Pub Date : 2024-11-26DOI: 10.1158/1535-7163.MCT-23-0386
Xuemei Xie, Maroua Manai, Dileep R Rampa, Jon A Fuson, Elizabeth S Nakasone, Troy Pearson, Bharat S Kuntal, Debu Tripathy, Naoto T Ueno, Jangsoon Lee
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Among TNBC subtypes, the luminal androgen receptor (LAR) subtype expresses high levels of androgen receptor (AR) and generally responds poorly to neoadjuvant chemotherapy. AR has been reported as a promising therapeutic target for the LAR TNBC subtype. Here, we evaluated the preclinical antitumor efficacy of enzalutamide, an AR inhibitor, in TNBC. Enzalutamide had moderate anti-proliferation activity against AR-positive (AR+) TNBC cells (IC50 > 15 µM). To enhance its antitumor efficacy, we performed high-throughput kinome siRNA screening and identified the cell cycle pathway as a potential target. Inhibition of cell cycle progression using the CDK7 inhibitor KRLS-017 showed a synergistic anti-proliferation effect with enzalutamide in AR+ LAR MDA-MB-453 and SUM185 TNBC cells. Downstream target analysis revealed that enzalutamide and KRLS-017 combination dramatically reduced c-MYC expression at both mRNA and protein levels. c-MYC knockdown significantly suppressed growth of MDA-MB-453 and SUM185 cells to a degree comparable to that of enzalutamide and KRLS-017 combination treatment, whereas c-MYC overexpression reversed the synergistic effect. An enhancement in inhibition of tumor growth and suppression of c-MYC expression was further confirmed when enzalutamide combined with KRLS-017 in an MDA-MB-453 mouse model. Our study suggests that KRLS-017 enhances the antitumor efficacy of enzalutamide by inhibiting c-MYC-mediated tumorigenesis and presents a potential new approach for treating AR+ LAR TNBC.
三阴性乳腺癌(TNBC)是乳腺癌的一种侵袭性亚型。在 TNBC 亚型中,管腔雄激素受体(LAR)亚型表达高水平的雄激素受体(AR),通常对新辅助化疗反应较差。据报道,AR是LAR TNBC亚型的一个有希望的治疗靶点。在此,我们评估了AR抑制剂恩杂鲁胺对TNBC的临床前抗肿瘤疗效。恩杂鲁胺对AR阳性(AR+)TNBC细胞具有中等程度的抗肿瘤活性(IC50 > 15 µM)。为了增强其抗肿瘤功效,我们进行了高通量激酶组 siRNA 筛选,并确定细胞周期通路为潜在靶点。在AR+ LAR MDA-MB-453和SUM185 TNBC细胞中,使用CDK7抑制剂KRLS-017抑制细胞周期进展显示出了与恩杂鲁胺的协同抗增殖效应。下游靶点分析表明,恩杂鲁胺和KRLS-017联合用药可显著降低c-MYC在mRNA和蛋白水平的表达。c-MYC敲除可显著抑制MDA-MB-453和SUM185细胞的生长,其抑制程度与恩杂鲁胺和KRLS-017联合用药的抑制程度相当,而c-MYC过表达则会逆转协同作用。在MDA-MB-453小鼠模型中,当恩杂鲁胺与KRLS-017联合使用时,抑制肿瘤生长和抑制c-MYC表达的效果得到了进一步证实。我们的研究表明,KRLS-017通过抑制c-MYC介导的肿瘤发生增强了恩杂鲁胺的抗肿瘤疗效,为治疗AR+ LAR TNBC提供了一种潜在的新方法。
{"title":"Targeting CDK7 enhances the antitumor efficacy of enzalutamide in androgen receptor-positive triple-negative breast cancer by inhibiting c-MYC-mediated tumorigenesis.","authors":"Xuemei Xie, Maroua Manai, Dileep R Rampa, Jon A Fuson, Elizabeth S Nakasone, Troy Pearson, Bharat S Kuntal, Debu Tripathy, Naoto T Ueno, Jangsoon Lee","doi":"10.1158/1535-7163.MCT-23-0386","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-23-0386","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Among TNBC subtypes, the luminal androgen receptor (LAR) subtype expresses high levels of androgen receptor (AR) and generally responds poorly to neoadjuvant chemotherapy. AR has been reported as a promising therapeutic target for the LAR TNBC subtype. Here, we evaluated the preclinical antitumor efficacy of enzalutamide, an AR inhibitor, in TNBC. Enzalutamide had moderate anti-proliferation activity against AR-positive (AR+) TNBC cells (IC50 > 15 µM). To enhance its antitumor efficacy, we performed high-throughput kinome siRNA screening and identified the cell cycle pathway as a potential target. Inhibition of cell cycle progression using the CDK7 inhibitor KRLS-017 showed a synergistic anti-proliferation effect with enzalutamide in AR+ LAR MDA-MB-453 and SUM185 TNBC cells. Downstream target analysis revealed that enzalutamide and KRLS-017 combination dramatically reduced c-MYC expression at both mRNA and protein levels. c-MYC knockdown significantly suppressed growth of MDA-MB-453 and SUM185 cells to a degree comparable to that of enzalutamide and KRLS-017 combination treatment, whereas c-MYC overexpression reversed the synergistic effect. An enhancement in inhibition of tumor growth and suppression of c-MYC expression was further confirmed when enzalutamide combined with KRLS-017 in an MDA-MB-453 mouse model. Our study suggests that KRLS-017 enhances the antitumor efficacy of enzalutamide by inhibiting c-MYC-mediated tumorigenesis and presents a potential new approach for treating AR+ LAR TNBC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1158/1535-7163.MCT-24-0505
Aaron E Fan, Hussein Sultan, Takumi Kumai, Valentyna I Fesenkova, Juan Wu, John D Klement, Joshua D Bernstock, Gregory K Friedman, Esteban Celis
Adoptive cell therapy (ACT) using retrovirally transduced T cells represents a promising strategy for enhancing antitumor responses. When used with TriVax, a peptide vaccination strategy, this approach synergistically expands antigen-specific cell populations. STAT5 plays a vital role as a transcription factor in regulating T cell proliferation and their differentiation into effector and memory T cells. We aimed to explore the combination therapy using CD8 T cells engineered to express constitutively active STAT5 (CA-STAT5) with vaccines. CD8 T cells were transduced with a retrovirus (RV) encoding the mouse gp100 T cell receptor (TCR). In certain treatment groups, cells were also co-transduced with RV encoding CA-STAT5. We assessed transduction efficiency and functional activity through flow cytometry and various functional assays. B16F10 tumor-bearing mice were treated with ACT using RV-transduced CD8 T cells and subsequently vaccinated with TriVax. We demonstrate that TriVax selectively enhanced the expansion of ACT cell populations bearing gp100-specific TCRs. T cells engineered to express CA-STAT5 showed not only increased expansion and polyfunctionality but also reduced PD-1 expression, leading to decreased cellular exhaustion. In a B16F10 melanoma mouse model, our approach yielded a potent antitumor effect, with CA-STAT5 further amplifying this response. We found that CA-STAT5 improved antitumor activities, in part, by attenuating the PD-1/PD-L1 inhibitory pathway. These findings indicate that TCR-transduced CD8 T cells can undergo antigen-dependent expansion when exposed to TriVax. Additionally, the expression of CA-STAT5 enhances T cell proliferation and persistence, partly by promoting resistance to PD-1/PD-L1-mediated inhibition in antitumor T cells.
利用逆转录病毒转导的 T 细胞进行适应性细胞疗法(ACT)是一种很有前景的增强抗肿瘤反应的策略。当与多肽疫苗接种策略 TriVax 配合使用时,这种方法能协同扩大抗原特异性细胞群。STAT5 作为一种转录因子,在调节 T 细胞增殖及其向效应 T 细胞和记忆 T 细胞分化的过程中发挥着重要作用。我们的目的是探索将表达组成型活性 STAT5(CA-STAT5)的 CD8 T 细胞与疫苗联合治疗的方法。用编码小鼠 gp100 T 细胞受体(TCR)的逆转录病毒(RV)转导 CD8 T 细胞。在某些处理组中,细胞还与编码 CA-STAT5 的 RV 共同转导。我们通过流式细胞术和各种功能测试评估了转导效率和功能活性。使用 RV 转导的 CD8 T 细胞对 B16F10 肿瘤小鼠进行 ACT 治疗,然后用 TriVax 疫苗接种。我们证明 TriVax 能选择性地增强携带 gp100 特异性 TCR 的 ACT 细胞群的扩增。表达 CA-STAT5 的 T 细胞不仅增强了扩增和多功能性,还减少了 PD-1 的表达,从而降低了细胞衰竭。在 B16F10 黑色素瘤小鼠模型中,我们的方法产生了有效的抗肿瘤效果,CA-STAT5 进一步增强了这种反应。我们发现,CA-STAT5 部分通过减弱 PD-1/PD-L1 抑制途径提高了抗肿瘤活性。这些研究结果表明,TCR 转导的 CD8 T 细胞在接触 TriVax 后会发生抗原依赖性扩增。此外,CA-STAT5的表达还能增强T细胞的增殖和持久性,部分原因是它能增强抗肿瘤T细胞对PD-1/PD-L1介导的抑制的抵抗力。
{"title":"STAT5 activation enhances adoptive therapy combined with peptide vaccination by preventing PD-1 inhibition.","authors":"Aaron E Fan, Hussein Sultan, Takumi Kumai, Valentyna I Fesenkova, Juan Wu, John D Klement, Joshua D Bernstock, Gregory K Friedman, Esteban Celis","doi":"10.1158/1535-7163.MCT-24-0505","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0505","url":null,"abstract":"<p><p>Adoptive cell therapy (ACT) using retrovirally transduced T cells represents a promising strategy for enhancing antitumor responses. When used with TriVax, a peptide vaccination strategy, this approach synergistically expands antigen-specific cell populations. STAT5 plays a vital role as a transcription factor in regulating T cell proliferation and their differentiation into effector and memory T cells. We aimed to explore the combination therapy using CD8 T cells engineered to express constitutively active STAT5 (CA-STAT5) with vaccines. CD8 T cells were transduced with a retrovirus (RV) encoding the mouse gp100 T cell receptor (TCR). In certain treatment groups, cells were also co-transduced with RV encoding CA-STAT5. We assessed transduction efficiency and functional activity through flow cytometry and various functional assays. B16F10 tumor-bearing mice were treated with ACT using RV-transduced CD8 T cells and subsequently vaccinated with TriVax. We demonstrate that TriVax selectively enhanced the expansion of ACT cell populations bearing gp100-specific TCRs. T cells engineered to express CA-STAT5 showed not only increased expansion and polyfunctionality but also reduced PD-1 expression, leading to decreased cellular exhaustion. In a B16F10 melanoma mouse model, our approach yielded a potent antitumor effect, with CA-STAT5 further amplifying this response. We found that CA-STAT5 improved antitumor activities, in part, by attenuating the PD-1/PD-L1 inhibitory pathway. These findings indicate that TCR-transduced CD8 T cells can undergo antigen-dependent expansion when exposed to TriVax. Additionally, the expression of CA-STAT5 enhances T cell proliferation and persistence, partly by promoting resistance to PD-1/PD-L1-mediated inhibition in antitumor T cells.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bispecific antibodies (BsAbs) combining simultaneous PD-L1 blockade and conditional co-stimulatory receptor activation have been developed to improve immune checkpoint therapy response. However, several PD-L1-based BsAbs have encountered clinical challenges, including insufficient activity or unexpected toxicity. In this study, we propose OX40 as a more suitable target partner for PD-L1-based BsAb design compared to ongoing clinical partners (CD27 and 4-1BB). We present a novel Fc-silenced tetravalent PD-L1/OX40 BsAb (EMB-09), which efficiently blocks PD-1/PD-L1 interactions and induces PD-L1-dependent OX40 activation, leading to enhanced T cell activation. EMB-09 demonstrated improved anti-tumor activity compared to the anti-PD-L1 monoclonal antibody. Significantly, EMB-09 activated effector memory T cells in peripheral immune system, promoted the influx of stem-like CD8+ T cells into the tumor site, resulting in a more active phenotype of CD8+ tumor-infiltrating lymphocytes. In an ongoing first-in-human study in patients with advanced refractory solid tumors (NCT05263180), EMB-09 demonstrated a consistent pharmacodynamic response and early efficacy signals.
为了改善免疫检查点疗法的反应,人们开发了同时阻断 PD-L1 和有条件激活共刺激受体的双特异性抗体(BsAbs)。然而,几种基于 PD-L1 的 BsAbs 都遇到了临床挑战,包括活性不足或意外毒性。在本研究中,我们提出,与现有的临床伙伴(CD27 和 4-1BB)相比,OX40 是更适合设计基于 PD-L1 的 BsAb 的目标伙伴。我们提出了一种新型 Fc 稀释四价 PD-L1/OX40 BsAb(EMB-09),它能有效阻断 PD-1/PD-L1 相互作用,诱导 PD-L1 依赖性 OX40 激活,从而增强 T 细胞激活。与抗PD-L1单克隆抗体相比,EMB-09的抗肿瘤活性有所提高。值得注意的是,EMB-09 能激活外周免疫系统中的效应记忆 T 细胞,促进干型 CD8+ T 细胞涌入肿瘤部位,使 CD8+ 肿瘤浸润淋巴细胞的表型更加活跃。在一项针对晚期难治性实体瘤患者的首次人体研究(NCT05263180)中,EMB-09 显示出一致的药效学反应和早期疗效信号。
{"title":"A novel designed anti-PD-L1/OX40 bispecific antibody augments both peripheral and tumor-associated immune responses for boosting anti-tumor immunity.","authors":"Baocun Li, Shiyong Gong, Nianying Zhang, Beilei Shi, Zhou Lv, Yu Zhang, Naren Gaowa, Liqin Dong, Danqing Wu, Jianfu Wu, Fan Liu, Rui Zhang, Ramin Behzadigohar, Vinod Ganju, Chengbin Wu, Xuan Wu","doi":"10.1158/1535-7163.MCT-24-0330","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0330","url":null,"abstract":"<p><p>Bispecific antibodies (BsAbs) combining simultaneous PD-L1 blockade and conditional co-stimulatory receptor activation have been developed to improve immune checkpoint therapy response. However, several PD-L1-based BsAbs have encountered clinical challenges, including insufficient activity or unexpected toxicity. In this study, we propose OX40 as a more suitable target partner for PD-L1-based BsAb design compared to ongoing clinical partners (CD27 and 4-1BB). We present a novel Fc-silenced tetravalent PD-L1/OX40 BsAb (EMB-09), which efficiently blocks PD-1/PD-L1 interactions and induces PD-L1-dependent OX40 activation, leading to enhanced T cell activation. EMB-09 demonstrated improved anti-tumor activity compared to the anti-PD-L1 monoclonal antibody. Significantly, EMB-09 activated effector memory T cells in peripheral immune system, promoted the influx of stem-like CD8+ T cells into the tumor site, resulting in a more active phenotype of CD8+ tumor-infiltrating lymphocytes. In an ongoing first-in-human study in patients with advanced refractory solid tumors (NCT05263180), EMB-09 demonstrated a consistent pharmacodynamic response and early efficacy signals.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1158/1535-7163.MCT-23-0522
Fanny Volat, Ragini Medhi, Lauren Z Maggs, Marcel A Deken, Alice Price, Lauren Andrews, Jonathan Clark, Diane Taylor, Alan Carruthers, Ewan Taylor-Smith, Natalia Pacheco, Simon A Rudge, Amy Fraser, Andrea F Lopez-Clavijo, Bebiana C Sousa, Zoë Johnson, Giusy Di Conza, Lars van der Veen, Pritom Shah, Hilary Sandig, Hayley J Sharpe, Stuart Farrow
Autotaxin (ATX), encoded by ENPP2, is a clinical target in pancreatic ductal adenocarcinoma (PDAC). ATX catalyzes the production of lysophosphatidic acid (LPA), an important regulator within the tumor microenvironment (TME), yet the pro-tumorigenic action of the ATX/LPA axis in PDAC remains unclear. Here, by interrogating patient samples and cell line datasets, we show that the PDAC TME, rather than cancer cells, is responsible for the majority of ENPP2 expression, and highlight a key role for cancer associated fibroblast (CAF)-derived ATX in autocrine and paracrine pro-tumorigenic signaling. Using the clinical-stage ATX inhibitor, IOA-289, we identified connective tissue growth factor (CTGF) as a downstream mediator of ATX signaling in the PDAC CAF-derived cell line, 0082T. Genetic ablation or pharmacological inhibition of ATX in 0082T CAFs reduced CTGF secretion via modulation of LPA/LPA receptor (LPAR) signaling. Despite the loss of ATX function, extracellular levels of LPA were paradoxically increased, indicating a role for ATX beyond its enzymatic activity and suggesting a role for its LPA chaperone function in the LPA/LPAR signaling in CAFs. As CAFs are the main source for CTGF in the PDAC TME, these findings suggest a role for ATX in promoting pro-tumorigenic microenvironment via modulation of CAF secretion, not only via its LPA-producing activity but also via its LPA chaperone function, providing a potential mechanism for the anti-tumor effects of ATX inhibition.
{"title":"Pancreatic CAF-derived Autotaxin (ATX) drives autocrine CTGF expression to modulate pro-tumorigenic signaling.","authors":"Fanny Volat, Ragini Medhi, Lauren Z Maggs, Marcel A Deken, Alice Price, Lauren Andrews, Jonathan Clark, Diane Taylor, Alan Carruthers, Ewan Taylor-Smith, Natalia Pacheco, Simon A Rudge, Amy Fraser, Andrea F Lopez-Clavijo, Bebiana C Sousa, Zoë Johnson, Giusy Di Conza, Lars van der Veen, Pritom Shah, Hilary Sandig, Hayley J Sharpe, Stuart Farrow","doi":"10.1158/1535-7163.MCT-23-0522","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-23-0522","url":null,"abstract":"<p><p>Autotaxin (ATX), encoded by ENPP2, is a clinical target in pancreatic ductal adenocarcinoma (PDAC). ATX catalyzes the production of lysophosphatidic acid (LPA), an important regulator within the tumor microenvironment (TME), yet the pro-tumorigenic action of the ATX/LPA axis in PDAC remains unclear. Here, by interrogating patient samples and cell line datasets, we show that the PDAC TME, rather than cancer cells, is responsible for the majority of ENPP2 expression, and highlight a key role for cancer associated fibroblast (CAF)-derived ATX in autocrine and paracrine pro-tumorigenic signaling. Using the clinical-stage ATX inhibitor, IOA-289, we identified connective tissue growth factor (CTGF) as a downstream mediator of ATX signaling in the PDAC CAF-derived cell line, 0082T. Genetic ablation or pharmacological inhibition of ATX in 0082T CAFs reduced CTGF secretion via modulation of LPA/LPA receptor (LPAR) signaling. Despite the loss of ATX function, extracellular levels of LPA were paradoxically increased, indicating a role for ATX beyond its enzymatic activity and suggesting a role for its LPA chaperone function in the LPA/LPAR signaling in CAFs. As CAFs are the main source for CTGF in the PDAC TME, these findings suggest a role for ATX in promoting pro-tumorigenic microenvironment via modulation of CAF secretion, not only via its LPA-producing activity but also via its LPA chaperone function, providing a potential mechanism for the anti-tumor effects of ATX inhibition.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1158/1535-7163.MCT-24-0266
Eleni Papacharisi, Alexandra Braun, Marija Vranic, Andreas M Pahl, Torsten Hechler
Trophoblast cell surface antigen 2 (TROP2) exhibits aberrant expression in pancreatic cancer, correlating with metastasis, advanced tumor stage and poor prognosis of pancreatic ductal adenocarcinoma (PDAC) patients. TROP2 has been recognized as a promising therapeutic target for antibody drug conjugates (ADCs), as evidenced by the approval of the anti-TROP2 ADC Trodelvy® for the treatment of triple negative breast cancer. In this study we report the generation of novel second-generation amanitin based ADCs (ATAC®s) targeting TROP2, comprising the humanized RS7 antibody of Trodelvy® (hRS7) and the highly potent payload amanitin. The specific in vitro binding, efficient antigen internalization, and high cytotoxicity of hRS7 ATAC®s with half maximal effective concentration (EC50) values in the picomolar range in TROP2-expressing cells constituted the foundation for preclinical in vivo evaluation. The hRS7 ATAC®s demonstrated a significant reduction in tumor growth in vivo in subcutaneous xenograft mouse models of pancreatic cancer and triple negative breast cancer at well-tolerated doses. The antitumor efficacy correlated with the level of TROP2 expression on the tumors and the in vivo tumor uptake of the ATAC®s. The long half-life of 9.7-10.7 days of hRS7 ATAC®s without premature payload release in serum supported a high therapeutic index. Notably, the efficacy of the hRS7 ATAC®s was superior to that of Trodelvy® with complete tumor eradication in both, refractory pancreatic and triple negative breast cancer xenograft models. In summary, hRS7 ATAC®s represent a highly effective and well-tolerated targeted therapy, and our data support their development for pancreatic cancer and other TROP2-expressing tumors.
{"title":"Novel Amanitin-based Antibody Drug Conjugates (ATAC®) targeting TROP2 for the treatment of Pancreatic Cancer.","authors":"Eleni Papacharisi, Alexandra Braun, Marija Vranic, Andreas M Pahl, Torsten Hechler","doi":"10.1158/1535-7163.MCT-24-0266","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0266","url":null,"abstract":"<p><p>Trophoblast cell surface antigen 2 (TROP2) exhibits aberrant expression in pancreatic cancer, correlating with metastasis, advanced tumor stage and poor prognosis of pancreatic ductal adenocarcinoma (PDAC) patients. TROP2 has been recognized as a promising therapeutic target for antibody drug conjugates (ADCs), as evidenced by the approval of the anti-TROP2 ADC Trodelvy® for the treatment of triple negative breast cancer. In this study we report the generation of novel second-generation amanitin based ADCs (ATAC®s) targeting TROP2, comprising the humanized RS7 antibody of Trodelvy® (hRS7) and the highly potent payload amanitin. The specific in vitro binding, efficient antigen internalization, and high cytotoxicity of hRS7 ATAC®s with half maximal effective concentration (EC50) values in the picomolar range in TROP2-expressing cells constituted the foundation for preclinical in vivo evaluation. The hRS7 ATAC®s demonstrated a significant reduction in tumor growth in vivo in subcutaneous xenograft mouse models of pancreatic cancer and triple negative breast cancer at well-tolerated doses. The antitumor efficacy correlated with the level of TROP2 expression on the tumors and the in vivo tumor uptake of the ATAC®s. The long half-life of 9.7-10.7 days of hRS7 ATAC®s without premature payload release in serum supported a high therapeutic index. Notably, the efficacy of the hRS7 ATAC®s was superior to that of Trodelvy® with complete tumor eradication in both, refractory pancreatic and triple negative breast cancer xenograft models. In summary, hRS7 ATAC®s represent a highly effective and well-tolerated targeted therapy, and our data support their development for pancreatic cancer and other TROP2-expressing tumors.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1158/1535-7163.MCT-24-0435
Michael S Oh, Camelia Dumitras, Ramin Salehi-Rad, Linh M Tran, Kostyantyn Krysan, Raymond J Lim, Zhe Jing, Shahed Tappuni, Aaron Lisberg, Edward B Garon, Steven M Dubinett, Bin Liu
The treatment of non-small cell lung cancer has made major strides with the use of immune checkpoint inhibitors, but there remains a significant need for therapies that can overcome immunotherapy resistance. Dendritic cell (DC) vaccines have been proposed as a therapy that can potentially enhance the antitumor immune response. We have embarked on a phase I clinical trial of a vaccine consisting of monocyte-derived DCs (moDCs) modified to express the chemokine CCL21 (CCL21-DC) given in combination with pembrolizumab. Here, we report a comprehensive characterization of this CCL21-DC vaccine and interrogate the effects of multiple factors in the manufacturing process. We show that the cellular makeup of the CCL21-DC vaccine is heterogeneous due to the presence of passenger lymphocytes at a proportion that is highly variable among patients. Single cell RNA sequencing of vaccines revealed further heterogeneity within the moDC compartment, with cells spanning a spectrum of DC phenotypes. Transduction with a CCL21-containing adenoviral vector augmented CCL21 secretion by moDCs but otherwise had a minimal effect on vaccine characteristics. A single freeze-thaw cycle for stored vaccines was associated with minor alterations to the DC phenotype, as was the use of healthy donors rather than patient autologous blood. Our results highlight important considerations for the production of DC vaccines and identify underexplored factors that may affect their efficacy and immunologic impact.
随着免疫检查点抑制剂的使用,非小细胞肺癌的治疗取得了重大进展,但人们仍然非常需要能够克服免疫疗法耐药性的疗法。树突状细胞(DC)疫苗被认为是一种有可能增强抗肿瘤免疫反应的疗法。我们已经开始了由表达趋化因子CCL21(CCL21-DC)的单核细胞衍生DC(moDCs)组成的疫苗与pembrolizumab联合用药的I期临床试验。在此,我们报告了这种 CCL21-DC 疫苗的全面特征,并探讨了生产过程中多种因素的影响。我们发现,CCL21-DC 疫苗的细胞构成是异质的,这是因为客体淋巴细胞的存在比例在患者之间存在很大差异。疫苗的单细胞 RNA 测序揭示了 moDC 区间的进一步异质性,细胞跨越了 DC 表型的光谱。用含 CCL21 的腺病毒载体转导可增强 moDC 的 CCL21 分泌,但对疫苗特性的影响微乎其微。储存疫苗的单次冻融循环与 DC 表型的轻微改变有关,使用健康供血者而非患者自体血也是如此。我们的研究结果强调了生产 DC 疫苗的重要注意事项,并发现了可能影响疫苗疗效和免疫学影响的未被充分探索的因素。
{"title":"Characteristics of a CCL21-gene modified dendritic cell vaccine utilized for a clinical trial in non-small cell lung cancer.","authors":"Michael S Oh, Camelia Dumitras, Ramin Salehi-Rad, Linh M Tran, Kostyantyn Krysan, Raymond J Lim, Zhe Jing, Shahed Tappuni, Aaron Lisberg, Edward B Garon, Steven M Dubinett, Bin Liu","doi":"10.1158/1535-7163.MCT-24-0435","DOIUrl":"10.1158/1535-7163.MCT-24-0435","url":null,"abstract":"<p><p>The treatment of non-small cell lung cancer has made major strides with the use of immune checkpoint inhibitors, but there remains a significant need for therapies that can overcome immunotherapy resistance. Dendritic cell (DC) vaccines have been proposed as a therapy that can potentially enhance the antitumor immune response. We have embarked on a phase I clinical trial of a vaccine consisting of monocyte-derived DCs (moDCs) modified to express the chemokine CCL21 (CCL21-DC) given in combination with pembrolizumab. Here, we report a comprehensive characterization of this CCL21-DC vaccine and interrogate the effects of multiple factors in the manufacturing process. We show that the cellular makeup of the CCL21-DC vaccine is heterogeneous due to the presence of passenger lymphocytes at a proportion that is highly variable among patients. Single cell RNA sequencing of vaccines revealed further heterogeneity within the moDC compartment, with cells spanning a spectrum of DC phenotypes. Transduction with a CCL21-containing adenoviral vector augmented CCL21 secretion by moDCs but otherwise had a minimal effect on vaccine characteristics. A single freeze-thaw cycle for stored vaccines was associated with minor alterations to the DC phenotype, as was the use of healthy donors rather than patient autologous blood. Our results highlight important considerations for the production of DC vaccines and identify underexplored factors that may affect their efficacy and immunologic impact.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1158/1535-7163.MCT-24-0664
Darwin A Garcia, Sneha Rathi, Margaret A Connors, Michael Grams, Rachael A Vaubel, Katrina K Bakken, Lauren L Ott, Brett L Carlson, Zeng Hu, Paul A Decker, Jeanette E Eckel-Passow, Danielle M Burgenske, Wei Zhong, Joshua D Trzasko, Michael G Herman, William F Elmquist, Nicholas B Remmes, Jann N Sarkaria
ATM inhibitors are being developed as radiosensitizers to improve the antitumor effects of radiotherapy, but ATM inhibition can also radiosensitize normal tissues. Therefore, understanding the elevated risk for normal tissue toxicities is critical for radiosensitizer development. This study focused on modeling the relationship between acute mucosal toxicity, radiation dose, fractionation schedule, and radiosensitizer exposure. The ATM inhibitor WSD0628 was combined with single or fractionated doses of radiation delivered to the oral cavity or esophagus of FVB mice. The potentiation by WSD0628 was quantified by a sensitizer enhancement ratio (SER), which describes the changes in radiation tolerance for radiation combined with WSD0628 relative to radiation-only regimens. WSD0628 profoundly enhanced radiation-induced acute oral and esophageal toxicities. For oral mucosal toxicity, the enhancement by WSD0628 with 3 fractions of radiation resulted in an SER ranging from 1.3 (0.25 mg/kg) to 3.1 (7.5 mg/kg). For the 7.5 mg/kg combination, the SER increased with increasing number of fractions from 2.2 (1 fraction) to 4.3 (7 fractions) for oral toxicity and from 2.2 (1 fraction) to 3.6 (3 fractions) for esophageal toxicity, which reflects a loss of the normal tissue sparing benefit of fractionated radiation. These findings were used to develop a modified biologically effective dose model to determine alternative radiation schedules with or without WSD0628 that result in similar levels of toxicity. Successful radiosensitizer dose-escalation to maximally effective therapeutic dose will require careful deliberation of tumor site and reduction of radiation dose-volume limits for organs at risk.
{"title":"Modeling the acute mucosal toxicity to fractionated radiotherapy combined with the ATM inhibitor WSD0628.","authors":"Darwin A Garcia, Sneha Rathi, Margaret A Connors, Michael Grams, Rachael A Vaubel, Katrina K Bakken, Lauren L Ott, Brett L Carlson, Zeng Hu, Paul A Decker, Jeanette E Eckel-Passow, Danielle M Burgenske, Wei Zhong, Joshua D Trzasko, Michael G Herman, William F Elmquist, Nicholas B Remmes, Jann N Sarkaria","doi":"10.1158/1535-7163.MCT-24-0664","DOIUrl":"10.1158/1535-7163.MCT-24-0664","url":null,"abstract":"<p><p>ATM inhibitors are being developed as radiosensitizers to improve the antitumor effects of radiotherapy, but ATM inhibition can also radiosensitize normal tissues. Therefore, understanding the elevated risk for normal tissue toxicities is critical for radiosensitizer development. This study focused on modeling the relationship between acute mucosal toxicity, radiation dose, fractionation schedule, and radiosensitizer exposure. The ATM inhibitor WSD0628 was combined with single or fractionated doses of radiation delivered to the oral cavity or esophagus of FVB mice. The potentiation by WSD0628 was quantified by a sensitizer enhancement ratio (SER), which describes the changes in radiation tolerance for radiation combined with WSD0628 relative to radiation-only regimens. WSD0628 profoundly enhanced radiation-induced acute oral and esophageal toxicities. For oral mucosal toxicity, the enhancement by WSD0628 with 3 fractions of radiation resulted in an SER ranging from 1.3 (0.25 mg/kg) to 3.1 (7.5 mg/kg). For the 7.5 mg/kg combination, the SER increased with increasing number of fractions from 2.2 (1 fraction) to 4.3 (7 fractions) for oral toxicity and from 2.2 (1 fraction) to 3.6 (3 fractions) for esophageal toxicity, which reflects a loss of the normal tissue sparing benefit of fractionated radiation. These findings were used to develop a modified biologically effective dose model to determine alternative radiation schedules with or without WSD0628 that result in similar levels of toxicity. Successful radiosensitizer dose-escalation to maximally effective therapeutic dose will require careful deliberation of tumor site and reduction of radiation dose-volume limits for organs at risk.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1158/1535-7163.MCT-23-0794
Liana Hayrapetyan, Selina Moara Roth, Aurélie Quintin, Lusine Hovhannisyan, Matúš Medo, Rahel Riedo, Julien G Ott, Joachim Albers, Daniel M Aebersold, Yitzhak Zimmer, Michaela Medová
Major risk factors of head and neck squamous cell carcinoma (HNSCC) are tobacco use and human papillomavirus (HPV). HPV E6 oncoprotein leads to p53 degradation, whereas HPV-negative cancers are frequently associated with TP53 mutations. Peposertib is a potent and selective, orally administered small-molecule inhibitor of the catalytic subunit of the DNA-dependent kinase (DNA-PKcs), a key regulator of non-homologous end joining (NHEJ). NHEJ inhibition along with irradiation (IR)-induced DNA double-strand breaks has the potential to increase antitumor treatment efficacy. Here, we investigated the responses of a panel of HNSCC models with distinct HPV and p53 status to treatments with IR, DNA-PKcs inhibition, and their combination in-vitro and in-vivo. IR-induced DNA damage combined with peposertib administration shortly before IR results in decreased cell viability and proliferation and causes DNA repair delay in all studied HNSCC cell lines. However, our data confirm that the actual cell fate upon this treatment is determined by cellular p53 and/or HPV status. Cells lacking functional p53 due to its degradation by HPV or due to a loss-of-function mutation are arrested in the G2/M phase of the cell cycle and eliminated by apoptosis whereas p53-proficient HNSCC cell lines preferentially undergo senescence. This is also recapitulated in-vivo, where HPV+ UD-SCC-2 xenografts display stronger and more durable responses to the combined treatment as compared to p53 wild-type UM-SCC-74A tumors. In conclusion, DNA-PKcs inhibitor peposertib should be further studied as a potential radiosensitizer for HNSCCs, taking into consideration the genetic background and the HPV status of a particular tumor.
{"title":"HPV and p53 status as precision determinants of head and neck cancer response to DNA-PKcs inhibition in combination with irradiation.","authors":"Liana Hayrapetyan, Selina Moara Roth, Aurélie Quintin, Lusine Hovhannisyan, Matúš Medo, Rahel Riedo, Julien G Ott, Joachim Albers, Daniel M Aebersold, Yitzhak Zimmer, Michaela Medová","doi":"10.1158/1535-7163.MCT-23-0794","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-23-0794","url":null,"abstract":"<p><p>Major risk factors of head and neck squamous cell carcinoma (HNSCC) are tobacco use and human papillomavirus (HPV). HPV E6 oncoprotein leads to p53 degradation, whereas HPV-negative cancers are frequently associated with TP53 mutations. Peposertib is a potent and selective, orally administered small-molecule inhibitor of the catalytic subunit of the DNA-dependent kinase (DNA-PKcs), a key regulator of non-homologous end joining (NHEJ). NHEJ inhibition along with irradiation (IR)-induced DNA double-strand breaks has the potential to increase antitumor treatment efficacy. Here, we investigated the responses of a panel of HNSCC models with distinct HPV and p53 status to treatments with IR, DNA-PKcs inhibition, and their combination in-vitro and in-vivo. IR-induced DNA damage combined with peposertib administration shortly before IR results in decreased cell viability and proliferation and causes DNA repair delay in all studied HNSCC cell lines. However, our data confirm that the actual cell fate upon this treatment is determined by cellular p53 and/or HPV status. Cells lacking functional p53 due to its degradation by HPV or due to a loss-of-function mutation are arrested in the G2/M phase of the cell cycle and eliminated by apoptosis whereas p53-proficient HNSCC cell lines preferentially undergo senescence. This is also recapitulated in-vivo, where HPV+ UD-SCC-2 xenografts display stronger and more durable responses to the combined treatment as compared to p53 wild-type UM-SCC-74A tumors. In conclusion, DNA-PKcs inhibitor peposertib should be further studied as a potential radiosensitizer for HNSCCs, taking into consideration the genetic background and the HPV status of a particular tumor.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1158/1535-7163.MCT-23-0591
Shalom D Goldberg, Tero Satomaa, Olulanu Aina, Olli Aitio, Krista Burke, Vadim Dudkin, Brian Geist, Onyi Irrechukwu, Anna-Liisa Hänninen, Annamari Heiskanen, Jari Helin, Jukka O Hiltunen, Jacqueline Kinyamu-Akunda, Donna M Klein, Neeraj Kohli, Titta Kotiranta, Tuula Lähteenmäki, Ritva Niemelä, Virve Pitkänen, Henna Pynnönen, William Rittase, Kristen Wiley, Junguo Zhou, Juhani Saarinen
Antibody-drug conjugates (ADC) have shown impressive clinical activity with approval of many agents in hematologic and solid tumors. However, challenges remain with both efficacy and safety of ADCs. This study describes novel trastuzumab-auristatin conjugates with the hydrophilic monomethylauristatin E (MMAE) prodrug MMAU, and optimization of a glycopeptide linker leading to a wider therapeutic window. Trastuzumab was conjugated with auristatin payloads via a series of linkers using a stabilized maleimide handle. The ADCs were characterized in vitro and their relative in vivo antitumor efficacies were assessed in HER2+ xenograft models. Relative linker stabilities and the mechanism of linker cleavage were studied using in vitro assays. Toxicity and toxicokinetics of the best performing ADC were evaluated in cynomolgus monkey (cyno). The trastuzumab-MMAU ADC with stabilized glycopeptide linker showed maleimide stabilization and higher resistance to cleavage by serum and lysosomal enzymes compared with a valine-citrulline conjugated trastuzumab ADC (trastuzumab-vc-MMAE). A single dose of 1 or 2 mg/kg of trastuzumab-MMAU at drug-to-antibody ratios (DAR) of eight and four respectively resulted in xenograft tumor growth inhibition, with superior efficacy to trastuzumab-vc-MMAE. Trastuzumab-MMAUDAR4 was tolerated at doses up to 12 mg/kg in cyno, which represents 2- to 4-fold higher dose than that observed with vedotin ADCs, and had increased terminal half-life and exposure. The optimized trastuzumab-MMAU ADC showed potent antitumor activity and was well tolerated with excellent pharmacokinetics in nonhuman primates, leading to a superior preclinical therapeutic window. The data support potential utility of trastuzumab-MMAU for treatment of HER2+ tumors.
{"title":"Trastuzumab-MMAU Antibody-Auristatin Conjugates: Valine-Glucoserine Linker with Stabilized Maleimide Conjugation Improves In Vivo Efficacy and Tolerability.","authors":"Shalom D Goldberg, Tero Satomaa, Olulanu Aina, Olli Aitio, Krista Burke, Vadim Dudkin, Brian Geist, Onyi Irrechukwu, Anna-Liisa Hänninen, Annamari Heiskanen, Jari Helin, Jukka O Hiltunen, Jacqueline Kinyamu-Akunda, Donna M Klein, Neeraj Kohli, Titta Kotiranta, Tuula Lähteenmäki, Ritva Niemelä, Virve Pitkänen, Henna Pynnönen, William Rittase, Kristen Wiley, Junguo Zhou, Juhani Saarinen","doi":"10.1158/1535-7163.MCT-23-0591","DOIUrl":"10.1158/1535-7163.MCT-23-0591","url":null,"abstract":"<p><p>Antibody-drug conjugates (ADC) have shown impressive clinical activity with approval of many agents in hematologic and solid tumors. However, challenges remain with both efficacy and safety of ADCs. This study describes novel trastuzumab-auristatin conjugates with the hydrophilic monomethylauristatin E (MMAE) prodrug MMAU, and optimization of a glycopeptide linker leading to a wider therapeutic window. Trastuzumab was conjugated with auristatin payloads via a series of linkers using a stabilized maleimide handle. The ADCs were characterized in vitro and their relative in vivo antitumor efficacies were assessed in HER2+ xenograft models. Relative linker stabilities and the mechanism of linker cleavage were studied using in vitro assays. Toxicity and toxicokinetics of the best performing ADC were evaluated in cynomolgus monkey (cyno). The trastuzumab-MMAU ADC with stabilized glycopeptide linker showed maleimide stabilization and higher resistance to cleavage by serum and lysosomal enzymes compared with a valine-citrulline conjugated trastuzumab ADC (trastuzumab-vc-MMAE). A single dose of 1 or 2 mg/kg of trastuzumab-MMAU at drug-to-antibody ratios (DAR) of eight and four respectively resulted in xenograft tumor growth inhibition, with superior efficacy to trastuzumab-vc-MMAE. Trastuzumab-MMAUDAR4 was tolerated at doses up to 12 mg/kg in cyno, which represents 2- to 4-fold higher dose than that observed with vedotin ADCs, and had increased terminal half-life and exposure. The optimized trastuzumab-MMAU ADC showed potent antitumor activity and was well tolerated with excellent pharmacokinetics in nonhuman primates, leading to a superior preclinical therapeutic window. The data support potential utility of trastuzumab-MMAU for treatment of HER2+ tumors.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1530-1543"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139697853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1158/1535-7163.MCT-23-0772
Antonia Charalambous, Fotios Mpekris, Myrofora Panagi, Chrysovalantis Voutouri, Christina Michael, Alberto A Gabizon, Triantafyllos Stylianopoulos
Sarcomas are a heterogeneous group of rare cancers that originate in soft tissues or bones. Their complexity and tendency for metastases make treatment challenging, highlighting the need for new therapeutic approaches to improve patient survival. The difficulties in treating these cancers primarily stem from abnormalities within the tumor microenvironment (TME), which leads to reduced blood flow and oxygen levels in tumors. Consequently, this hampers the effective delivery of drugs to tumors and diminishes treatment efficacy despite higher toxic doses of chemotherapy. In this study, we tested the mechanotherapeutic ketotifen combined with either pegylated liposomal doxorubicin (PLD) or pegylated liposomal coencapsulated alendronate-doxorubicin (PLAD) plus anti-programmed cell death protein 1 antibody in mouse models of fibrosarcoma and osteosarcoma. We found that ketotifen successfully reprogrammed the TME by reducing tumor stiffness and increasing perfusion, proven by changes measured by shear-wave elastography and contrast-enhanced ultrasound, respectively, and enhanced the therapeutic efficacy of our nanomedicine-based chemo-immunotherapy protocols. Furthermore, we observed a trend toward improved antitumor responses when nano-chemotherapy is given alongside anti-programmed cell death protein 1 and when the immunomodulator alendronate was present in the treatment. We next investigated the mechanisms of action of this combination. Ketotifen combined with nanomedicine-based chemo-immunotherapy increased T-cell infiltration, specifically cytotoxic CD8+ T cells and CD4+ T helper cells, and decreased the number of regulatory T cells. In addition, the combination also altered the polarization of tumor-associated macrophages, favoring the M1 immune-supportive phenotype over the M2 immunosuppressive phenotype. Collectively, our findings provide evidence that ketotifen-induced TME reprogramming can improve the efficacy of nanomedicine-based chemo-immunotherapy in sarcomas.
{"title":"Tumor Microenvironment Reprogramming Improves Nanomedicine-Based Chemo-Immunotherapy in Sarcomas.","authors":"Antonia Charalambous, Fotios Mpekris, Myrofora Panagi, Chrysovalantis Voutouri, Christina Michael, Alberto A Gabizon, Triantafyllos Stylianopoulos","doi":"10.1158/1535-7163.MCT-23-0772","DOIUrl":"10.1158/1535-7163.MCT-23-0772","url":null,"abstract":"<p><p>Sarcomas are a heterogeneous group of rare cancers that originate in soft tissues or bones. Their complexity and tendency for metastases make treatment challenging, highlighting the need for new therapeutic approaches to improve patient survival. The difficulties in treating these cancers primarily stem from abnormalities within the tumor microenvironment (TME), which leads to reduced blood flow and oxygen levels in tumors. Consequently, this hampers the effective delivery of drugs to tumors and diminishes treatment efficacy despite higher toxic doses of chemotherapy. In this study, we tested the mechanotherapeutic ketotifen combined with either pegylated liposomal doxorubicin (PLD) or pegylated liposomal coencapsulated alendronate-doxorubicin (PLAD) plus anti-programmed cell death protein 1 antibody in mouse models of fibrosarcoma and osteosarcoma. We found that ketotifen successfully reprogrammed the TME by reducing tumor stiffness and increasing perfusion, proven by changes measured by shear-wave elastography and contrast-enhanced ultrasound, respectively, and enhanced the therapeutic efficacy of our nanomedicine-based chemo-immunotherapy protocols. Furthermore, we observed a trend toward improved antitumor responses when nano-chemotherapy is given alongside anti-programmed cell death protein 1 and when the immunomodulator alendronate was present in the treatment. We next investigated the mechanisms of action of this combination. Ketotifen combined with nanomedicine-based chemo-immunotherapy increased T-cell infiltration, specifically cytotoxic CD8+ T cells and CD4+ T helper cells, and decreased the number of regulatory T cells. In addition, the combination also altered the polarization of tumor-associated macrophages, favoring the M1 immune-supportive phenotype over the M2 immunosuppressive phenotype. Collectively, our findings provide evidence that ketotifen-induced TME reprogramming can improve the efficacy of nanomedicine-based chemo-immunotherapy in sarcomas.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1555-1567"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}