制晚期前列腺癌的生长
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-02 DOI: 10.1158/1535-7163.MCT-23-0540
Takuma Uo, Kayode K Ojo, Cynthia C T Sprenger, Kathryn S Epilepsia, B Gayani K Perera, Mamatha Damodarasamy, Shihua Sun, Soojin Kim, Hannah H Hogan, Matthew A Hulverson, Ryan Choi, Grant R Whitman, Lynn K Barrett, Samantha A Michaels, Linda H Xu, Vicky L Sun, Samuel L M Arnold, Haley J Pang, Matthew M Nguyen, Anna-Lena B G Vigil, Varun Kamat, Lucas B Sullivan, Ian R Sweet, Ram Vidadala, Dustin J Maly, Wesley C Van Voorhis, Stephen R Plymate

Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Nonspecific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small-molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell-cycle, metabolic, and enzymatic assays were used to demonstrate their mechanism of action. A human patient-derived xenograft model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. We demonstrate a new class of small-molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.

无论最近的治疗手段如何进步,转移性抗性前列腺癌仍然无法治愈。随着癌症的发展,前列腺癌肿瘤显示出高度糖酵解表型。由于非特异性糖酵解抑制剂容易引起全身毒性,因此尚未成功用于化疗。本研究报告了具有抗糖酵解活性的新型小分子候选药物 BKIDC-1553 的临床前活性、安全性和药代动力学。我们在体外对大量前列腺癌细胞系进行了抑制细胞增殖的测试。我们使用细胞周期、代谢和酶测定来证明其作用机制。我们还研究了植入小鼠体内的人类 PDX 模型和人类类器官对 BKIDC 临床前候选药物的敏感性。我们还进行了一系列药代动力学实验、吸收、分布、代谢和排泄实验,以及体外和体内毒理学实验,以评估临床试验的准备情况。我们展示了一类新的小分子抑制剂,它们在前列腺癌细胞系中的抗糖酵解活性是通过抑制己糖激酶 2 来介导的。这些化合物在多种前列腺癌模型中显示出选择性生长抑制作用。我们介绍的先导化合物 BKIDC-1553 在晚期前列腺癌的临床前异种移植模型中显示出与恩杂鲁胺相当的活性。BKIDC-1553 所表现出的安全性和药理特性与可用于人体研究的化合物相一致,具有良好的安全边际和疗效预测剂量。这项研究支持在晚期前列腺癌患者的临床试验中测试 BKIDC-1553 及其衍生物。
{"title":"A Compound That Inhibits Glycolysis in Prostate Cancer Controls Growth of Advanced Prostate Cancer.","authors":"Takuma Uo, Kayode K Ojo, Cynthia C T Sprenger, Kathryn S Epilepsia, B Gayani K Perera, Mamatha Damodarasamy, Shihua Sun, Soojin Kim, Hannah H Hogan, Matthew A Hulverson, Ryan Choi, Grant R Whitman, Lynn K Barrett, Samantha A Michaels, Linda H Xu, Vicky L Sun, Samuel L M Arnold, Haley J Pang, Matthew M Nguyen, Anna-Lena B G Vigil, Varun Kamat, Lucas B Sullivan, Ian R Sweet, Ram Vidadala, Dustin J Maly, Wesley C Van Voorhis, Stephen R Plymate","doi":"10.1158/1535-7163.MCT-23-0540","DOIUrl":"10.1158/1535-7163.MCT-23-0540","url":null,"abstract":"<p><p>Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Nonspecific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small-molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell-cycle, metabolic, and enzymatic assays were used to demonstrate their mechanism of action. A human patient-derived xenograft model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. We demonstrate a new class of small-molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The CDK4/6 Inhibitor Palbociclib Synergizes with ATRA to Induce Differentiation in AML. CDK4/6抑制剂Palbociclib与ATRA协同诱导急性髓细胞白血病患者的分化。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-02 DOI: 10.1158/1535-7163.MCT-23-0528
Linhui Hu, Qian Li, Jiyu Wang, Huiping Wang, Xiyang Ren, Keke Huang, Yangyang Wang, Xue Liang, Lianfang Pu, Shudao Xiong, Zhimin Zhai

Differentiation therapy based on ATRA almost cured acute promyelocytic leukemia (APL). However, it is disappointing that ATRA is not effective against other acute myeloid leukemia (AML) subtypes. Developing new and effective anti-AML therapies that promote leukemia differentiation is necessary. The CDK4/6-cyclin D pathway is a key initiator of the G1-S phase transition, which determines cell fate. Herein, we investigated whether the CDK4/6 inhibitor palbociclib would synergize with ATRA to promote leukemia differentiation in vitro and in vivo. Our findings revealed that CDK4/6-cyclin D pathway genes were aberrantly expressed in AML, and we observed that palbociclib sensitized AML cells to ATRA-induced morphologic, biochemical, and functional changes indicative of myeloid differentiation. The combination of palbociclib and ATRA attenuated AML cell expansion in vivo. These enhanced differentiation effects may be associated with the regulation of transcription factors, including RARα, E2F1, and STAT1. Overall, our findings demonstrate that CDK4/6 inhibition sensitizes AML cells to ATRA and could guide the development of novel therapeutic strategies for patients with AML.

基于 ATRA 的分化疗法几乎治愈了急性早幼粒细胞白血病(APL)。然而,令人失望的是,ATRA 对其他急性髓性白血病(AML)亚型无效。开发促进白血病分化的新型有效抗 AML 疗法非常必要。CDK4/6-cyclin D通路是决定细胞命运的G1/S期转变的关键启动器。在此,我们研究了CDK4/6抑制剂palbociclib是否能与ATRA协同促进体外和体内的白血病分化。我们的研究结果表明,CDK4/6-环素D通路基因在急性髓细胞白血病中异常表达,而且我们观察到,palbociclib能使急性髓细胞白血病细胞对ATRA诱导的形态、生化和功能变化敏感,这些变化表明了髓细胞的分化。palbociclib和ATRA联合使用可减轻AML细胞在体内的扩增。这些增强的分化效应可能与 RARα、E2F1 和 STAT1 等转录因子的调控有关。总之,我们的研究结果表明,CDK4/6抑制可使AML细胞对ATRA敏感,并可指导AML患者新型治疗策略的开发。
{"title":"The CDK4/6 Inhibitor Palbociclib Synergizes with ATRA to Induce Differentiation in AML.","authors":"Linhui Hu, Qian Li, Jiyu Wang, Huiping Wang, Xiyang Ren, Keke Huang, Yangyang Wang, Xue Liang, Lianfang Pu, Shudao Xiong, Zhimin Zhai","doi":"10.1158/1535-7163.MCT-23-0528","DOIUrl":"10.1158/1535-7163.MCT-23-0528","url":null,"abstract":"<p><p>Differentiation therapy based on ATRA almost cured acute promyelocytic leukemia (APL). However, it is disappointing that ATRA is not effective against other acute myeloid leukemia (AML) subtypes. Developing new and effective anti-AML therapies that promote leukemia differentiation is necessary. The CDK4/6-cyclin D pathway is a key initiator of the G1-S phase transition, which determines cell fate. Herein, we investigated whether the CDK4/6 inhibitor palbociclib would synergize with ATRA to promote leukemia differentiation in vitro and in vivo. Our findings revealed that CDK4/6-cyclin D pathway genes were aberrantly expressed in AML, and we observed that palbociclib sensitized AML cells to ATRA-induced morphologic, biochemical, and functional changes indicative of myeloid differentiation. The combination of palbociclib and ATRA attenuated AML cell expansion in vivo. These enhanced differentiation effects may be associated with the regulation of transcription factors, including RARα, E2F1, and STAT1. Overall, our findings demonstrate that CDK4/6 inhibition sensitizes AML cells to ATRA and could guide the development of novel therapeutic strategies for patients with AML.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interferon Gamma Induces Higher Neutrophil Extracellular Traps Leading to Tumor-Killing Activity in Microsatellite Stable Colorectal Cancer. γ干扰素能诱导更多的中性粒细胞胞外捕获物,从而对微卫星稳定的结直肠癌产生肿瘤杀伤活性。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-02 DOI: 10.1158/1535-7163.MCT-23-0744
Hao-Wei Teng, Tean-Ya Wang, Chun-Chi Lin, Zhen-Jie Tong, Hsiao-Wei Cheng, Hsiang-Tsui Wang

Many patients with colorectal cancer do not respond to immune checkpoint blockade (ICB) therapy, highlighting the urgent need to understand tumor resistance mechanisms. Recently, the link between the IFNγ signaling pathway integrity and ICB resistance in the colorectal cancer tumor microenvironment has been revealed. The immunosuppressive microenvironment poses a significant challenge to antitumor immunity in colorectal cancer development. Tumor-associated neutrophils found in tumor tissues exhibit an immunosuppressive phenotype and are associated with colorectal cancer patient prognosis. Neutrophil extracellular traps (NET), DNA meshes containing cytotoxic enzymes released into the extracellular space, may be promising therapeutic targets in cancer. This study showed increased NETs in tumor tissues and peripheral neutrophils of high levels of microsatellite instability (MSI-H) patients with colorectal cancer compared with microsatellite stable (MSS) patients with colorectal cancer. IFNγ response genes were enriched in MSI-H patients with colorectal cancer compared with patients with MSS colorectal cancer. Co-culturing neutrophils with MSI-H colorectal cancer cell lines induced more NET formation and higher cellular apoptosis than MSS colorectal cancer cell lines. IFNγ treatment induced more NET formation and apoptosis in MSS colorectal cancer cell lines. Using subcutaneous or orthotopic CT-26 (MSS) tumor-bearing mice models, IFNγ reduced tumor size and enhanced PD-1 antibody-induced tumor-killing activity, accompanied by upregulated NETs and cellular apoptosis. These findings suggest that IFNγ could be a therapeutic strategy for MSS colorectal cancer.

许多结直肠癌(CRC)患者对免疫检查点阻断(ICB)疗法没有反应,这凸显了了解肿瘤耐药机制的迫切需要。最近,IFNγ 信号通路完整性与 CRC 肿瘤微环境中 ICB 抗性之间的联系被揭示出来。免疫抑制微环境对 CRC 发展过程中的抗肿瘤免疫构成了重大挑战。肿瘤组织中的肿瘤相关中性粒细胞(TANs)表现出免疫抑制表型,并与 CRC 患者的预后有关。中性粒细胞胞外捕获物(NETs)是含有细胞毒性酶的DNA网状结构,可释放到细胞外空间,可能是治疗癌症的有希望的靶点。这项研究显示,与微卫星稳定性(MSS)CRC 患者相比,微卫星不稳定性(MSI-H)高的 CRC 患者的肿瘤组织和外周中性粒细胞中的 NETs 增加。与微卫星稳定型(MSS)CRC 患者相比,MSI-H 型 CRC 患者的 IFNγ 反应基因更为丰富。与 MSS CRC 细胞系相比,MSI-H CRC 细胞系与中性粒细胞共培养会诱导更多的 NET 形成和更高的细胞凋亡。IFNγ 处理可诱导 MSS CRC 细胞株中更多的 NET 形成和细胞凋亡。通过使用皮下或正位 CT-26(MSS)肿瘤小鼠模型,IFNγ 可缩小肿瘤大小并增强 PD-1 抗体诱导的肿瘤杀伤活性,同时伴随着上调的 NET 和细胞凋亡。这些研究结果表明,IFNγ可作为MSS CRC的一种治疗策略。
{"title":"Interferon Gamma Induces Higher Neutrophil Extracellular Traps Leading to Tumor-Killing Activity in Microsatellite Stable Colorectal Cancer.","authors":"Hao-Wei Teng, Tean-Ya Wang, Chun-Chi Lin, Zhen-Jie Tong, Hsiao-Wei Cheng, Hsiang-Tsui Wang","doi":"10.1158/1535-7163.MCT-23-0744","DOIUrl":"10.1158/1535-7163.MCT-23-0744","url":null,"abstract":"<p><p>Many patients with colorectal cancer do not respond to immune checkpoint blockade (ICB) therapy, highlighting the urgent need to understand tumor resistance mechanisms. Recently, the link between the IFNγ signaling pathway integrity and ICB resistance in the colorectal cancer tumor microenvironment has been revealed. The immunosuppressive microenvironment poses a significant challenge to antitumor immunity in colorectal cancer development. Tumor-associated neutrophils found in tumor tissues exhibit an immunosuppressive phenotype and are associated with colorectal cancer patient prognosis. Neutrophil extracellular traps (NET), DNA meshes containing cytotoxic enzymes released into the extracellular space, may be promising therapeutic targets in cancer. This study showed increased NETs in tumor tissues and peripheral neutrophils of high levels of microsatellite instability (MSI-H) patients with colorectal cancer compared with microsatellite stable (MSS) patients with colorectal cancer. IFNγ response genes were enriched in MSI-H patients with colorectal cancer compared with patients with MSS colorectal cancer. Co-culturing neutrophils with MSI-H colorectal cancer cell lines induced more NET formation and higher cellular apoptosis than MSS colorectal cancer cell lines. IFNγ treatment induced more NET formation and apoptosis in MSS colorectal cancer cell lines. Using subcutaneous or orthotopic CT-26 (MSS) tumor-bearing mice models, IFNγ reduced tumor size and enhanced PD-1 antibody-induced tumor-killing activity, accompanied by upregulated NETs and cellular apoptosis. These findings suggest that IFNγ could be a therapeutic strategy for MSS colorectal cancer.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss of the DNA Repair Gene RNase H2 Identifies a Unique Subset of DDR-Deficient Leiomyosarcomas. DNA修复基因RNase H2的缺失发现了一种独特的DDR缺陷骨髓肉瘤亚群
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-07-02 DOI: 10.1158/1535-7163.MCT-23-0761
Michael S Nakazawa, Ian M Silverman, Victoria Rimkunas, Artur Veloso, Dominik Glodzik, Adrienne Johnson, Toshiro K Ohsumi, Shreyaskumar R Patel, Anthony P Conley, Christina L Roland, Pamela T Soliman, Hannah C Beird, Chia-Chin Wu, Davis R Ingram, Rossana Lazcano, Dawon Song, Khalida M Wani, Alexander J Lazar, Timothy A Yap, Wei-Lien Wang, J Andrew Livingston

Targeting the DNA damage response (DDR) pathway is an emerging therapeutic approach for leiomyosarcoma (LMS), and loss of RNase H2, a DDR pathway member, is a potentially actionable alteration for DDR-targeted treatments. Therefore, we designed a protein- and genomic-based RNase H2 screening assay to determine its prevalence and prognostic significance. Using a selective RNase H2 antibody on a pan-tumor microarray (TMA), RNase H2 loss was more common in LMS (11.5%, 9/78) than across all tumors (3.8%, 32/843). In a separate LMS cohort, RNase H2 deficiency was confirmed in uterine LMS (U-LMS, 21%, 23/108) and soft-tissue LMS (ST-LMS; 30%, 39/102). In the TCGA database, RNASEH2B homozygous deletions (HomDels) were found in 6% (5/80) of LMS cases, with a higher proportion in U-LMS (15%; 4/27) compared with ST-LMS (2%; 1/53). Using the SNiPDx targeted-NGS sequencing assay to detect biallelic loss of function in select DDR-related genes, we found RNASEH2B HomDels in 54% (19/35) of U-LMS cases with RNase H2 loss by IHC, and 7% (3/43) HomDels in RNase H2 intact cases. No RNASEH2B HomDels were detected in ST-LMS. In U-LMS patient cohort (n = 109), no significant overall survival difference was seen in patients with RNase H2 loss versus intact, or RNASEH2B HomDel (n = 12) versus Non-HomDel (n = 37). The overall diagnostic accuracy, sensitivity, and specificity of RNase H2 IHC for detecting RNA-SEH2B HomDels in U-LMS was 76%, 93%, and 71%, respectively, and it is being developed for future predictive biomarker driven clinical trials targeting DDR in U-LMS.

靶向DNA损伤应答(DDR)通路是治疗子宫肌瘤(LMS)的一种新兴方法,而作为DDR通路成员的RNase H2的缺失是DDR靶向治疗的一种潜在可操作改变。因此,我们设计了一种基于蛋白质和基因组的RNase H2筛选测定,以确定其流行率和预后意义。通过在泛肿瘤组织微阵列(TMA)上使用选择性RNase H2抗体,发现RNase H2缺失在LMS(11.5%,9/78)中比在所有肿瘤(3.8%,32/843)中更为常见。在一个单独的LMS队列中,子宫LMS(U-LMS,21%,23/108)和软组织LMS(ST-LMS)(30%,39/102)证实存在RNase H2缺失。在TCGA数据库中,6%(5/80)的LMS病例中发现了RNASEH2B同源缺失(HomDels),与ST-LMS(2%;1/53)相比,U-LMS(15%;4/27)的比例更高。利用 SNiPDx 靶向-NGS 测序分析法检测特定 DDR 相关基因的双倍序列功能缺失,我们在 IHC 检测出 RNase H2 缺失的 U-LMS 病例中发现了 54% (19/35)的 RNASEH2B HomDels,在 RNase H2 完好的病例中发现了 7% (3/43)的 HomDels。在 ST-LMS 中未检测到 RNASEH2B HomDels。在U-LMS患者队列(n=109)中,RNase H2缺失与完好、RNASEH2B HomDel(n=12)与非HomDel(n=37)患者的总生存率无明显差异。RNase H2 IHC检测U-LMS中RNASEH2B HomDel的总体诊断准确率、灵敏度和特异性分别为76%、93%和71%,目前正在开发用于未来针对U-LMS中DDR的预测性生物标志物驱动临床试验。
{"title":"Loss of the DNA Repair Gene RNase H2 Identifies a Unique Subset of DDR-Deficient Leiomyosarcomas.","authors":"Michael S Nakazawa, Ian M Silverman, Victoria Rimkunas, Artur Veloso, Dominik Glodzik, Adrienne Johnson, Toshiro K Ohsumi, Shreyaskumar R Patel, Anthony P Conley, Christina L Roland, Pamela T Soliman, Hannah C Beird, Chia-Chin Wu, Davis R Ingram, Rossana Lazcano, Dawon Song, Khalida M Wani, Alexander J Lazar, Timothy A Yap, Wei-Lien Wang, J Andrew Livingston","doi":"10.1158/1535-7163.MCT-23-0761","DOIUrl":"10.1158/1535-7163.MCT-23-0761","url":null,"abstract":"<p><p>Targeting the DNA damage response (DDR) pathway is an emerging therapeutic approach for leiomyosarcoma (LMS), and loss of RNase H2, a DDR pathway member, is a potentially actionable alteration for DDR-targeted treatments. Therefore, we designed a protein- and genomic-based RNase H2 screening assay to determine its prevalence and prognostic significance. Using a selective RNase H2 antibody on a pan-tumor microarray (TMA), RNase H2 loss was more common in LMS (11.5%, 9/78) than across all tumors (3.8%, 32/843). In a separate LMS cohort, RNase H2 deficiency was confirmed in uterine LMS (U-LMS, 21%, 23/108) and soft-tissue LMS (ST-LMS; 30%, 39/102). In the TCGA database, RNASEH2B homozygous deletions (HomDels) were found in 6% (5/80) of LMS cases, with a higher proportion in U-LMS (15%; 4/27) compared with ST-LMS (2%; 1/53). Using the SNiPDx targeted-NGS sequencing assay to detect biallelic loss of function in select DDR-related genes, we found RNASEH2B HomDels in 54% (19/35) of U-LMS cases with RNase H2 loss by IHC, and 7% (3/43) HomDels in RNase H2 intact cases. No RNASEH2B HomDels were detected in ST-LMS. In U-LMS patient cohort (n = 109), no significant overall survival difference was seen in patients with RNase H2 loss versus intact, or RNASEH2B HomDel (n = 12) versus Non-HomDel (n = 37). The overall diagnostic accuracy, sensitivity, and specificity of RNase H2 IHC for detecting RNA-SEH2B HomDels in U-LMS was 76%, 93%, and 71%, respectively, and it is being developed for future predictive biomarker driven clinical trials targeting DDR in U-LMS.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321279/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140336248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cancer Therapeutics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1